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F-94235 Cachan, France
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Abstract – The emission from open cavities with non-integrable features remains a challenging
problem of practical as well as fundamental relevance. Square-shaped dielectric microcavities
provide a favorable case study with generic implications for other polygonal resonators. We report
on a joint experimental and theoretical study of square-shaped organic microlasers exhibiting a far-
field emission that is strongly concentrated in the directions parallel to the side walls of the cavity.
A semiclassical model for the far-field distributions is developed that is in agreement with even fine
features of the experimental findings. Comparison of the model calculations with the experimental
data allows the precise identification of the lasing modes and their emission mechanisms, providing
strong support for a physically intuitive ray-dynamical interpretation. Special attention is paid
to the role of diffraction and the finite side length.

Copyright c© EPLA, 2016

Introduction. – Semiclassical physics emerged during
the development of quantum mechanics, almost one cen-
tury ago, to account for the transition from wave physics
in the quantum regime to classical mechanics [1]. Today,
semiclassical physics plays an essential role in quantum
chaos [2], and its methods are applied in virtually any field
that features wave dynamics, including acoustics [3], elec-
tromagnetism [2], hydrodynamics [4], and loop quantum
gravity [5]. We demonstrate the power of these meth-
ods when applied to optical microresonators by studying
square-shaped polymer-based microlasers. Their emission
properties are little understood for two reasons. Firstly,
the square resonator with Dirichlet boundary conditions
is a standard example of a separable system, whereas
the dielectric square resonator is nonseparable and hence

(a)E-mail: lebental@lpqm.ens-cachan.fr

nonintegrable due to the diffraction at the dielectric cor-
ners. This remains an open problem in mathematical
physics with tremendous impact on radar or telecommu-
nication applications [6]. Secondly, it was observed that
these lasers emit very narrow lobes in only a few direc-
tions. Directional emission from microlasers has been in-
tensely investigated due to possible applications [7] and
observed for, e.g., Limaçon- and stadium-shaped micro-
lasers. The underlying mechanism is understood in terms
of their chaotic ray dynamics [8,9]. However, these expla-
nations cannot be applied to polygonal resonators since
they do not exhibit chaotic ray dynamics.

While square and hexagonal microresonators and -lasers
have been extensively studied, their far-field distributions
have been scarcely investigated [10–13]. This is partly
because rounded corners significantly influence the reso-
nance frequencies and field distributions [10,14–16], and
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(a) (b)

2 μm

Fig. 1: (Color online) (a) Scanning electron microscope image
of a square microlaser. (b) Perspective photograph in real colors
of a lasing square cavity with side length 120 μm. The side
walls parallel to the camera axis emit red laser light, whereas
the side walls perpendicular to it scatter the green pump laser.

it is technologically challenging to fabricate sharp corners.
Here we investigate the far-field emission of microlasers
with sharp corners (i.e., with a radius of curvature much
smaller than the wavelength). A semiclassical model for
the dielectric square [17,18] is used to predict the far-field
distributions, which are in very good agreement with nu-
merical calculations. Careful comparison of the measured
far-field distributions with the model allows to identify the
lasing modes and understand the mechanism for their high
directionality.

Experiments. – The microlasers consisted of a
PMMA1 polymer matrix doped by 5 wt% DCM2 laser
dye that was deposited in a 650 nm thick layer on a
Si/SiO2 (2μm) wafer by spin-coating. Square cavities
with side length ranging from a = 80 to 200μm were en-
graved by electron-beam lithography [19], which makes it
possible to obtain two-dimensional cavities with nanoscale
precision (see fig. 1(a)).

The microlasers were pumped by a pulsed, frequency-
doubled Nd:YAG laser (532 nm, 0.5 ns, 10Hz). The short
pulses and low duty cycle help to avoid problems from
heating and quenching due to dark states. The pump
beam impinged vertically and it covered the whole cavity
uniformly. The lasing emission was collected in the sample
plane by a lens and transferred to a spectrometer by an
optical fiber. It was polarized parallel to the sample plane.
The far-field intensity distributions were measured as a
function of the azimuthal angle ϕ by rotating the cavity.

