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Introduction

The control and manipulation of charged particles by means of external fields has quickly been
at the centre of the fundamental knowledge of physics. For example, in high energy physics,
one accelerates and collides particles by the use of electric and magnetic fields in order to create
new particles with lifetimes so small that they should not be observed naturally. Whereas
it is relatively easy to manipulate charged particles, the control of neutral particles is much
more limited. Indeed, since those particles are not subject to electromagnetic interaction,
except through their possible magnetic moment or polarisation, their manipulation can be
quite complex. However, thanks to the recent development of novel laser sources, the remote
control of such neutral particles has been greatly enhanced. Lasers are used to slow down
and cool neutral particles at temperatures so small that they can easily be manipulated
with external electromagnetic fields. The related cooling techniques have allowed one to cool
atomic vapours at temperatures very close to the absolute zero and constitute one of the most
promising research areas in atomic physics.

The concept of manipulating atoms with light is a source of interest for a long time. Kepler
explained the orientation of comets tail with respect to the Sun by introducing what is now
called radiation pressure1. In 1905, based on the previous works of Max Planck, Einstein
postulated that a photon owns a quantised energy : he then explained absorption and emission
processes in terms of quantised energy exchanges between light and matter. The subsequent
quantisation of the momentum carried by a photon led to a better understandig of radiation
pressure. Nonetheless, one had to wait until the advent of tunable lasers to make significant
progress in the control of atoms by light. Since then, laser cooling and subsequent cold atoms
have become a central research thematic in atomic physics, as the diagram of Figure 1 shows.
Indeed, cold atoms can be probed, controlled and manipulated, even individually : they have
paved the way for numerous new research prospects both theoretical and experimental.

As Adams and Riis report in their historical sketch of cold atom physics [1], Askar’yan showed
in 1962 that a substantial force could be exerted on an atom by applying a laser field with
an intensity gradient. In 1968, Letokhov suggested that the force Askar’yan identified could
be used to trap atoms at the (anti-) nodes of a standing laser wave which is far detuned from
atomic resonance. In the early 1970’s, Ashkin accidentally discovered that the light force
acting on an atom could be divided into two categories : the radiation pressure that results
from linear momentum exchanges between light and matter and the dipole force explained by
Askar’yan in 1962.

1Though his theory turned out to be incorrect, it highlighted the mechanical action of light on matter and
originated subsequent research.

1



2 Introduction

Satelite navigation
system (GPS)

Magnetic field

Gyros

Gravity

Single
particle optics

Frequency
standards

Atomic
clocks

Sensors

Cooling
of ions

Tests of funda-
mental principles

in physics

Atom inter-
ferometry

Precision
measurement

Laser cooling
and trapping

Novel
laser

sources

Atom
lithography

Atom laser

Atom optics

Cold atoms

Trapping
of

particles

Biological
appli-
cations

Superfluidity

Quantum
fluids, BEC

Microscopic
machines

Polymer
physics

Figure 1: Laser cooling has become one of the most investigated subjects in atomic physics.
It is at the origin of plethora of underlying subjects. Figure taken from [1].

It is not until 1975 that Wineland and Dehmelt proposed a cooling scheme for trapped ions
[2] and, at the same time, Hänsch and Schawlow proposed a cooling scheme for neutral
particles [3]. Both schemes are based on the Doppler effect, hence the name Doppler cooling
they received. Theoretical calculations for such a cooling mechanism predict that an atomic
vapour could be cooled at hundreds of µK. In 1987, a term working at NIST managed to
trap a gas of atoms by using 3 pairs of counterpropagating lasers disposed along 3 orthogonal
directions : this is the so-called magneto-optical trap (MOT).

However, in 1988, experiments showed that temperatures much smaller than those predicted
by the Doppler cooling theory were obtained, indicating that another mechanism was acting.
Such a cooling is closely related to polarisation gradients and is called Sisyphus cooling.
Cohen-Tannoudji, Chu and Philipps earned the Nobel prize in 1997 for the explanation of that
effect. Aspect et al. [4] then showed that it was possible to overcome the so-called recoil limit,
corresponding to the velocity kick due to the emission of one photon. Indeed, temperatures
below 100 nK have been obtained experimentally, validating the theoretical prediction of
Aspect et al.. The two most successful cooling schemes to obtain such temperatures are the
velocity selective coherent population trapping (VSCPT) and stimulated Raman cooling [1].
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A logarithmic thermometer showing the achievable temperatures in various number cooling
schemes is illustrated in Figure 2.
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Figure 2: Logarithmic thermometer illustrating relevant orders of magnitude in cold atom
physics. Figure taken from [1].

In 1985, concomitantly to the first experimental realisation of an atomic trap [5], Hess [6, 7]
suggested an efficient technique called evaporative cooling to cool trapped atoms under the
recoil limit. This technique allowed to achieve cooling down to temperatures never reached
before and showed significant results, the most astonishing being, without any doubt, the
realisation of Bose-Einstein condensation (BEC) in 1995 by Cornell and Wieman [8] which
earned them (and also Ketterle) the Nobel prize in physics in 2001. The first BEC was achieved
with rubidium atoms [9] and was followed by sodium [10], lithium [11,12] and hydrogen [13].
As Adams and Riis [1] stress, an ideal BEC, that is a BEC where all atoms are in their ground
state, represents a kind of "ultimate" cooling since the temperature, understood in terms of
a distribution amongst energy levels, is literally deprived of all substance. For a thorough
discussion about BEC, the reader can consult Ref. [14] dealing with this very exciting and
versatile research field.

In this master thesis, we present an original synthesis of various works dealing with the nu-
merical simulation of laser cooling within a full quantum approach [15–22]. We perform a
detailed study of two distinct laser cooling schemes through full quantum-mechanical simula-
tions using the Monte-Carlo WaveFunction (MCWF) method. We compute the equilibrium
properties of a gas of cold atoms treating mechanical effects of light on atoms in an exact
manner. We focus on two different cooling mechanisms, Doppler and Sisyphus cooling mecha-
nisms. We thus aim at showing the effects of a laser field characterised by an intensity gradient
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and/or a polarisation gradient on the steady state momentum distribution of an atomic gas.
We shall compare the results of our simulations treating the atomic motion either classically
or quantum-mechanically in order to assess the validity of the semiclassical approach. The
MCWF method employed in the following is applied to a Jg = 1/2 ↔ Je = 3/2 cooling
transition, encountered for various atomic species like sodium or rubidium. Hereinbelow, we
detail the content of each of the chapters of this work.

In the first chapter, we review laser cooling and we introduce the Doppler and Sisyphus
cooling mechanisms. We explain the underlying mechanisms and detail why and how atoms
are slowed down and cooled. We also introduce the concept of Doppler temperature, which is
the lowest temperature achievable according to the physical mechanisms associated to Doppler
cooling. We then discuss about experimental temperatures which turn out to be smaller than
the Doppler limit for some laser configurations, indicating that a more subtle mechanism is
acting : gradient polarisation cooling.

In the second chapter, we briefly introduce the theory of open quantum systems and master
equations which are used to describe the dynamics of open quantum systems. Rather than
an explicit derivation of the whole theory, that was incidentally performed by Damanet [23],
we explain the main steps of derivation and the underlying hypotheses.

In the third chapter, we present the MCWF method whose aim is to solve master equations.
We introduce the principle of the method in details and develop how to use it in practice. We
also show the equivalence between the MCWF method and the related master equation, the
former yielding the same results as the master equation, in average. We then discuss about
the physical meaning of the method. Finally, we illustrate the MCWF method on simple
atomic systems showing the saturation of an atomic transition or optical pumping.

In the fourth chapter, we derive the most general form of the system Hamiltonian required by
the MCWF method. This derivation is performed in the general case of a Jg ↔ Je transition
driven by a monochromatic travelling laser wave. More complicated configurations, such as
standing waves, are readily obtained by applying the treatment described in this chapter.

Finally, in the fifth and last chapter, we present our numerical results. We present results
about Doppler cooling occurring in a σ+ standing wave. These results are followed by the
atomic steady state properties in the case of the lin⊥lin configuration, consisting in two
crossed linear laser polarisations. We show the significant temperature splitting that occurs
between the two laser configurations. We also compare the results of our simulations with the
predictions made on the basis of a semiclassical approach.

In the appendix A, we present a (very) short review about Clebsch-Gordan coefficients and
we explain how they arise in atomic physics and how to compute them. This appendix allows
us to develop some operators appearing in the derivation of the system Hamiltonian.

In the appendix B, we explain how to implement and write in a matrix form a series of
quantities appearing in our work, this discussion being as close to the code as possible.



Chapter 1

Semiclassical description of laser

cooling of neutral atoms

This first chapter is dedicated to a short review of laser cooling with a particular focus on two
well-known types of laser cooling of atoms, namely Doppler and Sisyphus cooling mechanisms.
We first present a semiclassical analysis of laser cooling, in which we explain the cooling
process in terms of a damping force. Such a picture treats the atomic centre-of-mass motion
classically and the atomic internal degrees of freedom quantum-mechanically. We discuss
about the validity of such a picture in order to derive its limitations from which a quantum
treatment of the external degrees of freedom is required. After that, we present an analysis of
the different interacting systems, that is, an atom, the surrounding quantised electromagnetic
field and the laser field, under the electric dipole approximation. Under that approximation,
two kinds of force are acting on an atom : the radiation pressure force and the dipole force,
each one with its own origin and its own physical interpretation. Those forces modify the
mean velocity 〈v〉 and the velocity dispersion ∆v of a set of moving atoms. In particular,
they allow one to slow down and to cool a set of atoms. We then present Doppler cooling
and explain how the non-relativistic Doppler effect modifies the laser frequency perceived by
the atom and how this effect can be used to slow down the atomic motion. The Doppler
limit, to which one can associate the Doppler temperature TD, is finally derived. Then, we
discuss the Sisyphus cooling mechanism that is responsible for the measured temperatures
that are systematically smaller than the Doppler temperature for a particular type of cooling
scheme : the polarisation gradient cooling scheme.

1.1 Semiclassical description of laser cooling

One can separate the atomic degrees of freedom (d. f.) into two distinct classes : internal and
external ones. Internal d. f. essentially refer to spin polarisation or electronic configuration and
are therefore related to the internal dynamics of the atom [24]. They describe the evolution
of the population of the various substates of the atoms due to their coupling with external
fields such as a laser field or the surrounding quantised electromagnetic field. External d. f.
concern the position and the linear momentum of the centre-of-mass of the atom and describe
the atomic centre-of-mass motion.

In the semiclassical approach, internal and external d. f. are treated using different descrip-
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6 Semiclassical description of laser cooling of neutral atoms

tions. For external d. f., a classical description is used : the particle is considered as being
point-like and therefore, its position and linear momentum are classical variables of time.
However, the atomic internal d. f. must be treated using a quantum description. Those two
kinds of variables are closely related to one another. For example, due to linear momentum
exchanges between light and an atom, the momentum of an atom immersed in a laser field
is likely to be modified. Besides, according to the polarisation of the laser, internal variables
are likely to be modified by the transfer of angular momentum involving atomic transitions
between the various atomic substates. If the laser polarisation is space-varying, the probabil-
ity of a certain transition to occur is also modified in space. This coupling between internal
and external d. f. is at the basis of laser cooling.

For the moment, we do not care about internal sublevels and we consider an atom modelled
as a two-level system, with ground state |g〉 and excited state |e〉. The ground state stands
either for the fundamental (stable) state of the atom or a metastable state whose lifetime
is much larger than a characteristic time of observation. The excited state is unstable and
every atom in that state tends to come back in the ground state by emission of radiation.
The lifetime of the excited state is denoted by Γ−1. The energy separation between the two
levels is ~ω0 where ω0 is the transition frequency. We consider that the atom is interacting
with a monochromatic plane laser wave with frequency ω. Unless the explicit mention of the
contrary, we assume that only one laser is used in the discussion about the forces acting on
an atom. Figure 1.1 shows the two-level model used in the following.

E

|g〉

~ω0~ω

|e〉

Eg

Ee

~Γ

Figure 1.1: Modelling of an atom by a two-level system. The transition frequency is denoted
by ω0/2π and the laser frequency by ω/2π.

Of course, such a system does not exist and is an idealisation used to simplify the description.
To quote Bill Phillips [25] : "there are no two-level atoms, and sodium is not one of them".
Notwithstanding that reality, we shall stick to that model with a pedagogical purpose in
mind to present the Doppler cooling scheme. Yet there are some situations where two levels
of energy play a distinguishable role apart from the other ones through laser polarisation
or frequency. In such cases, the transition may be considered as to occur between the two
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remarkable levels aside from degeneracy issues. In the case of optical pumping, where (for
a proper laser polarisation) only two states are still coupled together after several cycles of
fluorescence, the two-level atom picture works well since those two levels are being uncoupled
to the rest of the energy levels.

1.1.1 Validity of the semiclassical approach

In a semiclassical treatment, the atom is considered as sitting at point r, with a well defined
velocity v. In a quantum treatment of motion, the position and the momentum must be
replaced by their corresponding operators and the atom is described by a wavepacket of spatial
extension ∆r and linear momentum extension ∆p. However, as long as the position and linear
momentum extensions are small compared to characteristic quantities of the problem, a point-
like description may be used. For such an approach to be valid, two essential conditions must
be simultaneously fulfilled :

1. The spatial extension ∆r of the wavepacket describing the position spread must be small
compared to the laser optical wavelength λ (see [26])

∆r ≪ λ. (1.1)

This condition thus requires that the atomic position is well defined with regard to
the laser shortest spatial scales of variation of the parameters (intensity, polarisation or
phase) [24].

2. The spatial extension ∆r of the wavepacket induces a linear momentum uncertainty
∆p ∼ ~/∆r which in turn involves a velocity dispersion ∆v ∼ ~/(m∆r). That velocity
dispersion must also be well defined with respect to the velocity width resonance [26].
The Doppler shift k∆v must be small compared to the natural atomic linewidth Γ

k∆v ≪ Γ. (1.2)

This condition expresses that the resonance condition between the light and the atom
is the same for all components of the atomic wavefunction.

Using the Heisenberg uncertainty relation and Eqs. (1.1) and (1.2), we arrive at

~k2

mΓ
≪ 1. (1.3)

This is the so-called broad line condition that ensures the validity of the semiclassical approach
when it is fulfilled, which is the case for most resonant atomic transitions considered in cold
atoms experiments. Furthermore, one can show that if Eq. (1.3) is fulfilled, then internal
variables follow external variables adiabatically because the internal dynamics is very fast
and is nearly instantaneously adapted to the external motion [26].

1.1.2 Treatment of the interacting systems

In order to assess the forces acting on the atom, we first have to model the interaction between
the laser field and the atom. In the framework of the dipole approximation, we introduce the
reduced electric dipole moment of the e↔ g transition by

d = 〈e| D̂ |g〉 ,
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which allows one to write the Hermitian electric dipole operator in the form

D̂ = d |e〉 〈g| + d∗ |g〉 〈e| .

Since the laser consists in a densely populated mode of the electric field, containing a huge
number of photons, it can be described by a time-dependent classical electromagnetic wave
of frequency ω and phase φ. The electric field produced by the laser reads

EL(r, t) = E0E cos (k · r− ωt) , (1.4)

where E0 stands for the electric field amplitude, k for the laser wavevector and E for the
polarisation vector. The whole system is in fact made of 3 interacting subsystems.

L, ĤL A, ĤA R, ĤR
V̂AL V̂AR

Figure 1.2: Various interacting subsystems with their own Hamiltonian and their coupling
Hamiltonian : the atom (A) is coupled to the radiation field (R) and to the laser field(s) (L).

As we already mentioned, the laser is treated classically, i.e. as an external field, such that no
Hamiltonian should be considered for its description. The laser/atom coupling accounts for
absorption and stimulated emission processes. The atom is in turn coupled with all modes
of the quantised radiation field R, initially in the vacuum state. That coupling is responsible
for spontaneous emission of photons. Since the radiation field is characterised by an infinite
number of degrees of freedom, it is considered as a reservoir. Because of the random nature
of spontaneous emission, responsible for fluctuations and damping in the atomic evolution,
processes in play refer to the class of open quantum systems. Such problems must be treated
properly by means of a master equation. In the dedicated chapter, we perform an introduction
to master equations and we derive explicitely the treatment to apply in the case of laser
cooling.

1.2 Forces acting on an atom

We consider a two-level atom of initial linear momentum p and initial kinetic energy E =
p2/2m interacting with a monochromatic travelling plane laser wave of wavevector k and
frequency ω, which differs from the atomic transition frequency ω0 by δ = ω−ω0, the detuning.
The detuning is supposed to be small compared to ω0 and ω, |δ| ≪ ω0, ω, in which case the
light beam is said to be quasi-resonant. In order to compute the mean spatial force acting on
the atom, one has to introduce the Heisenberg equations for r̂ and p̂ and the subsequent force
operator. From that operator, it is possible to compute the mean force acting on the atom
(that is the expectation value of the force operator at point r in the internal state) which
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turns out to be [27]

F(r) = 〈F̂(r̂)〉 = −~

(

α(r)δ + β(r)
Γ

2

)
s(r)

1 + s(r)

= −~α(r)δ
s(r)

1 + s(r)
︸ ︷︷ ︸

Fdip

+−~Γ

2
β(r)

s(r)

1 + s(r)
︸ ︷︷ ︸

FRP

, (1.5)

where we have introduced the vectors

α(r) =
∇Ω(r)

Ω(r)
, β(r) = ∇φ(r)

and the saturation parameter of the laser wave,

s(r) =
Ω2(r)/2

δ2 + Γ2/4
.

Therefore, one can decompose the total force acting on the atom into two types of forces : one
related to the intensity gradient of the laser field through Ω(r), the other to its phase gradient.

1.2.1 Radiative forces acting on an atom

The two kinds of forces have a distinct origin and meaning.

1. The force FRP is proportional to the phase gradient of the wave and to the oscillating
dipole component in quadrature with the laser wave [28] and is called the dissipative
force or the radiation pressure force. It is due to the transfer of linear momentum from
the incident laser to the atom by quasi-resonant absorption and subsequent emission of
light. It is also referred to as scattering force. If we consider a laser wave of constant
amplitude, then the mean radiative force is reduced to its dissipative component (Fdip =
0). The general expression of the force is then given by

FRP = −~Γ

2

s

1 + s
∇φ(r).

In order to assess its properties, we consider a travelling plane wave, for which φ(r) =
−k · r and β = ∇φ(r) = −k. In that case, the radiation pressure force reads

FRP =
~kΓ

2

s

1 + s
= ~kΓ

Ω2/4

δ2 + (Γ2/4) + (Ω2/2)
, (1.6)

with the Rabi frequency defined as

Ω = −(E ·d)E0

~
. (1.7)

Equation (1.6) can be cast in the form

FRP = ~k

〈
dNspont

dt

〉

,
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where 〈dNspont/dt〉 is the number of fluorescence cycles per unit time1. This is the
only component of the force that involves energy exchanges between the atom and the
surrounding quantised field [28].

2. The force Fdip is proportional to the amplitude gradient of the wave and to the oscillat-
ing dipole component in phase with the laser wave [28] and is called dipole or gradient
force. In order to have an amplitude gradient, one has to superpose several plane waves
of different wavevectors k. Consider an atom interacting with two counterpropagating
plane laser waves. The total laser field is given by the superposition of the two laser
fields, that is

Etot(r, t) = E0E

(

cos (k · r− ωt) + cos (−k · r− ωt)
)

.

For instance, the atom can scatter a photon of wavevector k1 = k from the first laser
into the second laser of wavevector k2 = −k. The net energy of the laser field remains
unchanged whilst the atom experiences a linear momentum variation of ~(k1−k2). This
is a redistribution of photons between the components of the global laser field. That
process is known for inducing the dipole force [24],

Fdip = −~δ

2

∇s(r)
1 + s(r)

= −~δ

4

∇Ω(r)2

δ2 + (Γ2/4) + (Ω(r)2)/2
.

1.3 Doppler cooling

Laser cooling is closely related to the velocity dispersion ∆v of an ensemble of atoms. In
order to cool a set of atoms, one has to make the velocity spread smaller. With the goal
of reducing ∆v, the forces applied to the atoms must depend on their velocity. Otherwise,
the velocity distribution would be translated as a rigid body, without any modification of its
shape. Consider a classical moving atom with velocity v and position r(t) = vt + r0. Also,
consider that the atom travels in a laser field produced by two counterpropagating plane laser
waves, slightly detuned to the red of the atomic resonance (ω < ω0) as depicted in Figure 1.3.

v

ω0

ω0

ω < ω0 ω < ω0

ω + k ·v ω − k ·v

Lab. referential

Atom referential

Figure 1.3: For a moving atom, the apparent frequencies are Doppler shifted, resulting in an
imbalance between the two radiation forces exerted on the atom.

For an atom at rest, the apparent frequency of both lasers is identical, resulting in a zero net
force applied to its centre-of-mass. For a moving atom, those frequencies are Doppler shifted.

1A fluorescence cycle is an absorption-spontaneous emission cycle.
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The Doppler effect introduces the necessary velocity dependence for the force throughout the
detuning δ, as Figure 1.3 illustrates. In this case, the counterpropagating beam is perceived
with a frequency closer to the atomic transition frequency whilst the copropagating beam is
perceived with a frequency further detuned from the atomic transition frequency. Therefore,
a larger number of photons are absorbed from the counterpropagating wave than from the
copropagating wave before being emitted by the atom.

Frequencyω0

〈
dN

dt

〉

ω

ω − k ·v ω + k ·v

Figure 1.4: Mean scattering rate 〈dN/dt〉 versus frequency. The apparent frequency of the
counterpropagating laser is closer to the atomic transition frequency than the apparent fre-
quency of the copropagating laser. This figure is adapted from [27].

It turns out that the radiation pressure exerted by the counterpropagating beam is greater
than the one exerted by the copropagating beam, the result being a net force that induces a
deceleration. The force exerted by a single plane laser wave is given by Eq. (1.5) and reads [27]

F(v) = −~Γ
Ω2(r)/4

(ω + k ·v− ω2
0)

2 + (Γ2/4) + (Ω2(r)/2)
k.

For small velocities, it can be interpreted in terms of a viscous force whose expression is
obtained by performing a power series expansion of F around v = 0

F = F0 − αv + . . . .

For a red detuned laser, the coefficient α is positive and can be interpreted as a viscosity
coefficient, which is given by [27]

α = −~k2
s

(1 + s)2
δΓ

δ2 + (Γ2/4)
. (1.8)

In a Doppler cooling experiment, one wants to maximise that friction coefficient in order to
induce the greatest deceleration possible. Clearly, the maximum is reached when δ = −Γ/2
and when s = 1 (which implies that Ω = Γ), in which case one has

αmax =
~k2

4
.
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Considering now both the copropagating and the counterpropagating lasers, one can sepa-
rately add the contribution from the two lasers (ignoring interferences effects) to obtain the
net force experienced by the atom (see Figure 1.5) 2.

k ·v

F ·k

ω − ω0

ω0 − ω

Force exerted by
the +k wave

Force exerted by
the −k wave

Total force

Figure 1.5: Net force (solid curve) experienced by an atom as a result of the superposition of
the radiation pressure forces induced by both the copropagating and the counterpropagating
waves in the low intensity limit. The force is always opposite to the velocity of the atom,
which means that it slows and cools down the atom. This figure is adapted from [27].

Considered independently, the force profiles are Lorentz curves whose maxima are located at
k ·v = ω0±ω, that is when the detuning is counterbalanced by the Doppler shift. Considered
both together and inspecting Eq. (1.8), one observes that the constant term F0 in the series
expansion of F of one laser is cancelled out with the same term of the other laser. Close
to v = 0, the net force is linear and opposite to the velocity. The generalisation to three
dimension is straightforward. Three pairs of laser beams are disposed along three orthogonal
directions in order to create a so-called optical molasse.

1.3.1 Energy and momentum budget applied to the photon/atom system

In this subsection, we detail more closely how the momentum transfer can cool the atom.
Consider an atom of momentum p and energy p2/2m travelling in a counterpropagating
laser solely. The coupling between the laser field and the atom is responsible for absorption
and stimulated emission processes. However, spontaneous emission may also occur through
the coupling with the quantised surrounding field. We consider for the moment that the
atom undergoes a fluorescence cycle. Such an absorption-spontaneous emission cycle causes a
linear momentum variation equal to the linear momentum of the absorbed photon ~k minus
the linear momentum ~k′ of the spontaneous emitted photon. After a fluorescence cycle, the

2This approach is rigourous for neutral atoms in the low intensity limit and if the total radiation force is
spatially averaged (see [27]). At high intensity, interferences between the two lasers are not negligible anymore.



1.3. Doppler cooling 13

momentum of the atom is thus
p′ = p+ ~k− ~k′.

The energy after a cycle is then given by

E′ =
(p+ ~k− ~k′)2

2m

=
p2 + 2p · ~k− 2p · ~k′ + (~k)2 + (~k′)2 − 2~k · ~k′

2m
.

Assuming that the wavelength of the emitted photon is close to the one of the absorbed
photon3, one can write

(~k′)2 ≃ (~k)2.

Then, the energy variation for one cycle reads

∆E ≃ (2~k)2 + 2p · ~k− 2p · ~k′ − 2~k · ~k′

2m
. (1.9)

For the cooling process to be efficient, fluorescence cycles must be repeated several times. Let
us consider N of those cycles. At the end of the day, the atom will have absorbed N laser
photons of momentum ~k and will have emitted spontaneously N photons of momentum ~k′

i

in random directions, as Figure 1.6 illustrates.

~kp

(a) Initially

p′

~k′

∆p = ~k− ~k′

(b) After one fluorescence cycle

N~k

p

(c) Initially

p′

~k′

∆p = ~k− ~k′

∆p = ~k

〈~k′〉 = 0

(d) After N fluorescence cycle

Figure 1.6: Variation of atomic momentum due to fluorescence.

3The natural and the Doppler broadenings cause a difference of wavelength between the absorbed and the
re-emitted photon. However, the difference is small compared to the wavelengths in play.
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Because spontaneous emission is a random process, the wavevectors of the emitted photons
have random directions. The atomic momentum after N cycles reads

p′ = p+
(
~k− ~k′

1

)
+ . . .+

(
~k− ~k′

N

)

= p+

N∑

i=1

(
~k− ~k′

i

)
= N~k−

N∑

i=1

~k′
i

︸ ︷︷ ︸

≃0

≃ p+N~k.

Indeed, since the spontaneous emission process is isotropic (when the atom is driven by
incoherent unpolarised light), the vector sum of the emitted photons wavevectors over a large
number of cycles is close to zero. The momentum variation in one cycle is thus, on average,

〈∆p〉
∣
∣
∣
1 cycle

= ~k.

Since the laser has been assumed to be counterpropagating, p and ~k have opposite direction
and therefore the net variation of the modulus of the atomic momentum is negative. The
absorption of a laser photon corresponds to a reduction of the modulus of the net atomic
momentum and thus to a slowing effect. To that momentum variation is associated a variation
of velocity given by

〈∆v〉
∣
∣
∣
1 cycle

=
〈∆p〉

∣
∣
∣
1 cycle

m
=

~k

m
= vrecoil,

where vrecoil is the so-called recoil velocity. Since it also has an opposite direction as com-
pared to the atom velocity, it is obvious that the atom is slowed down. The corresponding
deceleration is given by, assuming that 〈dN/dt〉 cycles are realised per unit time,

a =

〈
dN

dt

〉

〈∆v〉
∣
∣
∣
1 cycle

=

〈
dN

dt

〉
~k

m
. (1.10)

In terms of energy, since spontaneous emission is an isotropic process, we have for a large
number N of cycles

〈p · ~k′〉 ≃ 0, 〈~k · ~k′〉 ≃ 0.

Thus, Eq. (1.9) for N cycles reads

〈∆E〉 ≃ N

(
~
2k2

m
+ ~

p ·k

m

)

.

If the laser and the atom are counterpropagating as assumed, the dot product p ·k is negative
and describes a reduction of the atomic kinetic energy whereas the term ~

2k2/2m = Erecoil is
always positive and corresponds to a heating term. This term is called the recoil energy. The
corresponding temperature, the recoil temperature, is given by : Trecoil = Erecoil/kB where kB
is the Boltzmann constant. Hopefully, as long as |p| > ~|k|, the heating term is much smaller
than the cooling term which indicates that the atomic kinetic energy decreases on average at
each absorption/emission cycle.

When the atom is placed in a field formed by two counterpropagating lasers (or 6 counter-
propagating lasers along the three space directions in 3D), the atom will absorb a photon from
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one laser or from the other. According to the sign of p ·k, one laser heats and accelerates the
atom whereas the other slows down and cools the atom. However, because of the Doppler
effect, the counterpropagating laser is perceived with a frequency larger than the frequency of
the copropagating laser. Therefore, the atom will absorb much more photons from the coun-
terpropagating laser than from the copropagating one : the cooling contribution from the
counterpropagating laser is larger than the heating contribution of the copropagating laser.

One now has to discuss about stimulated emission processes. Contrarily to spontaneous
emission which is a random and isotropic process, stimulated emitted photons are only emitted
in well defined laser modes. If we only consider one counterpropagating laser and an atom
in a 1D situation, this implies that the photons are emitted in the direction of the laser, the
atom experiencing a momentum variation of an amount ~k per stimulated emitted photon.
Combined to the momentum variation −~k experienced at each absorption process, the total
atomic momentum variation within such a cycle is equal to zero and there is no cooling effect.
The stimulated emission does not contribute to cool the atom but delays the cooling since
every stimulated process occurs instead of a possible spontaneous emission.

1.3.2 Efficiency of the process

From Eq. (1.10), one sees that the larger 〈dN/dt〉 is, the greater the deceleration is. The
scattering process is maximum when ω = ω0. However, for a slight detuning, it is still
possible to observe a scattering process. One can show (see [29]) that the mean number of
scattered photons per unit time follows a Lorentzian distribution with respect to the detuning

〈
dN

dt

〉

=
Γ

2

1

1 +
1

s

1

1 + 4

(
ω − ω0

Γ
√
1 + s

)2 . (1.11)

In Figure 1.7, we plot the corresponding Lorentz curve as a function of the laser frequency ω.

ω
ω0

〈
dN

dt

〉

Γ
√
1 + s

Γ

2

1

1 +
1

s

Figure 1.7: Mean scattering rate of photons as a function the incident laser frequency ω. This
figure is adapted from [27].

In Eq. (1.11), Γ stands for the spontaneous emission rate from the excited state |e〉 to the
ground state |g〉 (i.e. the Einstein’s coefficient Aeg) and s stands for the saturation parameter
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s = I/Is. The saturation intensity, Is, is a characteristic quantity of the atomic transition
and is given by

Is =
πh(2πν0)

3Γ

3c2
.

The maximum number of scattered photons
〈
dN

dt

〉

=
Γ

2

1

1 + 1
s

is reached at ω = ω0. The full width at half maximum (also called the spectral line broadening)
of the curve is given by Γ

√
1 + s. One can also represent the mean number of scattered photons

per unit time as a function of the saturation parameter s (for ω = ω0), which is given in Figure
1.8 .

〈
dN

dt

〉∣
∣
∣
∣
ω=ω0

s =
I

Is

10

Γ

4

Γ

2

Figure 1.8: Mean number of scattered photons per unit time as a function of the saturation
parameter s when the laser frequency ω is tuned to the atomic transition frequency ω0 (max-
imum of the Lorentz curve depicted in Figure 1.7). The drawing is not at scale. This figure
is adapted from [27].

In the low intensity regime (s ≪ 1), the spectral line broadening is directly given by the
spontaneous emission rate Γ. In such a case, 〈dN/dt〉 varies linearly with s, which also
means that the mean number of scattered photons is proportional to the intensity of the
incident light. At higher laser intensity, the spectral line broadening is obtained by weighting
the spontaneous emission rate by

√
1 + s. Therefore, since the saturation parameter s is

proportional to the light intensity I, the width of the distribution increases with the light
intensity I. That broadening is called power broadening and is the result of the laser-atom
interaction. When s ≫ 1, the scattering process saturates and 〈dN/dt〉 tends to Γ/2 : this
is called the saturation. The saturation is reached for an intensity several times larger than
the saturation intensity. Therefore, it is useless to choose a laser intensity which is arbitrarily
high since 〈dN/dt〉 saturates at a few Is.
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Limits of Doppler cooling

As soon as the apparent frequencies of the copropagating and the counterpropagating lasers
are perceived as identical by the atom, the mean number of scattered photons by both lasers is
identical, the net force experienced by the atom is equal to zero and the cooling process stops.
In such a case, the expectation value for the momentum tends to zero but the expectation
value for the energy tends to a non-zero minimal value. The Doppler cooling theory [30–33]
predicts a residual energy

〈E〉min(s) =
(

1 +
s

2

)
~Γ

4
,

which is obviously minimum for s → 0 : 〈E〉min(s = 0) = ~Γ/4. One can associate the
so-called Doppler temperature TD to this energy, through the relation

1

2
kBTD =

~Γ

4
. (1.12)

Guéry-Odelin and Cohen-Tannoudji [27] provide a result which takes into account the angular
diagram of emission

kBT =
~Γ

4

(
2|δ|
Γ

+
Γ

2|δ|

)

, (1.13)

which is minimum when δ = −Γ/2 and which yields the same temperature as Eq. (1.12).

1.4 Sub-Doppler cooling : Sisyphus cooling

In the previous sections, we analysed the Doppler cooling mechanism which led to the Doppler
limit to which is associated the Doppler temperature. However, in 1988, Phillips et al. per-
formed experiments on sodium atoms cooled in an optical molasse and measurements showed
that temperatures far below the Doppler limit and approaching the recoil limit were ob-
tained [34]. Furthermore, the temperature dependence with respect to the detuning δ was not
in good agreement with the Doppler cooling predictions, those observations indicating that a
more subtle mechanism than Doppler cooling was acting, namely the Sisyphus cooling mech-
anism (it is also referred to as polarisation gradient cooling in the literature). Its explanation,
by Cohen-Tannoudji, Chu and Phillips [35] earned them the Nobel prize in physics in 1997
and is closely related to polarisation gradients [36, 37]. It holds in 5 points :

1. Atomic levels are shifted in a laser field (effect known as AC Stark shift or light shift).

2. Those light shifts depend on the laser polarisation.

3. Two counterpropagating lasers can give rise to a polarisation gradient.

4. In such a polarisation gradient, light shifts are space-varying and describe potential hills
and valleys.

5. Due to optical pumping, atoms climb hills more often than they descend valleys.

The purpose of this section is to analyse the physical mechanism of this sub-Doppler cooling
scheme.
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1.4.1 Light shifts in a laser wave

The interaction between quasi-resonant light with atoms does not only cause transitions be-
tween the several Zeeman sublevels but is also responsible for light shift. The oscillating laser
electric field acts as a time-dependent perturbation whose result is to shift the energy levels
by AC Stark effect. An exact treatment (see for example van der Straten and Metcalf [29])
allows one to compute the shifted energies

Eshifted
e/g =

~

2

(

−δ ∓
√

Ω2 + δ2
)

+ Ee/g.

If the detuning is such that Ω ≪ |δ|, the resulting energies are shifted with respect to Eg = 0
and Ee = ~ω0 by

∆Ee/g = ∓~Ω2

4δ
.

E field off field on

Eg = 0

Ee = ~ω0

~

2

(

−δ −
√
Ω2 + δ2

)

~ω0 +
~

2

(

−δ +
√
Ω2 + δ2

)

bare states shifted states

~ω0

Figure 1.9: Light shifted energy levels due to the atom-light interaction. Figure taken from
[29].

Those light shifts are usually neglected when one deals with light of frequency below the
megahertz but become important in the case of laser light.

1.4.2 Light shifts of the magnetic sublevels

In the following, we consider the case of a Jg ↔ Je transition driven by a laser field where
Je/g is the quantum number related to the angular momenta considered in the transition and
where we denote by me/g the magnetic quantum number related to the projection of Je/g onto
the quantisation axis. The light shift of a magnetic sublevel depends on the laser polarisation.
Depending on the polarisation, substates with magnetic numbers differing by ∆m = 0,±1
are coupled. More precisely, a laser whose polarisation is σ+ can only couple substates with
∆m = 1. If the polarisation is σ−, then the laser couples substates with ∆m = −1 and if the
polarisation is π, then the laser couples substates with the same magnetic number.