A typical spectrum is shown in fig. 2. It features a
sequence of equidistant peaks. Its Fourier transform (right
inset of fig. 2) shows that the free spectral range (FSR)
of the spectrum corresponds to the optical length of the
diamond orbit [20,21]. Therefore, it is expected that the
observed lasing modes are localized on trajectories with
an angle of incidence close to 45◦.

A typical far-field intensity distribution of a single
resonance is presented in fig. 3(a). It exhibits four
emission lobes in the directions parallel to the side walls.
The emission lobes are very narrow with a full width at
half-maximum of about 6◦ (see fig. 3(b)). Figure 1(b)
shows an image of the lasing cavity taken by a camera

1Poly(methyl methacrylate) PMMA A6 resist by Microchem.
24-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-

4Hpyran by Exciton.
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Fig. 2: (Color online) Experimental spectrum of a square
microlaser with 120 μm side length at ϕ = 0◦ at about 2.5 times
the threshold intensity (Ithres = 2.5 MW cm−2) and with lin-
early polarized pump beam. The left inset shows the diamond
periodic orbit in the square billiard. The right inset shows its
Fourier transform. The arrow indicates the optical length of
the diamond orbit.
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Fig. 3: (Color online) (a) Measured far-field intensity distri-
bution of a single resonance at λ = 606.7 nm for circularly
polarized pump beam. The photograph of the cavity indicates
its orientation. (b) Magnification around the lobe at 90◦. The
dashed red line is the measured intensity distribution, the solid
blue line the fitted intensity envelope, and the thin green line
the corresponding calculated intensity distribution. The in-
set shows a measurement with higher angular resolution and
linearly polarized pump around 0◦.

with a high-magnification zoom lens. It evidences that
the lasing emission (red) is emitted from the side walls
parallel to the emission direction, whereas the side walls
perpendicular to it do not emit but only scatter the green
pump laser. Since the emission is at a grazing angle, it
must stem from rays impinging on the cavity side walls
with an angle of incidence very close to the critical one,
αcrit = arcsin(1/n) = 41.8◦, where n = 1.5 is the refrac-
tive index [20]. This is in agreement with the previous
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Table 1: Symmetry classes, quantum numbers and model WFs (adapted from ref. [18]).

Diagonal Horizontal/vertical Parity of Parity of Mulliken Model wave function
symmetry symmetry mx + my mx · my symbol

(++) + Even Even A1 Ψmod(x, y) = Ψ0[cos(kxx) cos(kyy) + cos(kyx) cos(kxy)]
(−−) + Even Even B2 Ψmod(x, y) = Ψ0[cos(kxx) cos(kyy) − cos(kyx) cos(kxy)]
(++) − Even Odd B1 Ψmod(x, y) = Ψ0[sin(kxx) sin(kyy) + sin(kyx) sin(kxy)]
(−−) − Even Odd A2 Ψmod(x, y) = Ψ0[sin(kxx) sin(kyy) − sin(kyx) sin(kxy)]
(+−) None Odd Even E Ψmod(x, y) = Ψ0[sin(kxx) cos(kyy) + cos(kyx) sin(kxy)]
(−+) None Odd Even E Ψmod(x, y) = Ψ0[sin(kxx) cos(kyy) − cos(kyx) sin(kxy)]

0 x

y

kx

ky

αx

αy

ϕout

a
eff

Fig. 4: (Color online) Sketch of rays with momentum vectors
±kx�ex±ky�ey (solid red lines). Their angles of incidence on the
vertical (horizontal) side walls are αx (αy = π/2 − αx). The
angle of refraction is ϕout. The dashed red lines indicate rays
with momentum vectors rotated by 90◦, ±ky�ex ± kx�ey.

observation that the ray trajectories on which the lasing
modes are based have an angle of incidence close to 45◦.