In the following, we clarify the notions of left and right circularly polarised light and linearly
polarised light. A linearly polarised beam means that the electric field of the beam oscillates
and describes a straight line within a fixed plan perpendicular to the wavevector of the beam.
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However, confusions arise when one talks about circularly polarised waves. For such polarisa-
tions, the electric field (of constant amplitude) of the propagating wave can be decomposed
into two orthogonal components within the plane of oscillation. If those components are out
of phase of π/2, then the global electric field is seen as rolling up around the propagation axis
and its projection onto a plane perpendicular to the wavevector is a circle. According to the
direction of rotation of the electric field, one talks about left or right circularly polarised wave.
In optics, the direction of rotation is described with respect to an observer. If, for an observer
sitting in front of the beam and facing it, the electric field is seen as rotating clockwise, then
the wave is said to be right circularly polarised. If, for the same observer sitting at the same
place, the electric field rotates counterclockwise then the wave is said to be left circularly
polarised. Left/right circular polarisation is thus an intrinsic property of light. However, in
order to get rid of the direction of propagation of the light, one could also define the polari-
sation with respect to a well-defined system of reference. We choose that system with the z
axis being the motion axis. Any light beam polarised along the z direction will be considered
as π-polarised. In order to define σ±-polarised light, we shall use the convention adopted in
optics : a clockwise rotating field as seen from the positive z direction (i.e. right-circularly po-
larised light propagating towards z > 0 or left-circularly polarised light propagating towards
z < 0) is called σ− polarised and a field rotating counterclockwise is called σ+.

Without entering into details, one can show that the light shift is proportional to
|〈Je,me|d̂|Jg,mg〉|2 which has to be computed for every possible transition. However, in the
context of a qualitative explanation of the Sisyphus effect, we are not interested by the value
taken by those shifts but rather by their relative values compared to each other. Since light
shifts are proportional to |〈Je,me|d̂|Jg,mg〉|2, the square of the Clebsch-Gordan coefficients
gives the relative values of the shifts.

Roughly speaking, Clebsch-Gordan coefficients 〈Jg,mg, 1, q|Je,me〉, characterise the proba-
bility that a transition between two levels takes place. In group theory, such coefficients arise
when one wants to compute the inner product of two irreducible representations. That prod-
uct generally involves a sum of irreducible representations of the studied group : this is the
Clebsch-Gordan series. A particular case of those series arises when the sum of irreducible
representations reduces to a single term. The proper invariant subspace of that irreducible
representation is then spanned by vectors that could be defined, in the Young-Yamanouchi
standard basis, as the sum of products of vectors of the two irreducible representations the
inner product of which we want to compute. The coefficients of that expansion are called
Clebsch-Gordan coefficients [38]. Those coefficients appear in the study of the permutation
group Sn or in the study of Lie groups. In our case, they are related to the rotation group
SO(3, R) in which we study the coupling of two angular momenta. The resulting angular
momentum can be decomposed onto a basis of tensor product of the two angular momenta.
The coefficients of that decomposition are again Clebsch-Gordan coefficients. A discussion
about their further meaning, their consequences about transitions and their computation can
be found in the Appendix A.
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We consider, as an example, the Jg = 1/2 ↔ Jg = 3/2 transition that models the 3s 2S1/2 ↔
3p 2P 0

3/2 transition of Na atoms depicted in Figure 4.4. This is the simplest example but it
can be easily generalised to more complicated configurations.

|Jg,−1/2〉 |Jg, 1/2〉

|Je,−1/2〉 |Je, 1/2〉|Je,−3/2〉 |Je, 3/2〉

√

2

3

√

2

3

1√
3

11

σ− π σ− σ+ π σ+

Figure 1.10: Atomic level scheme for a Jg = 1/2 ↔ Je = 3/2 transition with the associated
Clebsch-Gordan coefficients whose square gives the relative values of the light shifts. This
figure is adapted from [27].

Because the squares of the Clebsch-Gordan coefficients of the σ+ transitions are in a 1 : 3
ratio, one can say that |Jg,mg = 1/2〉 is three times more shifted than |Jg,mg = −1/2〉, that
conclusion being reversed when one considers σ− transitions. Invoking symmetry arguments,
one finds that the shifts are equal for π polarised light. Therefore, we conclude that depending
on the laser polarisation and on the Clebsch-Gordan coefficients, the two ground state sub-
levels are shifted of a quantity that is in general different and which is crucial for the Sisyphus
effect to occur.

1.4.3 Polarisation gradient

Two counterpropagating lasers can give rise to polarisation gradients. In one dimension,
essentially two types of polarisation gradients are possible, each of which being associated to
different cooling mechanisms [35, 39, 40] :

1. The first configuration, obtained by a superposition of two counterpropagating plane
waves of orthogonal linear polarisations is called the lin⊥lin configuration. The polari-
sation switches from σ− to σ+ polarisation including π polarisation states. In between,
we observe a gradient of ellipticity (Figure 1.11(a)).

2. The second configuration, obtained by a superposition of two orthogonal counterprop-
agating waves of circular polarisations is called the σ+ − σ− configuration for which a
pure rotation of polarisation is observed (Figure 1.11(b)). For such a scheme, the expe-
rienced polarisation is linear at any point and we observe a rotation of the polarisation
direction in space with a period λ/2. Therefore, contrarily to the lin⊥lin configuration,
there is no gradient of ellipticity. This leads to orientational cooling [22].
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exσ− π σ+ π σ−
E = ey E = ex

z = 0 z = λ/4 z = λ/2

(a) lin⊥lin configuration
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2
(ex + iey) E =
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σ+ σ−z = 0 z = λ/4 z = λ/2

(b) σ+ − σ− configuration

Figure 1.11: Polarisation of the total field resulting from the superposition of two counter-
propagating waves with different polarisations. This figure is adapted from [27].

In the following, we mainly focus on the description of the lin⊥lin configuration arising from
the superposition of the lasers fields







EL(z, t) = E0ey

[

ei(kz−ωt) + e−i(kz−ωt)
]

ER(z, t) = E0ex

[

ei(−kz−ωt−π/2) + e−i(−kz−ωt−π/2)
] ,

so that the total field reads

E(z, t) = E0

(

eye
ikz − iexe

−ikz
)

e−iωt + c.c.

1.4.4 Light shifts in a polarisation gradient and optical pumping : Sisyphus
effect

In a σ+ polarised wave, atoms are pumped from the various ground Zeeman substates to
the ground substate with the highest magnetic number whilst the conclusion is reversed in
a σ− polarised wave : this is the optical pumping process due to Kastler in 1950 [41]. The
space-varying light shift of the 2 ground state sublevels, which we denote by ±~δg/2 describe
potential hills and valleys. Therefore, a moving atom in one of the two sublevels has to climb
hills before it has to descend valleys, i.e. it periodically loses kinetic energy before regaining
it. However, because of optical pumping, the atom has a large probability to be optically
pumped from a sublevel to another when it is climbing a hill, that probability reaching a
maximum at the top of the hill. If the optical pumping time is long enough, each climbing
of a hill will cause an optical pumping from the highest energy ground state sublevel to the
lowest one, hence preventing the atom from descending the valley and forcing it to climb
another hill (Figure 1.12).
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Figure 1.12: Mechanism of the Sisyphus effect : an atom climbing a hill and thus losing kinetic
energy ends by being optically pumped to a lower energy ground state sublevel and thus ends
by having to climb another hill, which causes another kinetic energy loss.

Therefore, due to the combined action of space-varying light shifts and optical pumping,
the atomic kinetic energy gradually lowers until it becomes so small that the atom cannot
reach any new hill. Inspired by the Greek mythology where Sisyphus was punished by Zeus to
eternally roll, until the top of a moutain, a rock that inescapably comes back down just before
reaching the top, Cohen-Tannoudji et al. named this mechanism Sisyphus cooling because
the atom has to climb hills until its kinetic energy becomes too small to climb yet another
hill. Cohen-Tannoudji and Guéry-Odelin [27] provide a simple argument for evaluating the
equilibrium temperature. It is clear that the atomic kinetic energy is evacuated through the
spontaneous emission of photons with energy higher by an amount ~δg (the light shift) than
the one of absorbed photons. Therefore, after a fluorescence cycle, the kinetic energy of the
atom has decreased by an amount ~δg whilst the energy of the quantised field has increased
by the same amount. When the kinetic energy has become too small, the atom cannot climb
the hill and remains trapped in the optical potential wells induced by the space-varying light
shifts. For low laser intensities, the expected equilibrium temperature is [27]

Tsub-Doppler ∼
~δg
kB

=
1

kB

~Ω2|δ|
4δ2 + Γ2

.

In the limit of large detunings where |δ| ≫ Γ, it is given by

Tsub-Doppler ∼
~δg
kB

=
1

kB

~Ω2

4|δ| ∝ Laser intensity
Detuning

.

This physical picture is theoretically confirmed by Dalibard and Cohen-Tannoudji [35] and
experimentally by Salomon et al. [42].



Chapter 2

Open quantum systems and master

equations in quantum optics

In this chapter, we introduce the suitable formalism for the description of open quantum
systems : the master equations. Master equations are differential equations that aim to
describe the evolution of a reduced density operator ρ̂S . We discuss the general hypotheses of
derivation of such equations and we also introduce the Lindblad form. Any master equation
that can be cast into such a form is guaranteed to preserve the properties of ρ̂S as a density
operator. Finally, we show that the related Lindblad operators are not unique.

2.1 Open quantum systems

Schrödinger’s equation describes the time evolution and behaviour of a system which does
not exchange any information with its surroundings. In such a case, the system under study
is totally decoupled from the rest of the universe : the system is thus said to be closed or
isolated from its surroundings. The state of the system can be described by a normalised state
vector and the solution of the Schrödinger equation yields the state of the system at any time,
provided the initial state is known. However, there are many situations where the system is
found interacting with its surroundings, thus exhibiting behaviour and features beyond the
Schrödinger equation. Such systems are called open quantum systems. Since open systems
cannot be described by normalised state vectors, we have to introduce the suitable formalism
for their description as the theory of open quantum systems. According to S. Banerjee and R.
Srikanth [43, 44] which are quoted thereafter, the theory of open quantum systems addresses
the problems of damping and dephasing in quantum systems by the assertion that all real
systems of interest are "open" systems, surrounded by their environments. That is, all open
quantum systems can be modelled as being a part of a bigger composite system SR, containing
both the system of interest S and a reservoir R to which S is coupled. Mølmer and Castin [15]
warn that, in quantum optics, contrarily to other branches in quantum physics, the problem
is that the timescale of damping is often comparable to the timescale of coherent processes
such as laser excitation. As a consequence, damping cannot be seen as a perturbation of the
coherent evolution and perturbation theory cannot be used. One also cannot cast the problem
into the determination of the final state of the system after the decay process : the system
dynamics in between must be resolved.

23
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A typical example of an open quantum system consists in a set of excited atoms interacting
with their surroundings. The theory of open quantum systems also applies to cavity quantum
electrodynamics (CQED) and quantum brownian motion (QBM), to mention some well-known
research fields. We model such situations as is illustrated in Figure 2.1.

System
External

field(s)
Reservoir

ĤS ĤR

Ĥint
ρ̂S ρ̂R

ρ̂SR

Figure 2.1: Open system(s) coupled to external field(s).

The Hilbert space of the system is denoted by HS, the Hilbert space of the reservoir by HR

and the Hilbert space for the whole system by HSR. The composite system SR is defined
through the Hamiltonian of the total isolated system

Ĥtot = ĤS ⊗ 1̂R + 1̂S ⊗ ĤR + Ĥint

where

1. ĤS is the Hamiltonian of the system of interest;

2. ĤR is the Hamiltonian of the surrounding reservoir;

3. Ĥint is the interaction Hamiltonian between the system and its surroundings;

4. 1̂i is the identity operator acting on the Hilbert space Hi (i = S,R).

Amongst open quantum systems, a distinction can be established depending on the commu-
tator of the system Hamiltonian ĤS and the interaction Hamiltonian Ĥint [43, 44].

• The case of quantum dissipative systems, for which [ĤS , Ĥint] 6= 0, resulting in decoher-
ence with dissipation.

• The case of quantum non-demolition (QND) systems, for which [ĤS, Ĥint] = 0, resulting
in decoherence without any dissipation.

In our study, we consider the case where [ĤS, Ĥint] 6= 0 corresponding to a dissipative dynam-
ics.

We assume that the system S is described at the initial time by a density operator ρ̂S(0) acting
on the Hilbert space HS of dimension dS and that the reservoir is described at the same time
by a density operator ρ̂R(0) acting on the Hilbert space HR of dimension dR, that dimension
possibly being very large, even infinite. The set "system + reservoir" constitutes a composite
system and is therefore described at the initial time in terms of a density operator ρ̂SR(0)
acting on the tensor product Hilbert space HSR = HS ⊗ HR of dimension dSR = dS × dR.
Since the total composite system is isolated, its evolution is unitary, i.e.

ρ̂SR(t) = Û(t)ρ̂SR(0)Û
†(t) = e−iĤtott/~ρ̂SR(0)e

iĤtott/~. (2.1)
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The state of the system can be alternatively and equivalentely determined with the help of
the Liouville-von Neumann equation

i~
dρ̂SR(t)

dt
= [Ĥtot, ρ̂SR(t)].

Generally, due to the large dimension of HR (ans thus of Htot), the density operator ρ̂SR(t)
for the whole system (that describes the behaviour of both the system of interest and the
reservoir) has a huge number of components, therefore making exact computations expensive,
when they are not impossible. The evolution for the system S could of course be deduced
from the one of the whole system. However, we are often not interested in the evolution of
the reservoir which is not relevant, but rather by the evolution of the system S. Hence, we
should derive an equation for the reduced dynamics of S that would take into account the
interaction with the surroudings. Therefore, we introduce the reduced density operator as the
partial trace of ρ̂SR(t) over the reservoir degrees of freedom

ρ̂S(t) = TrR [ρ̂SR(t)] .

This partial trace operation TrR( · ) is the only operation which, for any physical observable
OS of the system S and OSR = OS ⊗1R of both the system and the environment S+R yields
the same measurement statistics depending on whether OSR is measured on S + R in the
state ρ̂SR or OS is measured on S in the state ρ̂S = TrR(ρ̂SR). For instance, the expectation
value of the physical observable OS is given by

〈OS〉 = TrS
(

ÔS ρ̂S

)

= TrS+R

[(

ÔS ⊗ 1̂R

)

ρ̂SR

]

.

Since ρ̂S is a positive operator (〈φS |ρ̂S |φS〉 ≥ 0) with unit trace (TrS(ρ̂S) = 1), it can be
correctly interpreted as a density operator. The equation describing the evolution of ρ̂S is
then obtained by taking the partial trace of Eq. (2.1) over all reservoir states. Under some
suitable approximations, a differential equation describing the evolution of ρ̂S can be derived,
which is called a master equation. The following section will be dedicated to an introduction
to master equations.

2.2 Master equations

The equation governing the evolution of the reduced density matrix is called a master equation.
A whole derivation of such an equation will not be performed in this work but general elements
of derivation as well as hypotheses of application and limitations will be discussed. However,
the reader might be interested to read Refs. [45–50] if he wants to find a complete derivation.
The purpose of this section is to acquire a further physical understanding of master equations.
As we mentioned in the previous section, the evolution equation is obtained by taking the
partial trace of Eq. (2.1) over all reservoir states

dρ̂S(t)

dt
=

1

i~
TrR

(

[Ĥtot, ρ̂SR(t)]
)

.

Unfortunately, the right-hand side of that expression still involves the total density operator.
We introduce the general form of a master equation by replacing the right-hand side of this
equation by [46]

dρ̂S(t)

dt
=

1

i~
[ĤS , ρ̂S(t)] +

ˆ̂Lrelax [ρ̂S(t)] , (2.2)



26 Open quantum systems and master equations in quantum optics

where ĤS stands for the system Hamiltonian in the interaction picture. This master equation
(2.2) can be written in a more general form

dρ̂S(t)

dt
= ˆ̂L(ρ̂S(t)) with ˆ̂L(ρ̂S(t)) =

1

i~
[ĤS , ρ̂S(t)] +

ˆ̂Lrelax(ρ̂S(t)),

where we have introduced the Liouvillian ˆ̂L( · ) superoperator that acts on an operator and
gives back another operator. It can be physically interpreted as being the generator of a
quantum dynamical semi-group taking the time as only parameter [23,51,52]. Contrarily to a
group, any element of a semi-group does not possess an inverse. Hence, the evolution between
two times t1 and t2 is irreversible and cannot be inverted, thereby reflecting the irreversible
feature of such systems.

Likewise the time-evolution operator which maps the state of a system at time t = t0 to the
state of the system at time t, one can also define a superoperator which maps the density
matrix describing a system at time t0 to the one describing the system at time t

ρ̂S(t) =
ˆ̂Mt(ρ̂S(t0)).

Such a superoperator acts on a vector space of linear operators. In order to preserve the
connection between ρ̂S(t0) and ρ̂S(t) being density operators, the superoperator ˆ̂Mt( · ) must
be linear, positive and preserve both trace and hermiticity of ρ̂S(t0) [53].

2.2.1 Main hypotheses of derivation

In this subsection, we give and detail the Born and the Markov hypotheses for the deriva-
tion of a master equation. Together, they constitute the Born-Markov approximation which
introduces two distinct timescales, each of which with a precise physical interpretation. How-
ever, the following text purposefully focuses on the physical meaning of those approximations
rather than on mathematical details which are not the aim of our study.

Born approximation

Born approximation consists in assuming that the reservoir is very slightly influenced by its
interaction with the system. As long as the dimension of the Hilbert space of the reservoir
HR is far larger than that of the Hilbert space of the system HS , i.e. as long as dR ≫ dS , the
influence of the system on the reservoir may be assumed negligible. This is the case when one
deals with the quantised electromagnetic field. In addition, if the reservoir is stationary, that
is, if [ĤR, ρ̂R] = 0 in which case ρ̂R(t) = ρ̂R(t0), one can perform Born approximation

ρ̂SR(t) = ρ̂S(t)⊗ ρ̂R + ρ̂correlation(t) ≃ ρ̂S(t)⊗ ρ̂R.

This amounts to neglecting the correlation between the system and the reservoir and assuming
that S and R are not entangled. This approximation does not imply that the reservoir
is insensitive to the system, it rathers means that the modification of the reservoir by the
system has no impact on the evolution of the latter [23].
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Markov approximation

Markov approximation consists in assuming that the evolution of the reduced density operator
can be described in terms of a first-order differential equation in t : the master equation is
then local in time. Mathematically speaking, this means that the reduced density operator
at time t only depends on the reduced density operator at any previous time t0

ρ̂S(t) =
ˆ̂M(ρ̂S(t0))

and not on ρ̂S at several times. Such a situation is not general since the reservoir to which
the system is coupled has a certain memory. It means that the past interactions between the
system and the reservoir are likely to retrospectively influence the system so that the density
matrix at time t could be a function of ρ̂S at several elapsed times. However, within the
framework of the Markov approximation, ρ̂S(t) is entirely determined by the data of ρ̂S(t0).
Therefore, we introduce the characteristic time τB whose meaning is the necessary time for the
correlations within the reservoir (resulting of a past interaction with the system) to vanish.
For the Markov approximation to be valid, that characteristic time must be small enough
(this term is purposefully left vague for the moment).