Model calculations. – The far-field distributions are
calculated using the semiclassical model introduced in
refs. [17,18] to identify the observed lasing modes. The
model is based on the observation that the wave functions
are localized on classical tori and are thus composed of
eight plane waves exp{i(kxx + kyy)}. Their directions are
related to each other by the symmetry operations of the
C4v point group. The corresponding ray trajectories in
fig. 4 are given by the momentum vectors ±kx�ex ± ky�ey

and their rotations by 90◦, ±ky�ex ± kx�ey.
To quantize the spectrum, the simplest approach is to

separate the system along the x and y directions, and write
two phase loop conditions analogous to that of a Fabry-
Pérot cavity [17,18],

r2(αx) eikx2a = 1,

r2(αy) eiky2a = 1.
(1)

The main difference from a Fabry-Pérot cavity are the
Fresnel coefficients r corresponding to an incidence with
angles αx,y = arctan[Re(ky,x)/Re(kx,y)] instead of 0◦.
The momentum vector components kx,y can thus be

formally written as

kx = {πmx + i ln[r(αx)]}/a,

ky = {πmy + i ln[r(αy)]}/a.
(2)

The resonance wave number is k = 2π/λ = (k2
x+k2

y)1/2/n,
where λ is the free-space wavelength. Note that kx,y are
in general complex-valued. All wave functions Ψ(x, y) are
obtained by adding up the 8 plane waves with their correct
momentum vectors and signs. For transverse magnetic
(TM) (transverse electric (TE)) polarization, the electric
(magnetic) field is parallel to the plane of the cavity, and
Ψ corresponds to the z component of the electric (mag-
netic) field. The resonances (i.e., solutions of eq. (1)) are
labeled by their quantum numbers mx,y and their symme-
tries s1 (s2) with respect to the diagonal x = y (x = −y)
as (mx,my, s1s2), where s1,2 = +1 (s1,2 = −1) means a
symmetric (antisymmetric) wave function. There are six
symmetry classes corresponding to the different combina-
tions of s1,2 and the quantum numbers that are labeled
by the Mulliken symbols A1,2, B1,2 and E (see table 1).

Green’s identity is used to infer the far-field distribu-
tion [11]. The derivation is detailed in ref. [22] along with
the comparison to numerical simulations. The full expres-
sion for the far-field distribution of an A2 mode is given
in eq. (S6) of ref. [22]. It consists of 8 terms like

sinc
{

(ky−k sin ϕ)
a

2

} [
μkx

a

2
cos

(
kx

a

2

)
sin

(
k

a

2
cos ϕ

)

− k
a

2
cos ϕ cos

(
k

a

2
cos ϕ

)
sin

(
kx

a

2

)]
, (3)

where μ = 1 (μ = 1/n2) for TM (TE) polarization and
sinc(x) = sin(x)/x. Each such term corresponds to emis-
sion in the two directions ϕout defined by the roots of the
argument of the sinc function. If the angle of incidence
of the corresponding rays inside the resonator is smaller
than αcrit, then ϕout is simply given by Snell’s law (see
fig. 4), and the emission lobe is called refractive. Then
the sinc term is in fact the diffraction pattern of a plane
wave going through a slit with a width aeff that is the pro-
jection of the side of the square on the emission direction
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Fig. 5: Model calculation of the TE modes of a a = 120 μm
square with n = 1.5. The angle of incidence is plotted with
respect to the resonance wavelength. The horizontal line
indicates the critical angle. The model far-field intensity dis-
tributions of the modes marked (a), (b), and (c) are shown in
fig. 6.

(see fig. 4). When ϕout is complex, corresponding to rays
with angle of incidence larger than αcrit, the lobe is called
nonrefractive and is emitted parallel to the side wall. The
nonrefractive lobes are jagged and much broader. They
have a much smaller amplitude than the refractive lobes
due to the finite imaginary part of ϕout. While no en-
ergy is transmitted when a plane wave impinges on an
infinite dielectric interface with an angle larger than the
critical one (i.e., it is totally reflected), this is not the case
for an interface of finite length as illustrated by the ex-
istence of the nonrefractive emission lobes [10], which
leads to a modification of the reflection and transmission
coefficients.

Two different cases of far-field diagrams can appear for
n = 1.5 >

√
2, depending on αinc = min{αx, αy}. If

αinc < αcrit, the plane waves impinging on a side wall
with angle αinc escape refractively, whereas those imping-
ing with π/2−αinc are totally reflected. Hence 8 refractive
and 8 nonrefractive lobes are observed, where the lat-
ter are typically negligible compared to the former. If
αinc ≥ αcrit, all plane waves are totally reflected, and 16
nonrefractive lobes are observed, though their directions
are fourfold degenerate.

Comparison with experiment. – We now compare
the model with experiments. A spectrum generated by
the model and corresponding to the experimental condi-
tions is shown in fig. 5. The resonances are arranged in
branches. Each of them consists of modes with identi-
cal longitudinal quantum number m = mx + my and in-
creasing transverse quantum number p = |mx − my|/2
as αinc decreases [18]. The horizontal distance between
these branches agrees well with the experimentally ob-
served FSR, corresponding to the length of the diamond
orbit. Therefore, we conclude that the observed lasing
resonances belong to different branches, i.e., each has a
different m.

We use the far-field intensity distributions to infer
αinc and thus their transverse quantum numbers. The
model far-field patterns of three representative modes are

(a) (b) (c)

0◦0◦0◦

22.5◦22.5◦22.5◦

−22.5◦−22.5◦−22.5◦

45◦45◦45◦

−45◦−45◦−45◦

35

70

1750

3500

3000

6000

Fig. 6: (Color online) Model calculations of the far-field inten-
sity distributions for a a = 120 μm square with n = 1.5. The
modes are (a) TE(433, 407,−−), (b) TE(443, 397,−−), and
(c) TE(444, 396,−−).

presented in fig. 6. They are labeled by (a), (b), and (c)
in fig. 5. Mode (c) is located just below the critical angle
(p = 24) and features two refractive emission lobes be-
tween ϕ = −45◦ and 45◦, while its nonrefractive lobes are
not visible due to their negligible amplitude. Since the
measured far-field patterns feature only 4 lobes in the to-
tal range of 360◦, such modes with αinc < αcrit can be
excluded. Mode (b) with p = 23 is located just above
the critical angle. The refractive lobes have become non-
refractive and merged into four narrow lobes parallel to
the sides. This is precisely the kind of far-field pattern
observed experimentally. Mode (a) finally is well above
the critical angle (p = 13). The nonrefractive lobes have
become very broad and jagged unlike what was observed
experimentally. Also their amplitude has decreased signif-
icantly. This development continues with increasing αinc.
The qualitative comparison with the measured far-field
intensity distribution shows that the experimental lasing
modes are only consistent with mode (b), i.e., an angle of
incidence just above the critical angle. This is confirmed
by the fits described in the following.

The experimental far-field distribution measured with
an angular resolution of 1◦ as in fig. 3 is compared to the
envelope of the model far-field distributions (see ref. [22]
for details). The only two independent parameters are
the amplitude and αinc, which is considered a continu-
ous variable due to the high resonance density. The fit of
the lobe yields α

(fit)
inc = 41.87◦ and is plotted in fig. 3(b).

The agreement is excellent. Similar results are obtained
for the other lobes and the other resonances as well as
squares with various sizes, yielding values of α

(fit)
inc from

41.81◦ to 41.96◦. As expected from the qualitative consid-
erations in the previous paragraph and the photograph in
fig. 1(b), the angle of incidence is slightly above the critical
angle.