Justification of the Born-Markov approximation

We have just introduced the characteristic time τB for the reservoir to forget the results of
its interaction with the system. This quantity is related to the characteristic time of decrease
of the correlation function of the reservoir. After such a time τB has elapsed, the information
the reservoir acquired from the system has vanished and is not likely to feedback the system
and thus influence its subsequent evolution. Similarly, we can also introduce a characteristic
time τrelax which is the characteristic evolution time of the system as a result of its interaction
with the environment. The Born-Markov approximation is justified as long as [23]

τrelax ≫ τB

which is the only condition for such an approximation to hold. Therefore, two timescales
naturally appear : a small one, corresponding to the decrease of the correlations within the
reservoir and another one, larger, corresponding to the typical relaxation time of the system
as the result of its coupling with the reservoir. The typical relaxation time τrelax of the system
interacting with the reservoir is the time after which a process has a high probability to occur
whilst τB is the mean duration of that process [27]. Damanet [23] provide a straightforward
example of such a typical process : in the case of an atom coupled to the quantised field,
that process could happen to be a spontaneous emission of a photon. That is the atom
spontaneously emits a photon during a mean time τB and is likely to emit another one after
a time τrelax.
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The introduction of those 2 characteristic timescales allows one to discuss about one of the
features of the master equation. The temporal evolution of the system is not continuous, as in
an ordinary differential equation, but is rather discretised : one talks about a coarse-grained
timescale [51, 54–56].

Continuous timescale

Coarse-grained timescale

Coarse-graining

δt ≫ τB

tn = nδt

Figure 2.2: Continuous and coarse-grained timescales [23]. The first timescale is continuous
and the second, which results from the Markov approximation, is discrete with a discretisation
time step δt such that τrelax ≫ δt ≫ τB. This Figure is adapted from [23].

The master equation gives access to the solution at all multiple integers of δt but does not
provide any information in between two subsequent time steps : memory effects are unresolved
and thus unknown [23]. Thus, the coarse-graining acts as a low-pass filter that screens out
high frequency components of the system dynamics. In fact, fluctuations due to the memory
effects are averaged over τB yielding a zero contribution [51]. It is obvious that the time
step must be chosen greater than the typical time τB in order for the correlations within the
reservoir to vanish : δt ≫ τB. However, intuitively, the coarse-graining must not affect the
system, so that the time step must be small compared to the relaxation time of the system,
τrelax. Therefore, the following condition must be fulfilled

τrelax ≫ δt≫ τB.

If this condition is satisfied, then the system perceives the coarse-grained timescale as a
continuous timescale, so that the coarse-graining has no effect on the system. The MCWF
method is equivalent to a master equation within the Born-Markov approximation. Whereas
the resolution of a master equation gets more accurate as the time step decreases, it should
be chosen cautiously in the MCWF method to prevent quantum Zeno type effects [57,58]. In
short, this amounts to satisfy

τrelax ≫ τB , (2.3)

which is nothing else than the condition to meet for the Born-Markov approximation to be
justified. However, even if the condition (2.3) is fulfilled, the derived master equation is
guaranteed to preserve the properties of the reduced density operator along the time only if
it can also be cast into a general form derived by Gorini et al. [59].

2.2.2 Lindblad form of the master equation

The standard form of the master equation is given by Eq. (2.2). However, any equation that
could be written under this form does not necessarily preserve the properties of the density
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operator as it evolves in time. Therefore, we have to restrict the set of admissible master
equations to those that subscribe to the form

dρ̂S(t)

dt
=

1

i~
[ĤS , ρ̂S(t)] +

∑

m

Ĉmρ̂SĈ
†
m − 1

2

∑

m

(

Ĉ†
mĈmρ̂S + ρ̂SĈ

†
mĈm

)

(2.4)

which is called the Lindblad form [60] for which we show that it preserves the density operator
properties. At this stage, Ĉm are arbitrary operators.

Proof. The Lindblad form of the master equation (2.4) preserves the properties of any density
operator ρ̂S if the three following conditions are met.

1. The trace of the density operator ρ̂S must be one at any time. Indeed, taking the trace
of equation (2.4) and noting that the trace is invariant under cyclic permutations, we
find that TrS(dρ̂S/dt) = 0 which shows that TrS [ρ̂S(t)] = TrS [ρ̂S(t0)] = 1.

2. The reduced density operator ρ̂S must remain Hermitian at any time. Indeed, from Eq.
(2.4), we have

dρ̂†S
dt

= − 1

i~
[ĤS, ρ̂S(t)]

† +
∑

m

(

Ĉmρ̂SĈ
†
m

)†

− 1

2

∑

m

(

Ĉ†
mĈmρ̂S + ρ̂SĈ

†
mĈm

)†

=
1

i~
[ĤS , ρ̂S(t)] +

∑

m

Ĉmρ̂SĈ
†
m − 1

2

∑

m

(

Ĉ†
mĈmρ̂S + ρ̂SĈ

†
mĈm

)

=
dρ̂S
dt

Hence, dρ̂S/dt is Hermitian and ρ̂S(t) is also Hermitian provided ρ̂S(t0) is.

3. The reduced density operator ρ̂S must remain positive at any time. Indeed, consider
the reduced density operator at time t+ δt

ρ̂S(t+ δt) ≃ ρ̂S(t) +
dρ̂S(t)

dt
δt+O(δt2)

and the following operator

L̂ =
∑

m

Ĉ†
mĈm

2
= L̂†.

This allows one to write

ρ̂S(t+ δt) = ρ̂S(t)−
i

~
[ĤS, ρ̂S ]δt− (L̂ρ̂S + ρ̂SL̂)δt +

∑

m

Ĉmρ̂SĈ
†
mδt+O(δt2)

=

(

1̂ − i

~
ĤSδt− L̂δt

)

ρ̂S(t)

(

1̂ +
i

~
ĤSδt− L̂δt

)

+
∑

m

Ĉmρ̂SĈ
†
mδt+O(δt2).

This equation is a sum of contributions of the form M̂ρ̂SM̂
† each of which being positive

as long as ρ̂S(t) is itself positive. Therefore, the reduced density operator at time t+ δt
is also a positive operator.
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A master equation under the Lindblad form preserves the properties of a density operator
provided that the superoperator is bounded12.

The Lindblad equation (2.4) can be written

dρ̂S(t)

dt
= ˆ̂Lunitary [ρ̂S(t)] +

ˆ̂Lrelax [ρ̂S(t)] .

This writting emphasises the two main contributions contained in a Lindblad equation. A
first term, ˆ̂Lunitary [ρ̂S(t)], describes the coherent and reversible evolution of the system under
an effective and Hermitian Hamiltonian. If this term were to be considered alone, the master
equation would reduce to the well-known Liouville-von Neumann equation. The other term
ˆ̂Lrelax [ρ̂S(t)] describes the irreversible and non-unitary evolution of the system, as a result of
the coupling between the system and the reservoir. As we already mentioned, the dissipator
(sometimes called the Lindbladian) takes on the form

ˆ̂Lrelax [ρ̂S(t)] =
∑

m

Ĉmρ̂SĈ
†
m − 1

2

∑

m

(

Ĉ†
mĈmρ̂S + ρ̂SĈ

†
mĈm

)

. (2.5)

As pointed out by Gutmann [61], in this relaxator, appear the Ĉm operators acting on the
system Hilbert space HS. Those operators have dimensions of 1/

√
time in order to preserve the

interpretation of ρ̂S as a density operator [15]. They form a countable set of positive, bounded
operators : the Lindblad operators. The action of those operators and their number (one,
several or an infinity) depends on the type of problem treated. They describe how the system
is affected by a (fictitious and unread) measurement3 of the system by the reservoir [54] and
thus project the system state on a well-defined state. For that reason, the Ĉm operators are
sometimes called the collapse operators since they cause a collapse of the wavefunction due to
the fictitious measurement by the reservoir. However, they are more often referred to as jump
operators, a terminology we use in the following. They describe how the system states are
transformed under the action of a projective measurement of the system and they correspond
to an irreversible and instantaneous transformation of the system wavefunction. Their physical
meaning is rather obvious : they represent the system contribution to the system-reservoir
interaction through the various channels of desexcitations that feed the quantised field [51,
60, 62]. In (2.5), as pointed out in [15], the second sum is an anticommutator which contains
terms describing the decay of the total population Tr(ρ̂S) of the reduced density operator ρ̂S .
The "sandwich" terms in the first sum are source terms contributing to a temporal increase
of Tr(ρ̂S). A relevant interpretation of those two contributions to Tr(ρ̂S) can be drawn out
from the two-level atom coupled to the quantised electromagnetic field in the vacuum state

1An operator Â is said to be bounded if, for any |ψ〉, Â |ψ〉 exists in which case we necessarily have
‖Â |ψ〉 ‖ <∞. The maximum of Â |ψ〉 /‖ |ψ〉 ‖ is called the norm of Â, denoted by ‖Â‖

‖Â‖ = sup
‖|ψ〉‖=1

‖Â |ψ〉 ‖.

If that quantity does not exist, then the operator is said unbounded [54].
2However, Le Bellac [54] informs that this condition is sufficient but not necessary. Indeed, there exist

totally valid master equations that involve unbounbed superoperators.
3If they were to correspond to physical observables, then such a Lindblad form could be used in order to

treat measurement [62].
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study. Of course, the subsequent conclusions are more general. We consider a situation where
the atom is modelled by its ground state |g〉 and its excited state |e〉. This atom is coupled
to the quantised electromagnetic field assumed to be initially in a no-photon state. In such
a case, the coupling with the vacuum field is described by a dissipator of the form (2.5) with
only one jump operator : Ĉ =

√
Γ |g〉 〈e|, with Γ the spontaneous emission rate. Mølmer and

Castin [15] indicate that the anticommutator in (2.5) appears in the derivation of the master
equation from the evolution of the component of the atom + field wavefunction in the initial
state of the field, that is the zero-photon subspace. In the case of the two-level atom picture,
that anticommutator accounts for the decay of the excited state population and describes the
coherences between the ground and excited states. Mølmer and Castin [15] also indicate that
the sandwich term originates from the trace of the total wavefunction atom + field over the
field degrees of freedom (in order to construct the reduced density operator) involving field
states different from the initial vacuum state, that is the reservoir states with one fluorescence
photon. This term describes the natural feeding of the ground state by spontaneous emission
of a photon from the atom to the quantised field.

In a more general problem, as we mentioned previously, conclusions remain unchanged al-
though the interpretation is less straightforward. Indeed, if we consider a Jg ↔ Je transition
driven by a laser field, with the related degeneracies associated to the angular momenta of
the ground and excited states, there are as many jump operators as possible manners for the
atom to fall back into the ground state manifold, each of which describing one transition from
an excited substate to a ground substate, with a certain polarisation for the spontaneous
emitted photon. In such a case, the sums appearing in (2.5) do not reduce anymore to a
single term and describe the decay of the excited state population as well as the feeding of
the ground state in terms of sums over all possible contributions. Many examples of those
Lindblad operators with the related problem can be found in [16].

Non uniqueness of the Lindblad operators

The Lindblad form (2.5) does not determine the quantum jump operators univocally. If there
exists an operator T̂ acting in HS such that the relaxator is left invariant under

T̂ †
[
ˆ̂Lrelax(ρ̂S)

]

T̂ = ˆ̂Lrelax(T̂
†ρ̂S T̂ ),

then one can write
ˆ̂Lrelax(ρ̂S) = T̂ †

[
ˆ̂Lrelax(T̂

†ρ̂ST̂ )
]

T̂ .

In such a case, the Lindbladian takes the form

ˆ̂Lrelax(ρ̂S) =
∑

m

D̂mρ̂SD̂
†
m − 1

2

∑

m

(

D̂†
mD̂mρ̂S + ρ̂SD̂

†
mD̂m

)

,

where we have defined D̂m = T̂ †ĈmT̂ , which may correspond to a rotation of the basis
described by the operator T̂ . Regardless of the form of the jump operators, the resolution of
the Lindblad equation leads to the same results in average. However, the physical picture can
be quite different.





Chapter 3

Monte-Carlo wave function method

In the limit of the approximations made to obtain the master equation (2.4) for the reduced
density operator ρ̂S(t), the dynamics of the system of interest is directly obtained by solving
that master equation for a given initial state. Unfortunately, the required number of vari-
ables for a full density matrix treatment (O(N2

states)) renders realistic problems, such as 3D
laser cooling, numerically hard to solve. In a numerical discretisation of the centre-of-mass
momentum, for example in the range |pi| ≤ 50~k with i = x, y, z and a discretisation step
~k, the density matrix contains (2 × 50)6 ≃ 5 × 109 elements [17]. Moreover, that number
must be multiplied by the number of atomic electronic states. In a Jg ↔ Je transition, where
Jg and Je are the angular momentum quantum numbers for the ground and excited states,
(2Jg + 1) + (2Je + 1) electronic states must be taken into account. Therefore, a direct inte-
gration of the master equation is made impossible by the huge amount of variables to deal
with. An approximation, consisting in choosing a proper basis in which only rate equations
for the diagonal elements of the density operator are considered, has also been developped
in [18, 19] for the 1D and 2D cases. Nevertheless, such an approximation does not work well
for a 3D treatment of laser cooling. Klaus Mølmer, Yvan Castin and Jean Dalibard [16, 20]
developed a method (which they called the Monte-Carlo wavefunction method) based on the
propagation of stochastic wavefunctions rather than on an explicit resolution of the master
equation. A wavefunction is a smaller object than a density matrix since it contains O(Nstates)
elements rather than O(N2

states) for a density matrix. The MCWF method could be applied
in a wide variety of problems in quantum optics including for instance spontaneous emission
(with or without Zeeman degeneracy), interaction of an atom with a reservoir at finite tem-
perature, the momentum diffusion in Brownian motion or laser cooling [16]. Let us mention
that other equivalent methods have been invented at the same time, driven by the analogy
with similar problems in quantum optics. For instance, Carmichael developed the so-called
"quantum trajectories" method1 [63], Zoller et al. [64], Hegerfeldt and Wilser [57] and finally
Gisin and Percival [65] all have developed methods based on a stochastic approach of quantum

1This method has not to be confused with the De Broglie–Bohm theory which is sometimes referred
to as "quantum trajectories". This theory is an alternative formulation to the traditionnal Copenhaguen
interpretation of the quantum theory based on a hydrodynamical analogy of the Schrödinger equation. It was
first formulated under the name of pilot-wave theory by Louis De Broglie in 1927 at the Solvay Conference
before being abandoned due to the reluctances of other physicists. In 1952, David Bohm further developed
that theory [66] to give rise to what is now referred to as the De Broglie–Bohm theory and which is nowadays
considered as an alternative interpretation of quantum mechanics.

33



34 Monte-Carlo wave function method

mechanics similar the MCWF method. In this chapter, we first present the principle of the
method in the most general case. We also discuss the equivalence between the description of
the problem in terms of a master equation and in terms of MCWF. We discuss the physical
interpretation of the MCWF method. Finally, we illustrate and present important features of
the method by studying the case of an atom at rest.

3.1 Form of the dissipator

The type of relaxation superoperators considered in this work is very general and refers to
the Lindblad superoperators introduced previously2 .

ˆ̂Lrelax(ρ̂S) =
∑

m

Ĉmρ̂SĈ
†
m − 1

2

∑

m

(

Ĉ†
mĈmρ̂S + ρ̂SĈ

†
mĈm

)

. (3.1)

As we already mentioned, that kind of relaxator insures that the interpretation of ρ̂S as
a density operator is preserved3 all along the calculations. Therefore, any dissipator must
subscribe to the general form (3.1).

3.2 Principle of the method

The MCWF method allows one to compute expectation values that would otherwise be ob-
tained by solving Eq. (2.4) on the basis of wavefunctions that are propagated in time. Because
of the stochastic nature of the method, expectation values computed from a single wavefunc-
tion at time t are manifestly vitiated by an error intrinsic to the method. Therefore, it is
prescribed to repeat the procedure a large number of times and to average over different reali-
sations so that, in average, MCWF method produces the same results as the master equation.
The method for propagating a single wavefunction is quite simple. At initial time t0, one
starts with a normalised wavefunction |ψ(t0)〉. The state of the system will be computed at
consecutive times separated by a time step δt that must be chosen small enough in order to
ensure the validity of the calculations at first order [20]. The state of the system at time
t+ δt is obtained by one of the two evolutions that result from a random choice that will be
explained later on :

1. Either the state of the system4 at time t+ δt, |φ(t+ δt)〉, is obtained by the action of
the non-Hermitian Hamiltonian

Ĥ = ĤS − i~

2

∑

m

Ĉ†
mĈm (3.2)

on |ψ(t)〉. This yields, provided that the time step is small enough

|φ(t+ δt)〉 =
(

1̂ − iδt

~
Ĥ

)

|ψ(t)〉 . (3.3)

2The reader can find the whole demonstration in the text of H. J. Carmichael [63].
3Any operator ρ̂ which is positive, that is 〈ψ| ρ̂ |ψ〉 ≥ 0 for all |ψ〉 and with unit trace (Trρ̂ = 1) defines a

density operator.
4Since the method involves normalised and non-normalised states, one shall denote normalised states by

|ψ〉 whilst non-normalised states shall be denoted by |φ〉 in order to avoid any ambiguity.



3.2. Principle of the method 35

Since Ĥ 6= Ĥ†, its action on a normalised state vector does not produce a normalised
state vector. Hence, the resulting state vector |φ(t+ δt)〉 still needs to be normalised in
order to preserve the probabilistic interpretation. The square of the norm of |φ(t+ δt)〉
reads

〈φ(t+ δt)|φ(t+ δt)〉 = 〈ψ(t)|
(

1̂ +
iδt

~
Ĥ†

)(

1̂ − iδt

~
Ĥ

)

|ψ(t)〉 = 1− δp+O(δt2).

In this expression, we have introduced the probability δp defined as

δp =
δt

~
i 〈ψ(t)| Ĥ − Ĥ† |ψ(t)〉 =

∑

m

δpm

with
δpm = δt 〈ψ(t)| Ĉ†

mĈm |ψ(t)〉 ≥ 0.

Each of those probabilities δpm are associated to one of the jump operators Ĉm. The
total probability δp gives the probability for a quantum jump to occur. Now that the
square of the norm of the (non-normalised) resulting wavefunction has been computed,
one can normalise it in order to get the next wavefunction

|ψ(t+ δt)〉 = |φ(t+ δt)〉
√

〈φ(t+ δt)|φ(t + δt)〉
=

|φ(t+ δt)〉√
1− δp

.

The next evolution of that wavefunction up to time t + 2δt is performed either by
applying the evolution described hereabove or by performing the evolution described
hereafter.

2. Another possibility for evolving the wavefunction is to apply the "quantum jump evo-
lution". The relaxation superoperator involves the jump operators Ĉm, describing the
possible branching of decay in different channels [15]. The quantum jump evolution
consists in applying one of those operators to the wavefunction at time t. As Mølmer,
Castin and Dalibard advise [16], the term "quantum jump" is left vague on purpose
in the general presentation of the method as it corresponds to a gedanken experiment
process after which the wavefunction is projected onto the eigenstate corresponding to
the measurement result. The meaning of the jump operator will be further investigated
through the example given later or through the study of laser cooling. From a practical
point of view, one first has to compute the different probabilities δpm (each of those
probabilities is associated to a possible quantum jump, marked by Ĉm) that the mth

jump occurs and then has to make a random choice to choose which evolution, amongst
the non-Hermitian evolution and the jump evolution, is performed. That random choice
is performed by picking a pseudo-random number ǫ uniformly distributed in [0, 1] which
is then compared to δp. If ǫ < δp, then, amongst the m possible jumps, a quantum
jump occurs according to the probability law Πm = δpm/δp. The wavefunction at time
t+ δt is then given by

|φ(t+ δt)〉 = Ĉm |ψ(t)〉 with a probability δpm.

For the same reasons as previously, the resulting wavefunction still needs to be nor-
malised

|ψ(t+ δt)〉 = Ĉm |ψ(t)〉
‖Ĉm |ψ(t)〉 ‖

=
Ĉm |ψ(t)〉
√

δpm/δt
.
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Therefore, starting from a normalised wavefunction |ψ(t)〉, there are two possible ways for the
wavefunction to evolve for a sufficiently small time step δt. The choice between one of those
two evolutions is performed by a random choice : the non-Hermitian evolution is realised with
a probability 1 − δp whilst the quantum jump evolution is realised with a probability δp. A
second random choice determines which jump occurs being given the different probabilities
δpm, each of which associated with each possible jump obtained by the action of Ĉm. Figure
3.1 illustrates the choice one has to deal with when computing a MCWF solution of a master
equation.

Random
number ǫ

ǫ ∈ [0, 1]

|ψ(t+ δt)〉 = Ĉm |ψ(t)〉
‖Ĉm |ψ(t)〉 ‖

=
Ĉm |ψ(t)〉
√

δpm/δt

|ψ(t+ δt)〉 = |φ(t+ δt)〉
‖φ(t+ δt)‖ =

(

1̂ − iδt

~
Ĥ

)

|ψ(t)〉
√
1− δp

Quantum jumps :
probabilities δpm

No quantum jump :
probability 1−

∑

m

δpm

ǫ ≤ δp

δp = (iδt/~)〈ψ(t)|Ĥ − Ĥ†|ψ(t)〉
ǫ > δp

Figure 3.1: The possible branches in the MCWF evolution [16].

Henceforth one knows how to propagate a MWCF in time, one is interested in computing
the numerical value of observables. One of the central purposes of the MCWF approach is
precisely to give access to average values of physical observables. Following the traditional
spirit of a Monte-Carlo like method, one just has to compute the desired observable for each
realisation of the method and to average the results over a large number of realisations. That
is, consider that N independent5 MCWF have been propagated until time t and choose a
physical observable A represented by the Hermitian operator Â. One just has to compute the
expectation value for the observable A for all wavefunctions (or trajectories) as it is usually
done and to take the average

〈A〉(N)(t) =
1

N

N∑

i=1

〈ψi(t)|Â|ψi(t)〉. (3.4)

Using a master equation approach, one would know the reduced density operator ρ̂S exactly
and could determine the expectation value of any physical observable by computing Tr(ρ̂SÂ).

5The independence of those MCWF is such that the associated propagations in time could be straightfor-
wardly parallelised. Assuming that the material resources are sufficient, the propagation time of N MCWF is
the same as the propagation of only one MCWF.
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To that extent, Eq. (3.4) is seen as an approximation of Tr(ρ̂SÂ) which gets more and more
accurate as the number of realisations N increases. In statistics, the statistical error related
to the mean of a given sample distribution is estimated by

δA(N)(t) =
∆A(N)(t)√

N
,

where
(
∆A(N)(t)

)2
is the sample variance at time t of the N expectation values determined

previously [15]

(
∆A(N)(t)

)2
=

1

N

(
N∑

i=1

〈ψi(t)|Â|ψi(t)〉2
)

−
(
〈A〉(N)(t)

)2
.

Therefore, expectation values for physical observables come with error bars of half width
∆A(N)/

√
N . For large N , 〈A〉(N)(t) ≃ 〈A〉(t) = Tr[ρ̂S(t)Â]. In the following section, we

prove and quantify how the approximate value computed by the MCWF method converges to
the real expectation value. In the following, we define the signal-to-noise ratio as 〈A〉/∆A(N).
Such a ratio provides a criterion for determining the quality of the produced average value of
A. The condition for having a good signal-to-noise ratio is [16]

√
N ≫

∆A(N)(t)

〈A〉(t) . (3.5)

This relation suggests that the larger N is, the better the results are. However, beyond a
certain value of N , results stop improving convincingly so that one might wonder what are
the requirements imposed by Eq. (3.5). To that purpose, we separate operators in 2 categories
consisting in "local" and "global" operators [16]. An example of global operator is given by
the average kinetic energy whilst an example of local operator is given by the population of a
particular state |i〉. For the latter, it is shown that such operators have fluctuations (related
to their expectation values) larger than the ones of the former [15]. In fact, for those local
operators, denoting by Nstates the number of electronic states involved in a realisation of the
method, it is expected that [16]

〈A〉(t) ∼ 1

Nstates
, (∆A)2 (t) ∼ 1

Nstates
, when Nstates ≫ 1.

Inserting those expectations into Eq. (3.5), we see that

N ≫ Nstates.

As we already knew, the larger the number of realisations, the better the signal-to-noise ratio.
However, we have to perform at least Nstates simulations of wavefunctions (N ≥ Nstates)
involving Nstates which amounts to dealing with a method of (at least) complexity O(N2

states).
In conclusion, for local operators, the MCWF approach is not efficient compared to a density
matrix treatment of the problem. For global operators, the situation is better since we expect
[15]

∆A(t) ∼ 〈A〉(t).
Inserting this expectation into Eq. (3.5), we observe that

√
N ≫ 1,



38 Monte-Carlo wave function method

so that the method provides good results for global operators as soon as the number of
realisations is much larger than one. As Mølmer pointed out, if one wants a 10% accuracy on
the expectation value of such an operator, Eq. (3.5) indicates that 100 realisations must be
performed in order to reach such an accuracy. Therefore, as long as the number of realisations
associated to a given accuracy is larger than the number of electronic states to deal with, the
MCWF approach is more efficient than a density matrix treatment.

3.3 Equivalence between the MCWF and the master equation

approaches

Because of the statistical uncertainty intrinsically linked to the MCWF method, one must
propagate a certain number of wavefunctions in time and average the produced results. As
the previous section showed, the larger the number of wavefunctions propagated, the smaller
the statistical error. In order to prove the equivalence with a master equation, we consider a
set of N simulations all starting from the same wavefunction : |ψi(0)〉 = |ψ(0)〉 ,∀i. At time
t, we consider

ˆ̄σ(t) =
1

N

N∑

i=1

|ψi(t)〉 〈ψi(t)| ,

which is the average reduced density operator at time t obtained from all wavefunctions
propagated by the MCWF method. The proof of the equivalence consists in showing that,
assuming that the average reduced density matrix at time t = 0, σ̄(0), coincide with the
reduced density matrix at the same time, ρ̂S(0)6

ρ̂S(0) = |ψ(0)〉 〈ψ(0)| ,

it is true at all times. That is, if ˆ̄σ(0) and ρ̂S(0) have identical expressions, they still will
coincide at any future time t in the limit N → ∞. If such a point is to be demonstrated,
then one will have proved the equivalence between MCWF approach and a density matrix
approach. Consider at time t the result of the propagation of |ψ(0)〉 from time t = 0, that is
|ψ(t)〉 and write the average value of σ̄(t) at the next time step

ˆ̄σ(t+ δt) = (1− δp)
|φ(t+ δt)〉

‖ |φ(t + δt)〉 ‖
〈φ(t+ δt)|

‖ 〈φ(t+ δt)| ‖ +
∑

m

δpm
Ĉm |ψ(t)〉

‖Ĉm |ψ(t)〉 ‖
〈ψ(t)| Ĉ†

m

‖ 〈ψ(t)| Ĉ†
m‖

. (3.6)

Since the wavefunction evolving under the action of non-Hermitian Hamiltonian reads

|φ(t+ δt)〉 =
(

1̂ − iĤδt

~

)

|ψ(t)〉 ,

one can rewrite Eq. (3.6) as [16]

ˆ̄σ(t+ δt) = σ̂(t) +
iδt

~
[σ̂(t), ĤS ] + δt ˆ̂Lrelax [σ̂(t)] ,

6If the reduced density operator ρ̂S(0) were not to correspond to a pure state, one has to express it as a

statistical mixture of pure states ρ̂S(0) =
∑

i

pi |χi〉 〈χi| and perform a random choice based on the probability

law pi in order to determine which of the |χi〉’s is chosen as initial state for the MCWF resolution.
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with
ˆ̂Lrelax [σ̂(t)] =

∑

m

Ĉmσ̂(t)Ĉ
†
m − 1

2

∑

m

(

Ĉ†
mĈmσ̂(t) + σ̂(t)Ĉ†

mĈm

)

,

which yields, after averaging over many trajectories

dˆ̄σ

dt
=
i

~
[ˆ̄σ, ĤS ] +

ˆ̂Lrelax(ˆ̄σ). (3.7)

Equation (3.7) is the master equation the MCWF method is solving. The time step δt should
be chosen neither too large7 nor too small [16]. On the one hand, denoting by ~ηi the
eigenvalues of the Hamiltonian, the time step should be such that ηiδt ≪ 1. On the other
hand, denoting by τB the correlation time of the reservoir, δt should be such that δt ≫ τB
in order to prevent quantum Zeno-type effects8 [57, 58]. This comes from the coarse-grain
average in the derivation of the master equation.

3.4 Physical content of the MCWF method in the case of spon-

taneous emission

In this section, we study the method in details through one of the simplest example (for
which an analytical study is readily performed) : the spontaneous emission of a photon by a
two-level atom. As a reminder, such an atom consists of a ground state |g〉 and an excited
state |e〉. The master equation to solve reads

dρ̂S
dt

=
i

~

[

ρ̂S , ĤS

]

+ ˆ̂Lrelax(ρ̂S).

In the case of spontaneous emission, there is only one jump operator Ĉ =
√
Γ |g〉 〈e| =√

Γσ̂−, with Γ the spontaneous emission rate. Therefore, the associated Lindblad relaxation
superoperator reads [20]

ˆ̂Lrelax(ρ̂S) =
∑

m

Ĉmρ̂SĈ
†
m − 1

2

∑

m

(

Ĉ†
mĈmρ̂S + ρ̂SĈ

†
mĈm

)

= Γ
(
σ̂−ρ̂Sσ̂

+
)
− Γ

2

(
σ̂+σ̂−ρ̂S + ρ̂S σ̂

+σ̂−
)
.

In the {|e〉 , |g〉} basis, we have

Ĉ =
√
Γ

(
0 0
1 0

)

, Ĉ† =
√
Γ

(
0 1
0 0

)

.

7We have already mentioned that δt is chosen such that calculations remain valid at first order.
8Such effects refer to a situation where the observation of a system with a frequency high enough freezes

its evolution from or towards a certain state. It can lead to paradoxical situations such as the one of a particle
in an unstable state which it never decays from because of the too high frequency measurement.
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Such a dissipator leads to the Optical Bloch Equations (OBE)
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We consider as initial state a coherent superposition of the excited and ground states

|ψ(0)〉 = cg |g〉 + ce |e〉 with |cg|2 + |ce|2 = 1.

The state of the wavefunction at time δt is obtained by the result of one of the two procedures.

1. We evolve |ψ(0)〉 under the action of

Ĥ = ĤS − i~

2

∑

m

Ĉ†
mĈm

= ĤS − i~Γ

2
P̂e,

where P̂e is the projector onto the excited state. As in scattering theory, the excited state
energy has an imaginary part which describes the decay of the excited state population.
In the absence of laser, ĤS = ~ω0P̂e and in the {|e〉 , |g〉} basis, Ĥ reads

Ĥ = ~ω0P̂e −
i~Γ

2

(
1 0
0 0

)

.

Therefore, after being evolved through Eq. (3.3), |ψ(0)〉 becomes

|φ(δt)〉 = cg |g〉+ ce

(

1− Γδt

2

)

|e〉 ≃ cg |g〉 + cee
−Γδt/2 |e〉 .

The amplitude of ce has been reduced by the e−Γδt/2 factor whilst cg remains unchanged,
which clearly indicates that |φ(δt)〉 is not normalised, as expected. After normalisation,
the wavefunction reads

|ψ(δt)〉 = cg

(

1 +
Γδt

2
|ce|2

)

|g〉 + ce

(

1− Γδt

2
|cg|2

)

e−Γδt/2 |e〉 . (3.8)

That evolution occurs with a probability 1− δp where

δp =
δt

~
i 〈ψ(t)| Ĥ − Ĥ† |ψ(t)〉 = Γ|ce|2δt,

is the probability for performing a quantum jump.
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2. We perform a quantum jump under the action of Ĉ =
√
Γ |g〉 〈e| and the state of the

atom after such a jump is |ψ(δt)〉 = |g〉.

The probability δp can be interpreted as the probability for emitting a spontaneous photon
between t = 0 and t = δt. As Mølmer pointed out [21], |φ(δt)〉 is the zero-photon component of
the total atom+field wavefunction and 1−〈φ(δt)|φ(δt)〉 ≃ Γ|ce|2δt is the norm of the remaining
one photon component. Using an analogy with the quantum measurement theory and positive-
operator valued measure (POVM), the pseudo-random number ǫ simulates whether or not a
photon has been detected during δt and the jump operators are the projective operators
associated with the measurement of one spontaneous photon. In fact, the MCWF procedure
can be seen as a tracking of the wavefunction history through a continuous measurement
process [20,67,68]. When no photon is detected, a slight rotation of the wavefunction occurs.
Indeed, the excited state population has decreased just as much as the ground state population
has increased. Imagining that the wavefunction were in the eigenstate |e〉 at the beginning and
that no photon is detected through the whole process, the wavefunction would continuously
rotate from |e〉 to fall back into its ground state |g〉. Such a situation has been theoretically
analysed by Dicke [69]. This rotation is crucial inasmuch it affects the probability for detecting
a photon. Without such a rotation, the wavefunction would irremediably remain in its initial
state until a photon is finally detected in which case it would be projected onto its ground
state. This means that one is sure to detect such a photon if one waits a sufficiently long
time, provided the excited state population is not zero (but could be arbitrarily small), which
clearly appears to be wrong. However, as (3.8) demonstrates, the excited state population is
decreased by the rotation, thereby also decreasing the probability for detecting a spontaneous
photon. Actually, assuming that no photon has been detected between t = 0 and t, then the
normalised wavefunction reads

|ψ(t)〉 = cg |g〉+ cee
−Γt/2 |e〉

√

|cg|2 + |ce|2e−Γt
.

The probability for detecting no photon must fulfil [21]

P (t+ δt) = P (t)
1− Γδt|ce|2e−Γt

|cg|2 + |ce|2e−Γt
,

whose solution is
P (t) = |cg|2 + |ce|2e−Γt t→∞

= |cg|2. (3.9)

This equation clearly shows that the probability for detecting no photon decreases with time
but is not zero9 when t → ∞. That is, the more one waits, the more one is likely to detect
a photon. It also shows that the detection of a photon depends upon the initial population
of both atomic internal states. For instance, if the excited state population is initially small
but not zero, one should not detect10 any spontaneous photon when t → ∞. As Mølmer
advised [21], the treatment of the no jump periods could be further investigated. If no jump

9Provided |cg |
2 6= 0.

10Such a detection is not forbidden by the rotation of the wavefunction, but the spontaneous emission
probabity decreases with time.
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occured during the period [0, t], the behaviour of the wavefunction is then governed by

i~
d |φ(t)〉
dt

=

(

Ĥ + 〈φ(t)|Ĥ
† − Ĥ

2
|φ(t)〉

)

|φ(t)〉 ,

whose normalised solution is (provided the Hamiltonian does not explicitely depend upon
time)11

|φ(t)〉 = e−iĤt/~ |φ(0)〉
√

〈φ(0)|eiĤ†t/~e−iĤt/~|φ(0)〉
.

This is nothing else than the traditionnal evolution through the Schrödinger equation (al-
though the Hamiltonian is non-Hermitian) followed by the proper renormalisation. Cohen-
Tannoudji and Dalibard [70] interpreted the probability for detecting no photon defined in
(3.9) as a delay function which provides the statistics of the time intervals between subsequent
emission events [21]. Such an interpretation allowed them to provide further insight into the
fluorescence signal and they identified bright and dark periods, which has been proven in [71].
This may constitute an alternative way to use the MCWF procedure. Instead of realising
a pseudo-random choice every time step to know whether or not a photon is detected, one
chooses a pseudo-random ǫ and compare it to the value of the delay function P (t) which is
actualised each time step. That is, as soon as the delay function is smaller than ǫ, a jump
occurs and immediately after, the delay function is set to P (t) = 1. In each future time steps,
this function is multiplied by 1− δp : it accumulates the probability that no photon had been
detected. When P (t) < ǫ, a jump occurs and the procedure is repeated. Such an approach
has been carried on in [64,72]. This function is analytically reachable for simple systems but
unfortunately cannot be accessed for systems with a large number of states. In such a case,
it is computed numerically. The delay function (which gives the probability that no pho-
ton had been detected until time t) decreases as time increases. When this function crosses
the pseudo-random number, a jump operator is applied and a new pseudo-random number
is drawn. The procedure is then repeated again as many times as necessary. This kind of
simulation has been used in [73] to simulate an atomic-beam cooling experiment, in [74] for
laser cooling of atoms using velocity-selective coherent population trapping and finally for
lasing without inversion in [75]. It has also been applied for studying the Sisyphus cooling in
2D [76] and to study the spectrum of light emitted by an assembly of cold atoms [77].

3.5 Illustration of the MCWF method through an atom a rest

driven by a laser field

In this section, we present our numerical results related to atoms at rest driven by a laser
field to illustrate the phenomena of saturation and optical pumping.