In fact, the model predicts far-field distributions with a
very quickly oscillating substructure that stems from the
terms in the square brackets in eq. (3), namely the sin and
cos functions with the argument φ = ka cos(ϕ)/2. The
actual model far-field intensity distribution for the fitted
parameters is shown as thin green line in fig. 3(b). To
confirm this prediction, the angular resolution of the setup
was improved by putting a slit in front of the collection
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lens. The far-field intensity distribution measured this way
is shown in the inset of fig. 3(b). It features oscillations
with a period of (0.29± 0.01)◦, while the expected period
is 0.29◦ according to eq. (3). The agreement is excellent
for different wavelengths and cavity sizes.

Systematic measurements with increased angular res-
olution will allow for a better determination of the
symmetry of the lasing resonances. Furthermore, the
symmetry of the far-field distributions can be changed
by the polarization of the pump laser due to the fluo-
rescence anisotropy of the laser dye [23]: when the square
microlaser is pumped with linear polarization parallel to
the x-axis (instead of circular polarization as in fig. 3(a)),
the emission is almost bidirectional with strong emission
lobes at ϕ = 0◦ and 180◦, whereas the emission lobes at
90◦ and 270◦ are strongly suppressed (not shown). This
effect is a consequence of the lower degree of symmetry
induced by the pump polarization. It can be explained
by the formation of coherent superpositions of degenerate
mode pairs like the A1 and B2 modes. It should be
noted that the lasing modes and hence far-field emission
of microlasers can also be controlled by localized or selec-
tive pumping [24–26], whereas controlling it only with the
pump polarization is an experimentally simpler approach.
These topics are, however, beyond the scope of this article
and will be explored in a future publication.

Conclusions. – The far-field intensity distributions of
square-shaped organic microlasers were investigated and
revealed highly directional emission in the four directions
parallel to the cavity sides. Sharp corners were essential
for obtaining this high directionality because rounded cor-
ners significantly change the emission behavior [10]. An-
alytical formulas for the far-field distributions based on a
semiclassical model [17,18] were developed and showed ex-
cellent agreement both with experimental data and with
numerical simulations. They could be easily adapted to
other polygonal cavities like hexagon or rectangles [11]
and other refractive indices. The comparison between the
model and experiments evidences that the lasing modes
are based on trajectories with an angle of incidence almost
equal to the critical angle that hence leave the resonator at
a grazing angle. Interestingly, these modes do not feature
the highest-quality factors; these would be modes with
αinc larger than αcrit. Maybe these modes actually lase,
but are not observed because of their lower amplitude in
the far-field compared to other modes. Or they may actu-
ally have higher losses due to diffraction at the substrate
interface [19].

The semiclassical model does not take into account
diffraction by the corners, whereas it is precisely this effect
which renders the system nonintegrable. While the model
calculations agree very well with the observed spectrum
and far-field distributions, there are some minor observa-
tions that cannot be explained by them. For example,
some light is emitted into other directions than the four
main emission lobes due to diffraction at the corners, but

it is much less intense3. This means that diffraction by
the corner plays a secondary but not negligible role for
the emission from polygonal microlasers. Studying these
effects would allow more insight into the open physical-
mathematical problem of diffraction by a dielectric
wedge.

∗ ∗ ∗

The numerical calculations are based on a code devel-
oped by C. Schmit. SB gratefully acknowledges funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under Grant No. 246.556.10. This work
was supported by a public grant from the Laboratoire
d’Excellence Physics Atom Light Matter (LabEx PALM)
overseen by the French National Research Agency (ANR)
as part of the Investissements d’Avenir program (Refer-
ence No. ANR-10-LABX-0039).

REFERENCES

[1] Brack M. and Bhaduri R. K., Semiclassical Physics
(Westview Press, Oxford) 2003.
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