3.5.1 Master equation for an atom at rest driven by a laser field

The master equation to solve reads

dρ̂S
dt

=
i

~
[ρ̂S , ĤS ] +

ˆ̂Lrelax(ρ̂S), (3.10)

11Exceptionally, the notations |ψ(t)〉 and |φ(t)〉 for normalised and not normalised states are not used.
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where, when no motion is considered, the system Hamiltonian ĤS has the simple form

ĤS =
~Ω

2

(

Ŝ+ + Ŝ−
)

− ~δP̂e.

We have obtained this Hamiltonian by applying our generic derivation (4.25), which is thor-
oughly described in chapter 4, particularised when the atom is at rest, which explains there is
no term related to the atomic kinetic energy. Operators Ŝ+ and Ŝ− are defined in Eq. (4.24).

The dissipator ˆ̂Lrelax(ρ̂S) in Eq. (3.10) reads

ˆ̂Lrelax(ρ̂S) = −Γ

2

(

P̂eρ̂S + ρ̂SP̂e

)

+ Γ
∑

q=0,±

(

ǫ∗q · Ŝ
−
)

ρ̂S

(

ǫq · Ŝ
+
)

,

where we have introduced the spherical standard basis






ǫ± = ∓ 1√
2
(ex ± iey)

ǫ0 = ez

. (3.11)

We choose the jump operators as [16]

Ĉq =
√
Γ
(

ǫ∗q · Ŝ
−
)

with q = 0,±,

that is, a form that manifestly subscribes to the Lindblad form (2.4) since

∑

q=0,±1

Ĉ†
q Ĉq = ΓŜ+

· Ŝ− = ΓP̂e.

Operators S+ and S− are defined through their action on internal states [16]

ǫq · Ŝ
+ |Jg,mg〉 = 〈1, Jg, q,mg|Je,me = mg + q〉 |Je,me = mg + q〉

ǫq · Ŝ
+ |Je,me〉 = 0

ǫ∗q · Ŝ
− =

(
ǫq ·S

+
)†
,

with 〈1, Jg, q,mg|Je,me = mg + q〉 being the Clebsch-Gordan coefficient related to the
|Je,me = mg + q〉 ↔ |Jg,mg〉 transition. All desexcitation channels are characterised by their
Clebsch-Gordan coefficient whose square gives the probability that the related channel is
chosen in the MCWF method.
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3.5.2 Saturation of an atomic transition

First, we present results that illustrate how the method works. In steady state, the popu-
lation of all states involved in the atomic transition have a well defined value, apart from
fluctuations around this value, which depends on the saturation parameter of the laser.
This is the saturation phenomenon which we study in the following. In Figure 3.2, we
plot the excited state population of a two-level atom (for instance an atom with a transi-
tion |Jg = 0,mg = 0〉 ↔ |Je = 1,me = 0〉 driven by π-polarised light in which case the only
non-vanishing jump operator is Ĉ0 =

√
Γ(ǫ∗0 · Ŝ

−)) as a function of time for one MCWF.
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Figure 3.2: Excited state population of a two-level atom as a function of time for one MCWF.
Simulation parameters are : Ω = Γ, δ = −Γ/2, Γδt = 0.0025, Γtf = 20 and |ψ(0)〉 = |g〉.

The excited state population undergoes Rabi oscillations : it oscillates back and forth between
0 and 1 at the Rabi frequency. Those oscillations are interrupted by quantum jumps occuring
at random times, those jumps projecting the wavefunction onto the ground state. In Figure
3.3, we show the excited and ground state populations averaged over 500 MCWF as a function
of time.
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Figure 3.3: Averaged excited and ground state populations of a two-level atom as a function of
time averaged over 500 MCWF. Simulation parameters are : Ω = Γ, δ = −Γ/2, Γδt = 0.0025,
Γtf = 50 and |ψ(0)〉 = |g〉.

After a short transient period of about 5Γ−1, both populations reach a steady value with
fluctuations around the mean due to the finite number of trajectories. When the steady state
is reached, an analytical solution to the master equation (3.10) shows that the excited state
population saturates at [29]

ρ∞ee =
s

2(s + 1)
(3.12)
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In Figure 3.4, we compare the theoretical expression (3.12) with the values obtained with the
MCWF method in steady state.
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Figure 3.4: Saturated population of the excited state in steady state. Numerical results
are averaged over 100 MCWF and have been obtained by keeping δ fixed and varying Ω.
Simulation parameters are : δ = 0, Γδt = 0.0025, Γtf = 50 and |ψ(0)〉 = |g〉.

We see that, except for some imperfections hither and thither still due to the finite number of
trajectories, the results are in very good agreement with Eq. (3.12). When degeneracy is taken
into account, because of optical pumping occurring in the case of σ±-polarised light, only the
levels whose quantum numbers me/g related to the projection of the angular momentum onto
the quantisation axis is maximum (for σ+-polarised light) or minimum (for σ−-polarised light)
play a role when the system is in steady state.
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3.5.3 Optical pumping

By the use of light with polarisation σ+, it is possible to transfer the population from the
low energy states to the high energy states or conversely (one then has to use σ−-polarised
light) : this is the optical pumping phenomenon. It is responsible for coupling only two states
of the ground and excited state manifolds for a proper choice of light polarisation. We have
analysed the transient regime in which optical pumping occurs and we present a single MCWF
trajectory in Figure 3.5(a) and an averaged result in Figure 3.5(b) for an atom starting in the
|Je,me = −3/2〉 state and driven by σ+-polarised light.

In Figure 3.5, we analyse the populations of each substate involved in the Jg = 1/2 ↔ Je = 3/2
transition, those populations being the expectation values of the related operators, which we
define as

P̂e/g,me/g
= |Je/g,me/g〉 〈Je/g,me/g| .

In Figure 3.5(a), we see that the first quantum jump completely depopulates the |Je,me = −3/2〉
substate and the wavefunction is projected onto the |Jg,mg = −1/2〉 substate : the |Je,me = −3/2〉
substate has gone out of the picture. Because the polarisation of the laser is σ+, the
|Je,me = −1/2〉 substate cannot be reached since it involves π transitions and |Jg,mg = −1/2〉
is now coupled to |Je,me = 1/2〉. The population is then transferred from |Jg,mg = −1/2〉
and |Je,me = 1/2〉 to |Jg,mg = 1/2〉 and |Je,me = 3/2〉 so that after several fluorescence cy-
cles, only the |Jg,mg = 1/2〉 and |Je,me = 3/2〉 substates are still coupled, all other substates
being unoccupied and uncoupled from those two substates for the rest of the simulation.
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(a) Excited states populations as a function of time for one MCWF (Γtf = 25).
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(b) Excited states populations as a function of time averaged over 500 MCWF (Γtf = 50).

Figure 3.5: Populations of excited substates involved in an atomic transition Jg = 1/2 ↔ Je =
3/2 driven by σ+ polarised light. Simulation parameters are : Ω = Γ, δ = −Γ/2, Γδt = 0.0025
and |ψ(0)〉 = |Je,me = −3/2〉.



Chapter 4

Full quantum-mechanical treatment of

laser cooling

In this chapter, we apply the MCWF method described in chapter 2 to laser cooling. We first
present the master equation to solve in its most general form. Then, we explain how it can
be greatly simplified by imposing some reasonable restrictions about the direction of emission
of photons. After that, we derive the system Hamiltonian appearing in the master equation
very generally such that all system Hamiltonians related to future simulations appearing in
the following are special cases of our treatment. In an (ionic or atomic) trap, the density of
particles is very small so that the mean free path of each particle is much larger than the
dimension of the trap. Thus, the collision probability is virtually equal to zero so that the set
of interacting particles is mapped into a set of non-interacting particles. Consequently, since
the medium is so dilute that we can neglect the atom/atom interactions, the total Hamiltonian
is simply obtained by performing the sum of all single-atom Hamiltonians.

4.1 Master equation with quantisation of the atomic centre-of-

mass motion

The semiclassical description of laser cooling presented in chapter 1 works well at high tem-
perature but becomes less reliable as soon as the atomic momentum is small. To predict the
temperature of a cooled gas, a quantum description of the centre-of-mass motion is required,
especially regarding the recoil due to spontaneous emission. In this case, the master equation
to solve for the (reduced) atomic density operator ρ̂S reads

dρ̂S
dt

=
i

~
[ρ̂S , ĤS ] +

ˆ̂Lrelax(ρ̂S),

with the dissipator [16, 28, 78]

ˆ̂Lrelax(ρ̂S) = −Γ

2

(

P̂eρ̂S + ρ̂SP̂e

)

+
3Γ

8π

∫

d2Ω
∑

ǫ⊥k

e−ik · r̂(ǫ∗ · Ŝ−)ρ̂S(ǫ · Ŝ
+)eik · r̂, (4.1)

where Γ is the total spontaneous emission rate, P̂e is the projector onto the excited state
manifold, the wavevector k points in the direction of the solid angle Ω, the integral runs over
all possible directions for the spontaneously emitted photon and the sum is performed over

49
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two polarisations ǫ orthogonal to k and forming a basis set for the polarisation vector E .
In the dissipator (4.1), exp (±ik · r̂) are translation operators and ǫ∗ · Ŝ− (resp. ǫ · Ŝ+) are
operators acting on internal states that project the wavefunction from an excited substate
(resp. a ground substate) to the proper ground substate (resp. the proper excited substate)
whose expression is given below. The dissipator (4.1) suggests to choose the jump operators
as follows [16]

ĈΩ,ǫ =

√

3Γ

8π
e−ik · r̂(ǫ∗ · Ŝ−). (4.2)

The dissipator (4.1) subscribes to the Lindblad form and thereby preserves the properties of
ρ̂S as a density operator. This can be seen through the following identity [16]

∫

d2Ω
∑

ǫ⊥k

Ĉ†
Ω,ǫĈΩ,ǫ =

3Γ

8π

∫

d2Ω
∑

ǫ⊥k

(ǫ · Ŝ+)(ǫ∗ · Ŝ−)

= ΓŜ+
· Ŝ− = ΓP̂e,

which guarantees that the dissipator is under the suitable form (2.4).

A rather tedious procedure, which amounts to choosing the direction and polarisation of the
emitted photon, must then be performed to choose which jump operators, amongst the infinite
set of jump operators (4.2), must be applied to the wavefunction. However, as Mølmer et al.
[16] stress, when one is not interested in the detailed effect of the spontaneous emission pattern
on the atomic dynamics, one can restrict the discussion to a much simplified spontaneous
emission pattern and only consider emission along a given set of coordinates specified by the
basis vectors ex, ey and ez. These basis vectors can also be used as a polarisation basis for
the polarisation vectors : a photon whose wavevector is along ez may have polarisation ex or
ey. We note that this simplification drastically reduces the number of jump operators since
from an infinite set of jump operators we now deal with a finite set of such operators. Indeed,
in the dissipator (4.1), the integral running over all possible directions of emission is now
replaced by a summation over all new possible directions of emission [16], that is k = ±kei,
with i = x, y, z

Γ

2

∑

k/k=ex,ey,ez

∑

ǫ⊥k

e−ik · r̂(ǫ∗ · Ŝ−)ρ̂S(ǫ · Ŝ
+)eik · r̂,

so that the dissipator now reads

ˆ̂Lrelax(ρ̂S) = −Γ

2

(

P̂eρ̂S + ρ̂SP̂e

)

+
Γ

2

∑

k/k=ex,ey,ez

∑

ǫ⊥k

e−ik · r̂(ǫ∗ · Ŝ−)ρ̂S(ǫ · Ŝ
+)eik · r̂. (4.3)

When one restricts the discussion to 1D cooling along the z direction, which amounts to
taking the trace over x and y in equation (4.3), the dissipator reads [16]

ˆ̂Lrelax(ρ̂S) = −Γ

2

(

P̂eρ̂S + ρ̂SP̂e

)

+ Γ
∑

q=0,±

∑

k′=0,±k

p̄q(k
′)e−ik′ẑ(ǫ∗ · Ŝ−)ρ̂S(ǫ · Ŝ

+)eik
′ẑ, (4.4)

with p̄q(k′) the probability for having a spontaneous photon with linear momentum ~k′ along
the motion axis and angular momentum ~q [16] and vectors ǫq, forming the standard spherical
basis, have been defined in Eq. (3.11). For 1D cooling, we thus restrict the discussion to
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spontaneous emission along ±ez or in the xy−plane. Because of this restriction to 1D cooling,
we now deal with 9 quantum jump operators which read

Ĉk′,q =
√

Γp̄q(k′)e
−ik′ẑ

(

ǫ∗q · Ŝ
−
)

,

that is a form totally analogous to (4.2). Operators Ŝ+ and Ŝ− are defined through their
action on internal states [16]

ǫq · Ŝ
+ |Jg,mg〉 = 〈1, Jg, q,mg|Je,me = mg + q〉 |Je,me = mg + q〉

ǫq · Ŝ
+ |Je,me〉 = 0

ǫ∗q · Ŝ
− =

(

ǫq · Ŝ
+
)†

,

with 〈1, Jg, q,mg|Je,me = mg + q〉 being the Clebsch-Gordan coefficient related to the
|Je,me = mg + q〉 ↔ |Jg,mg〉 transition. In the following subsection, we derive the probabil-
ities p̄q(k′) based on the angular distribution of intensity of classical electric dipoles.

4.1.1 Discrete probabilities of emission in a given direction and angular
distribution of atomic fluorescence

In the definition of the jump operators, one is interested in the probability of emitting a
photon along ±ez or in the xy−plane with a well defined polarisation. For that purpose, we
first present the angular distribution of the emitted light intensity. Let us choose a Cartesian
coordinate system such that the atoms are located at the origin. Since the problem is axial
symmetric with respect to the z axis, one can restrict the discussion to light emitted with a
wavevector lying in the x > 0, xz−semiplane [79]. Therefore, the polar angle θ univocally
defines the direction of emission of radiation.

ex

ez

k′

θ

⊗

⊗
ey

Atoms

ǫa

ǫb

Figure 4.1: Coordinate system centered on the atoms, where k′ is the wavevector of the
emitted light, ǫa and ǫb are two possible orthogonal directions for the light polarisation.
Figure adapted from [79].
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For a given direction of emission specified by the wavevector k′, two possible orthogonal light
polarisation vectors are {

ǫa = ey,

ǫb = cos θ ex − sin θ ez
.

When spontaneous emission occurs, an atom has 3 possible decay channels, each of which re-
lated to a particular spontaneous photon polarisation (σ± or π). The probabilities associated
to such decay channels are proportional to the square of Clebsch-Gordan coefficients. Accord-
ing to the polarisation of the emitted photon, the angular pattern of emission is different. In
a classical picture, a dipole oscillating along the z direction with dipole moment

d0(t) = d0 cos(ω0t)ez = d0 cos(ω0t)ǫ0

produces light with π polarisation and frequency ω0 whilst a dipole rotating in x − y plane
with dipole moment

d±(t) = d0

(

cos(ω0t)ex ∓ sin(ω0t)ey

)

= ℜ
[√

2d0ǫ±e
∓iω0t

]

produces light with σ± polarisation and frequency ω0. For a given direction of emission
specified by θ and a polarisation vector ǫi with i = a, b, the intensity of the emitted light
is proportional to the square of the modulus of the dot product between the corresponding
polarisation vector ǫi and the direction of oscillation of dq(t) [79]. In the case of π light
produced by a dipole oscillating along the z axis, the direction of oscillation is ez which yields

{

I
(π)
ǫa (θ) ∝ |ǫa · ez|2 = 0

I
(π)
ǫb

(θ) ∝ |ǫb · ez|2 = |(cos θ ex − sin θ ez) · ez|2 = sin2 θ
.

The total intensity is therefore proportional to I(π)tot (θ) ∝ sin2 θ, that is no emission along the
z axis and a large emission in the equatorial plane (maximum for θ = π/2). In the case of
σ± light produced by a dipole rotating clockwise or counterclockwise in the xy−plane, the
direction of oscillation is

ǫ± = ∓ 1√
2
(ex ± iey),

which yields







I
(σ±)
ǫa (θ) ∝ |ǫa · ǫ±|2 =

∣
∣
∣
∣
ey · ∓

1√
2
(ex ± iey)

∣
∣
∣
∣

2

=
1

2

I
(σ±)
ǫb

(θ) ∝ |ǫb · ǫ±|2 =
∣
∣
∣
∣
(cos θ ex − sin θ ez) · ∓

1√
2
(ex ± iey)

∣
∣
∣
∣

2

=
cos2 θ

2

.

The total intensity is therefore proportional to I(σ
±)

tot (θ) ∝ (1 + cos2 θ)/2, that is an intense
emission along the z axis and a weaker emission in the equatorial plane.
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The normalised angular patterns for π or σ± lights are given in Figure 4.2.

ez

d0
k′θ

d0(t) = d0 cos(ω0t)ez

(a) I
(π)
tot (θ) ∝ sin2 θ

ez

xy−plane

k′

θ

d±

d±(t) = d0 (cos(ω0t)ex ∓ sin(ω0t)ey)

(b) I
(σ±)
tot (θ) ∝ (1 + cos2 θ)/2

Figure 4.2: Normalised angular patterns of light emitted by (a) a dipole oscillating along the
z axis and (b) a dipole rotating in the xy−plane. Figure adapted from [79].

The classical discussion we have led hereinbefore allowed us to introduce the angular patterns
of emission, which result we apply to spontaneous emission of photons by atoms in the fol-
lowing. The total intensity of radiation in a given direction is obtained by adding the angular
patterns for each type of transition, weighted by the square of the proper Clebsch-Gordan
coefficient. It can be shown that when an atom is driven by unpolarised light [79], the result
has no angular dependence indicating that the total light intensity is isotropic. Finally, after
computing the normalisation constant, the normalised angular probability distributions read







I
(σ±)
tot (θ) =

3

4

(
1 + cos2 θ

2

)

I
(π)
tot (θ) =

3

4
sin2 θ

. (4.5)

As we have already mentioned earlier, when one restricts to a simplified procedure consist-
ing in choosing a set of unit vectors ex, ey, ez accounting for the only possible directions of
spontaneous emission and when the atomic motion is unidimensional, one has to convert the
continuous probability densities into corresponding discrete probabilities. The problem we
have in mind is the elastic scattering of a photon of wavevector k into a photon of wavevector
k′ : |k′| = |k|.
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We choose the set of coordinates with ez in the same direction as k, the xy−plane being
perpendicular to k, as shown in Figure 4.3.

k

ex

ez
·
ey

Figure 4.3: Unit vectors with ez in the same direction as k, the laser wave being depicted in
dashed blue.

In order to assess the equivalent discrete probabilities, we define κ as the projection of k′ onto
ez

κ = k′ · ez = k′ ·
k

k
= k cos θ.

Therefore, in terms of κ, the angular profiles of emission from classical electrodynamics (4.5)
read 





I
(σ±)
tot (κ/k) =

3

8

[

1 +
(κ

k

)2
]

I
(π)
tot (κ/k) =

3

4

[

1−
(κ

k

)2
] . (4.6)

We can associate to these angular patterns normalised probability densities for having a
photon with angular momentum ~q = 0,±~ez and linear momentum ~κ along the motion
axis ez 





N (σ±)
± (κ/k) =

3

8k

[

1 +
(κ

k

)2
]

N (π)
0 (κ/k) =

3

4k

[

1−
(κ

k

)2
] . (4.7)

Since cos θ ∈ [−1, 1], then κ ∈ [−k, k] and one easily checks the normalisation of those
probability densities by integrating over all possible values for κ

∫ k

−k
Nq(κ)dκ = 1, q = 0,±.

Now that we have successfully computed the angular distribution of the emitted light intensity
and that we have deduced normalised probability densities for having a photon with a given
polarisation in a given direction, we have to convert those continuous probability densities
into corresponding discrete probabilities. Whatever its direction, we can always decompose
k′ onto the basis we introduced earlier, which yields

k′ = κez + kxy,

that is, a part belonging to a plane perpendicular to k and another one along k. Therefore,
following the prescription of quantum mechanics, the discrete probabilities pxy and pz for
measuring k′ in the xy plane and along the z direction respectively, are given by
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pxy =
|kxy|2

|κ|2 + |kxy|2
= sin2 θ

pz =
|κ|2

|κ|2 + |kxy|2
= cos2 θ.

Averaging those probabilities over all possible directions of k′, taking into account the angular
profiles (4.5) and performing the integration in spherical coordinates, one has for a photon
with polarisation σ±

p̄±(κ = ±k) = 3

8

∫ π

0
sin θ cos2 θ

(
1 + cos2 θ

)
dθ = 1/5

p̄±(κ = 0) =
3

8

∫ π

0
sin θ sin2 θ

(
1 + cos2 θ

)
dθ = 3/5, (4.8)

whilst one has for a photon with polarisation π

p̄0(κ = ±k) = 3

4

∫ π

0
sin θ cos2 θ sin2 θdθ = 1/10

p̄0(κ = 0) =
3

4

∫ π

0
sin θ sin2 θ sin2 θdθ = 4/5. (4.9)

These developments indicate that the jump operators which should be employed in the dissi-
pator (4.4) are given by

Ĉq(κ) =
√

Γp̄q(κ)e
−ik′ẑ

(

ǫ∗q · Ŝ
−
)

,

with the probability p̄q(κ) (q = 0,±) for each of the nine jump operators given therein-
above. We use this form for the jump operators in the Doppler cooling and Sisyphus cooling
simulations.

4.1.2 Atomic model

We now have to detail the atomic model and the parameters used in our simulations. We
consider the 1D cooling of atoms through a Jg = 1/2 ↔ Je = 3/2 transition for which
Clebsch-Gordan coefficients are recalled in Figure 4.4. There are 6 Zeeman sublevels : 4 for
the excited state manifold and 2 for the ground state manifold. The parameters we choose in
our computations are those of sodium, as summarised in Table 4.1.
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|Jg,−1/2〉 |Jg, 1/2〉

|Je,−1/2〉 |Je, 1/2〉|Je,−3/2〉 |Je, 3/2〉
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3p 2P 0
3/2

3s 2S1/2

Figure 4.4: Atomic level scheme for a Jg = 1/2 ↔ Je = 3/2 transition with the associated
Clebsch-Gordan coefficients.

As a reminder, a discussion about Clebsch-Gordan coefficients in the rotation group is per-
formed in the appendix A. All atomic parameters have been collected at the National Institute
of Standards and Technology (NIST) [80] and are a common feature of all future simulations.

Parameter Numerical value

λ0 588.9950954 nm
ω0 1.156991152 × 1015 s−1

Γ 6.16 × 107 Hz
ω δ + ω0

λ 2πc/ω
k 2π/λ
m 200~k2/Γ

Table 4.1: Simulation parameters.

Laser parameters ω, λ and k depend upon the detuning δ which is specific to each simulation.

4.2 Derivation of the system Hamiltonian

In this section, we derive the most general 3D form of the system Hamiltonian, including a
quantum treatment of the atomic motion and a Zeeman degeneracy of the angular momenta
Jg and Je considered in the Jg ↔ Je transition. Indeed, if we consider the degeneracy of
each angular momentum of the transition, then Jg and Je states are gg = 2Jg + 1-fold and
ge = 2Je + 1-fold degenerate because the quantum number me/g related to the projection of
the corresponding angular momentum onto the quantisation axis can take values in

me/g = −Je/g,−Je/g + 1, . . . , Je/g − 1, Je/g.

The related states are therefore denoted by |Je/g,me/g〉. The following derivation is performed
for the case of one atom interacting with a single travelling copropagating laser wave. The
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generalisation for an atom interacting with several travelling waves is straigthforward and
presented at the end of the section. As we already mentioned in the introduction chapter
about laser cooling, the system under study is made of one (or several) laser(s) forming
the laser field and the atom. Therefore, the system Hamiltonian is a sum of three distinct
contributions :

1. The atomic Hamiltonian.

2. If the laser field were treated quantum-mechanically, one would have to consider the
laser Hamiltonian. However, since the laser is a widely and densely populated mode of
the electric field, consisting in a huge amount of photons, it is sufficient to use a classical
description and treat the laser as an external field with no Hamiltonian.

3. The interaction Hamiltonian accounting for the coupling between the laser and the
atom.

4.2.1 Derivation of the atomic Hamiltonian

Consider an atomic transition Jg ↔ Je of a moving atom with linear momentum p along the
motion axis (chosen here as ez). One thus has to introduce five quantum numbers : two quan-
tum numbers, Je/g and me/g, that respectively account for the angular momentum considered
in the transition and for the projection of that angular momentum onto the quantisation axis
and the vector quantum number p that stands for the atomic linear momentum (one quantum
number per direction). Each state is now identified by a unique combination of those quantum
numbers and will be denoted as |Je/g,me/g,p〉 = |Je/g,me/g〉⊗|p〉, that is, the tensor product
of an internal part by an external part. The atomic Hamiltonian is the sum of a contribution
acting on internal variables and another acting on external variables. Hence we can write

ĤA = ĤA,int + ĤA,ext.

The Hamiltonian describing the atomic internal state admits as an eigenbasis the states
{|Je,me〉 , |Jg,mg〉} :

{

ĤA,int |Je,me〉 = Ee |Je,me〉 me = −Je,−Je + 1, . . . , Je − 1, Je

ĤA,int |Jg,mg〉 = Eg |Jg,mg〉 mg = −Jg,−Jg + 1, . . . , Jg − 1, Jg.

The energy difference between the levels Je and Jg is given by ~ω0 such that a proper choice
of the energy scale allows us to write Ee = ~ω0 and Eg = 0. Using the closure relation, one
has

1̂int = P̂e + P̂g,

where P̂e and P̂g are the projectors onto the excited and ground state manifolds, defined as







P̂e =

Je∑

me=−Je

|Je,me〉 〈Je,me|

P̂g =

Jg∑

mg=−Jg

|Jg,mg〉 〈Jg,mg| .
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Using the closure relation, we can simply write the internal Hamiltonian as

ĤA,int = EeP̂e + EgP̂g = ~ω0P̂e.

We also have to consider the energy due to the atomic motion. The total atomic Hamiltonian
therefore writes

ĤA = ĤA,ext + ĤA,int =
p̂2

2m
+ ~ω0P̂e. (4.10)

4.2.2 Derivation of the atom/laser interaction Hamiltonian

In our work, the laser field is treated classically and its coupling with the atom is treated under
the electric dipole approximation. In the framework of such an approximation, the interaction
Hamiltonian between an electromagnetic field and an atom reads : V̂AL = −D̂ ·EL where EL

is the laser electric field. If we consider a travelling laser wave with polarisation E , frequency
ω and wavevector k, we have

EL(r̂, t) = E0E cos (k · r̂− ωt) = E0E
ei(k · r̂−ωt) + e−i(k · r̂−ωt)

2
, (4.11)

where E0 is the amplitude of the electric laser field. One often introduces the standard
spherical basis (3.11) to deal with the polarisation of the laser electric field,







ǫ± = ∓ 1√
2
(ex ± iey)

ǫ0 = ez

. (4.12)

The polarisation vector E can always be decomposed onto such a basis as

E =
∑

q=0,±

Eqǫq. (4.13)

where Eq = E · ǫq (with q = 0,±) stands for the projection of the polarisation vector E onto
ǫq, the q component of the standard spherical basis (4.12). The subscript ± in Eq. (4.12)
corresponds to a σ± polarised wave whilst the 0 subscript stands for a π polarised wave.

The other quantity appearing in the coupling Hamiltonian is D̂, the electric dipole moment
operator defined as

D̂ =

Je∑

me=−Je

Jg∑

mg=−Jg

(
dmemg |Je,me〉 〈Jg,mg|+ h.c.

)
.

In that expression, we have introduced a fundamental quantity, namely the reduced electric
dipole matrix element of the transition Je,me ↔ Jg,mg. It is defined according to

dmemg = 〈Je,me|D̂|Jg,mg〉. (4.14)

Considering the expressions for the laser electric field (4.11) and the electric dipole moment
(4.14), the coupling Hamiltonian reads

V̂AL = −D̂ ·EL(r̂, t)

= −D̂ ·E0E cos (k · r̂− ωt)

= −1

2





Je∑

me=−Je

Jg∑

mg=−Jg

(
E ·dmemg |Je,me〉 〈Jg,mg|+ h.c.

)



E0

(

ei(k · r̂−ωt) + h.c.
)

.
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In terms of the electric dipole moment operator, the dot product between the polarisation
vector E and the reduced electric dipole matrix elements reads

E ·dmemg = 〈Je,me|E · D̂|Jg,mg〉.

One can expand this dot product onto the spherical basis (see Eq.(4.13)) and express it as a
sum of projections onto each element of that basis in order to write

〈Je,me|E · D̂|Jg,mg〉 =
∑

q=0,±

〈Je,me|EqD̂q|Jg,mg〉.

Applying the Wigner-Eckart theorem [81], one can write

〈Je,me|D̂q|Jg,mg〉 = 〈Jg,mg, 1, q|Je,me〉〈Je‖D̂‖Jg〉. (4.15)

Therefore, the reduced electric dipole matrix element could be written

E ·dmemg = 〈Je‖D̂‖Jg〉
∑

q=0,±

〈Jg,mg, 1, q|Je,me〉Eq. (4.16)

Considering this expansion (4.16), one can rewrite the interaction Hamiltonian V̂AL as

V̂AL =
~

2





Je∑

me=−Je

Jg∑

mg=−Jg

(

Ωmemg |Je,me〉 〈Jg,mg|+ h.c.

)




(

ei(k · r̂−ωt) + h.c.
)

, (4.17)

where we have introduced the Rabi frequencies

Ωmemg = −E ·dmemgE0

~
.

The Rabi frequency characterises the coupling strength between the states |Je,me〉 and
|Jg,mg〉. It enables one to understand why some transitions vanish according to the laser
polarisation or are forbidden (in the electric dipole approximation) whatever the laser polar-
isation. For that purpose, let us reuse the result of the Wigner-Eckart theorem (4.15) and
(4.16) in order to write the Rabi frequency as

Ωmemg = −E ·dmemgE0

~
= −E0

~
〈Je‖D̂‖Jg〉

∑

q=0,±

〈Jg,mg, 1, q|Je,me〉Eq. (4.18)

We see that there is a direct relationship between the Clebsch-Gordan coefficients, the polar-
isation of the laser electric field and the related Rabi frequency. The laser polarisation is well
defined and usually chosen to be either σ+, σ− or π. In particular, the polarisation standard
basis (4.12) has been chosen such that q = 1 for σ+, q = −1 for σ− and q = 0 for π. There-
fore, if it is so, only the term corresponding to the value of q related to the laser polarisation
considered plays a role in the summation appearing in (4.18)1. The related (square of the)

1If one uses different lasers of different polarisations, it is obvious that the terms associated to the values
of q representing those laser polarisations will not vanish. However, Rabi frequency only characterises the
coupling strength between a single laser and the atom. Therefore, for a given laser, all terms that do not
correspond to the laser polarisation will vanish although they will not for other lasers.
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Clebsch-Gordan coefficient (obtained by the value of q associated with the polarisation of the
laser electric field) informs us about the probability of the considered transition. In conclusion,
a Rabi frequency characterises the strength, (notably) through the related Clebsch-Gordan
coefficient, of the transition between two atomic levels for a given laser polarisation.

The values of q tell us about the angular momentum of the laser photons projected onto the z
axis. From stimulated processes point of view, the z component of the angular momentum of
the photon is q~, with q = 0,±. From the spontaneous emission point of view, the roles of the
coupled levels are inverted and therefore the z component of the angular momentum of the
photon is −q~, with q = 0,±. The same point holds for the terminology used : an emitted
photon which has a projection of its angular momentum onto the z axis equal to −~ (so that
q = −) is a σ+ photon. The time-dependent coupling Hamiltonian (4.17) can be simplified in
the interaction picture. By applying the unitary transformation

Û(t) = exp
(

−iω0P̂et
)

=

∞∑

n=0

1

n!
(−iω0t)

n P̂e = e−iω0tP̂e.

to the time-dependent coupling Hamiltonian (4.17), we switch to the interaction picture [82]
and we have

ĤI(t) = Û †
0 (t)V̂AL(t)Û0(t)

=
~

2
Û †
0





Je∑

me=−Je

Jg∑

mg=−Jg

(

Ωmemg |Je,me〉 〈Jg,mg|+ h.c.

)


 Û0

(

eik · r̂e−iωt + h.c.
)

,

which yields

ĤI(t) =
~

2





Je∑

me=−Je

Jg∑

mg=−Jg

Ωmemge
ik · r̂

(

e−iδt + ei(ω+ω0)t
)

|Je,me〉 〈Jg,mg|+ h.c.



 . (4.19)

Noting that oscillating terms at frequency ±(ω0+ω) oscillate much faster than terms oscillat-
ing at frequency ±δ if ω0 + ω ≫ δ, a good approximation is the rotating wave approximation
(RWA) [83] which amounts to neglecting terms involving exp[±i(ω0 + ω)t] in the coupling
Hamiltonian (4.19). Indeed, because those terms oscillate much faster compared to terms
involving exp[±iδt], their mean over a time interval ∆t ≫ 1/(ω + ω0) but small compared
to a characteristic of populations evolution τ ∼ 1/Ω is zero [84]. Within RWA, the coupling
Hamiltonian (4.19) in the interaction picture is given by

ĤI(t) ≃
~

2





Je∑

me=−Je

Jg∑

mg=−Jg

Ωmemge
ik · r̂e−iδt |Je,me〉 〈Jg,mg|+ h.c.



 . (4.20)

We also note that the passage to the interaction picture leads to

Ĥint(t) = Û †
0 (t)Ĥtot(t)Û0(t)− ~ω0P̂e =

p̂2

2m
+ ĤI(t), (4.21)

where Ĥtot(t) = ĤA + V̂AL(t) is the total Hamiltonian in the Schrödinger picture.
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4.2.3 System Hamiltonian in the interaction picture

The time-dependent system Hamiltonian (4.21) which is the sum of the interaction Hamilto-
nian (4.20) and p̂2/2m both in the interaction picture reads

Ĥint(t) =
p̂2

2m
+

~

2





Je∑

me=−Je

Jg∑

mg=−Jg

Ωmemge
ik · r̂e−iδt |Je,me〉 〈Jg,mg|+ h.c.



 . (4.22)

We shall get rid of the time dependency by working in a rotating reference frame in Hilbert
space [82] by applying the unitary transformation

Û(t) = exp

(

− i

~
Ŝt

)

,

where Ŝ denotes any Hermitian operator. Under such a transformation, the system Hamilto-
nian becomes

ĤS = Û †Ĥint(t)Û − Ŝ.

We shall choose the Hermitian operator Ŝ as being

Ŝ = ~δP̂e,

and the unitary transformation reads

Û(t) = exp
(

−iδP̂et
)

=
∞∑

n=0

1

n!
(−iδt)n P̂e = e−iδtP̂e.

Therefore, the system Hamiltonian after such a transformation is given by

ĤS = Û †Ĥint(t)Û − Ŝ

=
p̂2

2m
+
(

eiδtP̂e

)

ĤI

(

e−iδtP̂e

)

− ~δP̂e.

Finally, the system Hamiltonian reads

ĤS =
p̂2

2m
+

~

2





Je∑

me=−Je

Jg∑

mg=−Jg

Ωmemge
ik · r̂ |Je,me〉 〈Jg,mg|+ h.c.



− ~δP̂e

=
p̂2

2m
+

~Ω

2
(eik · r̂Ŝ+ + e−ik · r̂Ŝ−)− ~δP̂e (4.23)

where we have introduced the raising and the lowering operators related to the dipole operator







Ŝ+ =

Je∑

me=−Je

Jg∑

mg=−Jg

Ωmemg

Ω
|Je,me〉 〈Jg,mg|

Ŝ− =

Je∑

me=−Je

Jg∑

mg=−Jg

Ω∗
memg

Ω∗
|Jg,mg〉 〈Je,me| .

(4.24)
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and the invariant Rabi frequency

Ω = −E ·dJeJgE0

~
,

with
dJeJg = 〈Je,me = Je|D̂|Jg,mg = Jg〉.

The invariant Rabi frequency is defined in terms of the reduced electric dipole matrix element
between the mg = Jg ground state and me = Je excited state manifolds. As Dunn and
Greene indicate [85], such a definition is convenient because, in general, Rabi frequencies for
transitions to different excited state and ground state manifolds will not be the same. We
notice that the introduction of Ω leads to

Ωmemg

Ω
=

E ·dmemg

E ·dJeJg

=

∑

q=0,±

〈Jg,mg, 1, q|Je,me〉Eq
∑

q=0,±

〈Jg, Jg, 1, q|Je, Je〉Eq
≡ Ξmemg ,

that is a ratio of sums of Clebsch-Gordan coefficients. The exponentials appearing in the
raising and the lowering operators related to the dipole operator (4.24) can be treated either
classically, which is the subject of the following paragraphs or quantum mechanically which
is detailed just after the classical treatment.

Classical treatment of the atomic motion

In a classical approach, the external degrees of freedom are treated classically such that r̂ ≡ r

and p̂ ≡ p are classical variables of time : the atom is point-like and its centre-of-mass is in
rectilinear motion. In such a case, the system Hamiltonian (4.23) reads

ĤS =
~Ω

2





Je∑

me=−Je

Jg∑

mg=−Jg

(

Ξmemge
ik · r |Je,me〉 〈Jg,mg|+ h.c.

)


− ~δP̂e.

In that expression, exponentials appearing in the definition of the system Hamiltonian are
phase factors and do not act upon the atomic internal states. Those phase factors reflect the
position dependence of the laser wave. The internal atomic variables are treated using the
Monte-Carlo wavefunction approach whilst the external atomic variables are treated classically
using a point-like description of the atomic centre-of-mass. The system state is either evolved
through the non-Hermitian Hamiltonian Ĥ = ĤS − (i~Γ/2)P̂e in which case the position and
momentum are evolved through the classical equations

r(t+ δt) = r(t) +
p(t)

m
δt+O(δt2)

p(t+ δt) = p(t) + F(t)δt,

where the damping force experienced by the atom due to the optical molasse is given by

F(t) = −
〈

ψ(t)
∣
∣
∣∇rĤ

∣
∣
∣ψ(t)

〉

.

Otherwise the system is evolved through the application of one of the jump operators in which
case the momentum is modified of an amount ±~k or is not modified according to which jump
has occurred.
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Quantum treatment of the atomic motion

In the expression (4.24) of the raising and lowering operators, arise the operators exp (±ik · r̂)
which we shall prove are translation operators in momentum space. With that goal in mind, we
shall successively derive the action of those operators first on a wavefunction in the momentum
representation and then on the momentum eigenstates |p〉 themselves. First, let us consider
a wavefunction in the momentum basis to which we apply exp (±ik0 · r̂). Observing that the
position operator r̂ reads in the momentum basis r̂ = −(~/i)∇p, one can expand in Taylor
series the following operator

exp

(

± i

~
p0 · r̂

)

ψ̄(p) =

(

1̂ ± i

~
p0 · r̂−

1

2~2
(p0 · r̂)

2 ∓ i

6~3
(p0 · r̂)

3 + . . .

)

ψ̄(p)

= ψ̄(p)∓ p0 ·∇pψ̄(p) +
1

2
(p0 ·∇p)

2ψ̄(p)∓ 1

6
(p0 ·∇p)

3ψ̄(p) + . . .

= ψ̄(p) +

∞∑

n=1

1

n!
(∓p0 ·∇p)

nψ̄(p)

= ψ̄(p∓ p0).

We observe that the action of operators exp (±ip0 · r̂/~) on a wavefunction expressed in the
momentum representation is to translate the wavefunction as a whole by an amount ±p0.
Clearly, it appears that those operators are translation operators in momentum space. We
shall now derive their action on momentum eigenstates |p〉

exp

(

± i

~
p0 · r̂

)

|p〉 .

Let us express it in the position representation2

〈r| exp
(

± i

~
p0 · r̂

)

|p〉 = exp

(

± i

~
p0 · r

)

〈r|p〉

=
1

(2π~)3/2
exp

(
i

~
p · r

)

exp

(

± i

~
p0 · r

)

=
1

(2π~)3/2
exp

(
i

~
(p± p0) · r

)

= 〈r|p± p0〉.

Since this development is valid for any bra 〈r|, we can conclude that

exp

(

± i

~
p0 · r̂

)

|p〉 = |p± p0〉 .

2In the position representation, the position operator r̂ is simply given by r.
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The action of those translation operators on a wavefunction and on momentum eigenstates
|p〉 being known, we can decompose the operators exp (±ik · r̂) as follows

exp (±ik · r̂) =
∫∫

〈p|e±ik · r̂|p′〉 |p〉 〈p′|dpdp′

=

∫∫

〈p|p′ ± ~k〉
︸ ︷︷ ︸

δp,p′±~k

|p〉 〈p′|dpdp′

=

∫

|p〉 〈p∓ ~k| dp.

With this latter expression, the system Hamiltonian can be written as

ĤS =
p̂2

2m
+

~Ω

2





∫ Je∑

me=−Je

Jg∑

mg=−Jg

(

Ξmemg |Je,me,p〉 〈Jg,mg,p− ~k|

+ Ξ∗
memg

|Jg,mg,p〉 〈Je,me,p+ ~k|
)

dp

]

− ~δP̂e

=
p̂2

2m
+

~Ω

2
(Ŝ+ + Ŝ−)− ~δP̂e. (4.25)

In the latter Hamiltonian, we have introduced the operators Ŝ+ = exp(ik · r̂)Ŝ+ and Ŝ− =
exp(−ik · r̂)Ŝ− with Ŝ+ and Ŝ− defined in Eq. (4.24). We note that if the derivation were
performed for a counterpropagating instead of a copropagating laser, the results are the same
provided that k 7→ −k.

4.2.4 Interaction Hamiltonian for an arbitrary number of lasers along ar-
bitrary directions

We have derived a general expression for the atom/laser coupling Hamiltonian. In that deriva-
tion, we have considered a travelling plane laser wave of arbitrary polarisation interacting with
an atom through a Jg ↔ Je transition. With the formalism developed in the previous sub-
sections, one can easily derive the system Hamiltonian for an atom placed in a light field of
the form

E(r̂, t) =
L∑

l=1

E0,lE l cos(kl · r̂− ωlt)

arising from the superposition of L laser fields. The system Hamiltonian now reads

ĤS =
p̂2

2m
+

~

2

L∑

l=1

Ωl





∫ Je∑

me=−Je

Jg∑

mg=−Jg

(

Ξmemg |Je,me,p〉 〈Jg,mg,p− ~k|

+ Ξ∗
memg

|Jg,mg,p〉 〈Je,me,p+ ~k|
)

dp

]

l

− ~δP̂e. (4.26)



Chapter 5

Simulation results for Doppler and

Sisyphus cooling

In this chapter, we apply the MCWF method to the study of laser cooling in one dimension.
Hence, we apply the MCWF method to an atom in a 1D σ+ standing wave in order to assess
the equilibrium properties of an atomic gas cooled in a laser field with gradient of intensity
(Doppler cooling). After that, we apply the MCWF treatment to the lin⊥lin configuration to
predict the temperature of a multilevel atom in a polarisation-gradient field. A comparison
between the σ+ standing wave and the lin⊥lin configuration is then performed. Finally, we
also present some results obtained when treating the atomic motion classically, which results
are to be compared to the results obtained in a full quantum approach.

5.1 Doppler cooling in a σ+ standing wave

In this section, we consider the one dimensional cooling of an atom through a Jg = 1/2 ↔ Je =
3/2 transition driven by a σ+ standing wave resulting from the superposition of two counter-
propagating lasers with the same frequency, detuning, intensity and polarisation. Applying
the prescription of Eq. (4.26), the system Hamiltonian reads

ĤS =
p̂2

2m
+ ~Ωcos(kẑ)

(

Ŝ+ + Ŝ−
)

− ~δP̂e

=
p̂2

2m
+

~Ω

2

[

eikẑ
(

Ŝ+ + Ŝ−
)

︸ ︷︷ ︸

Ŝ+(k)+Ŝ−(k)

+ e−ikẑ
(

Ŝ+ + Ŝ−
)

︸ ︷︷ ︸

Ŝ+(−k)+Ŝ−(−k)

]

− ~δP̂e, (5.1)

where p̂ denotes the momentum operator along the z-direction. In the latter expression, the
raising and lowering operators Ŝ+ and Ŝ− are given by Eq. (4.25), i.e.







Ŝ+(k) =

∫ Je∑

me=−Je

Jg∑

mg=−Jg

Ξmemg |Je,me, p〉 〈Jg,mg, p− ~k| dp

Ŝ−(k) =

∫ Je∑

me=−Je

Jg∑

mg=−Jg

Ξ∗
memg

|Jg,mg, p〉 〈Je,me, p+ ~k| dp.
(5.2)

65
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Due to optical pumping in a σ+ standing wave, only the two substates with the highest
magnetic quantum numbers are involved in the dynamics, which allows one to consider only
two states which we denote by |g〉 ≡ |1/2, 1/2〉 and |e〉 ≡ |3/2, 3/2〉. In the definition of the
raising and lowering operators Ŝ+ and Ŝ−, we replace the integral over all momenta by a
truncated summation over a finite range of momenta

∫ ∞

−∞

f(p) dp −→
nmax∑

n=−nmax

f(n~k)~k, (5.3)

i.e. we discretise the momentum range over 2nmax+1 values with a step size ~k. Provided that
no momentum component of the atom extends over the considered grid, this approximation
yields the same solution as the integral. In the following, we work in the {|e, p〉 , |g, p〉} basis
where the quantum number p accounts for the atomic momentum along the z axis and extends
from −nmax~k to nmax~k. Then, we apply the MCWF procedure which involves 2×(2nmax+1)
basis states. In the following, we denote by αn(t) and by βn(t) the components of the excited
and ground states with momentum n~k along the z-direction at time t.

Either the system is evolved under the action of the non-Hermitian Hamiltonian Ĥ = ĤS −
(i~Γ/2)P̂e, in which case the coefficients αn(t) and βn(t) are governed by

αn(t) → αn(t+ δt) =

(

1− i
δt

~

(n~k)2

2m
+ iδt− Γ

2

)

αn(t)−
iδtΩ

2
(βn+1(t) + βn−1(t))

βn(t) → βn(t+ δt) =

(

1− i
δt

~

(n~k)2

2m

)

βn(t)−
iδtΩ

2
(αn+1(t) + αn−1(t)),

or a jump occurs, with probability

δp(t) = Γ

nmax∑

n=−nmax

|αn(t)|2δt.

The three possible jump operators to apply are given by

Ĉk′ =
√

Γp̄+(k′)e
−ik′ẑ |g〉 〈e| , with k′ = 0,±k

and p̄+(k′) is given by Eq. (4.8), that is

Ĉ0 =

√

3Γ

5
|g〉 〈e| , Ĉ±k =

√

Γ

5
e∓ikẑ |g〉 〈e| .

The action of one of those operators on the wavefunction yields the wavefunction at time
t+ δt with

αn(t) → αn(t+ δt) = 0,

βn(t) → βn(t+ δt) = µαn+m(t),

where µ is a normalisation coefficient and m = 0,±1 according to the direction of emission
(m = 1 if k′ = k, m = 0 if k′ = 0 and m = −1 otherwise). Therefore, after the action of
such an operator, the atom is found in its ground state and the momentum distribution has
been shifted from an amount ~k′. Contrarily to a semiclassical approach, the centre-of-mass
motion and the recoil due to spontaneous emission are treated quantum mechanically.
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5.1.1 Numerical results

In this subsection, we provide a series of numerical results based on the MCWF method. We
consider two distinct cases :

1. the initial momentum distribution is not centered on 0 and has a small standard devi-
ation,

2. the initial momentum distribution is centered on 0 and has a large standard deviation.

We show, in both cases, that the mean momentum tends to zero and the width of the mo-
mentum distribution tends to a few ~k for large times compared to Γ−1.

Slowing of atoms

In order to demonstrate slowing of atoms, we take as initial state |ψ(0)〉 = |e, p = 40~k〉 ≡
|Je,me = 3/2, p = 40~k〉 corresponding to an atom in the excited state |Je,me = 3/2〉 with
an initial momentum p = 40~k. Figure 5.1 shows the time evolution of the momentum
expectation value averaged over many trajectories 〈p̂〉(t) = 〈ψ(t)|p̂|ψ(t)〉.
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Figure 5.1: Time evolution of 〈p̂〉 averaged over 1000 trajectories in the case of a Jg = 1/2 ↔
Je = 3/2 transition driven by a σ+-polarised 1D standing wave. Error bars show the statistical
error. Simulation parameters are : δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 50, Γδt = 0.0005
and |ψ(0)〉 = |e, p = 40~k〉.

The momentum expectation value decreases with time to reach a steady state for which
〈p̂〉 = 0. We present a single MCWF trajectory in order to emphasise the residual motion due
to fluorescence cycles. Note that the steady state is reached after a transient period whose
duration is here about 2000Γ−1 but depends on the initial state.
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In Figure 5.2, we show the time evolution of 〈p̂〉 for a single trajectory.
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Figure 5.2: Time evolution of 〈p̂〉 for a single trajectory in the case of a Jg = 1/2 ↔ Je = 3/2
transition driven by a σ+-polarised 1D standing wave. Simulation parameters are : δ = −Γ/2,
Ω = Γ, Γtf = 5000, nmax = 50, Γδt = 0.0005 and |ψ(0)〉 = |e, p = 40~k〉.

The residual motion is due to linear momentum exchanges resulting from fluoresence cycles.
Indeed, each absorbed or emitted photon cause a recoil that translates the wavefunction as a
whole, without any modification of its shape.
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In Figure 5.3, we plot our results for the momentum distribution at the initial time t = 0 and
final time tf = 5000Γ−1.
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Figure 5.3: Momentum distribution in the case of a Jg = 1/2 ↔ Je = 3/2 transition driven by
a σ+-polarised 1D standing wave at t = 0 and in steady state averaged over 1000 trajectories.
The distribution at final time is also averaged over time in the range Γt ∈ [4500, 5000].
Simulation parameters are : δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 50, Γδt = 0.0005 and
|ψ(0)〉 = |e, p = 40~k〉.

The wavepacket in the momentum representation initially centered on p = 40~k has moved
around p = 0 and displays a standard deviation σ ≈ 9.7~k as Figure 5.4 shows on a different
scale.
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Figure 5.4: Steady state momentum distribution in the case of a Jg = 1/2 ↔ Je = 3/2
transition driven by a σ+-polarised 1D standing wave. The average has been taken over
1000 trajectories and over time in the range Γt ∈ [4500, 5000]. Simulation parameters are :
δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 50, Γδt = 0.0005 and |ψ(0)〉 = |e, p = 40~k〉.

Such a picture shows that the momentum distribution is bell-shaped. From the width of that
curve, one can compute the temperature of the cooled gas. The temperature is related to the
root mean square value of the momentum

prms = ∆p =

√

〈ψ|p̂2|ψ〉 − 〈ψ|p̂|ψ〉2

via the classical formula

T =
p2rms

kBm
.
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We have used this formula to obtain the curve plotted in Figure 5.5, where TD is the Doppler
temperature given by Eq. (1.12).
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Figure 5.5: Time evolution of the temperature ratio T/TD with TD the Doppler temperature
in the case of a Jg = 1/2 ↔ Je = 3/2 transition driven by a σ+-polarised 1D standing wave.
The average has been taken over 1000 trajectories, error bars showing the statistical error.
Simulation parameters are : δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 50, Γδt = 0.0005 and
|ψ(0)〉 = |e, p = 40~k〉.

The temperature starts at T = 0 K because the initial state is a momentum eigenstate and
the momentum distribution has zero width. The wavepacket needs time to spread and the
temperature to increase before gradually decreasing until it reaches the steady state where it
is of the same order of magnitude as the Doppler temperature.

Cooling of atoms

In order to demonstrate cooling of atoms, we now choose the initial state as a Gaussian
distribution over the momentum eigenstates

|ψ(0)〉 =
nmax∑

n=−nmax

fn |Je,me = 3/2, p = n~k〉 , (5.4)

with fn a weigthing coefficient whose distribution law is gaussian,

fn =
1

σ
√
2π
e

−(n~k + p0)
2

2σ2 .
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In the following, we take p0 = 0 and σ = 15~k. We show, in Figure 5.6, the results for prms(t).
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Figure 5.6: Time evolution of (∆p)2 in the case of a Jg = 1/2 ↔ Je = 3/2 transition driven
by a σ+-polarised 1D standing wave, averaged over 1000 trajectories. Error bars show the
statistical error. Simulation parameters are : δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 50,
Γδt = 0.0005 and |ψ(0)〉 given by Eq. (5.4) with p0 = 0 and σ = 15~k.

We have seen in Figure 5.1 that the steady state value for 〈p̂〉(t) was 〈p̂〉 = 0. Since we
start with a gaussian distribution over the momentum eigenstates with mean p0 = 0 and
standard deviation σ = 15~k, it is expected that 〈p̂〉 does not display large variations but
only fluctuations around the steady state, which has been emphasised in Figure 5.2. However,
the standard deviation of the momentum distribution is expected to decrease until it reaches
a steady state value to prove cooling. Once again, the momentum distribution displays a
standard deviation σ ≈ 9.7~k in steady state, which clearly demonstrates the cooling.
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In Figure 5.7, we plot the results for the momentum distribution at the initial time t = 0 and
final time t = 5000Γ−1.
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Figure 5.7: Steady state momentum distribution in the case of a Jg = 1/2 ↔ Je = 3/2
transition driven by a σ+-polarised 1D standing wave. The average has been made over
1000 trajectories and over time in the range Γt ∈ [4500, 5000]. Simulation parameters are :
δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 50, Γδt = 0.0005 and |ψ(0)〉 given by Eq. (5.4) with
p0 = 0 and σ = 15~k.

In this case, the centre of the wavepacket in the momentum representation has not moved but
the standard deviation of the wavepacket has decreased and the final distribution is thiner
than the initial one. Once again, the momentum distribution displays a bell-shape.
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The related temperature is displayed in Figure 5.8 as a function ot time.
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Figure 5.8: Time evolution of the temperature ratio T/TD with TD the Doppler temperature
in the case of a Jg = 1/2 ↔ Je = 3/2 transition driven by a σ+-polarised 1D standing wave.
The average has been taken over 1000 trajectories, error bars showing the statistical error.
Simulation parameters are : δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 50, Γδt = 0.0005 and
|ψ(0)〉 given by Eq. (5.4) with p0 = 0 and σ = 15~k.

Once again, there is a transient period before the temperature reaches the steady state where
it is close to the Doppler temperature. In Figure 5.9, we show a curve illustrating the steady
state temperature averaged over 100 MCWF as a function of the detuning δ and compare it
with the theoretical predictions (1.13) [27]

kBT =
~Γ

4

(
2|δ|
Γ

+
Γ

2|δ|

)

. (5.5)
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Figure 5.9: Steady state temperature as a function of the detuning δ in the case of a Jg =
1/2 ↔ Je = 3/2 transition driven by a σ+-polarised 1D standing wave. Error bars show the
statistical error. The temperature is averaged over 100 trajectories and in time over 500Γ−1.
Simulation parameters are : δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 50, Γδt = 0.0005 and
|ψ(0)〉 = |e, p = 0〉.

The results shown in Figure 5.9 are in excellent agreement with Eq. (5.5). The minimal
achievable temperature in a σ+ standing wave is thus, as expected, obtained for δ = −Γ/2
and amounts T ≃ 235 µK for sodium atoms. When the detuning becomes larger or smaller,
the temperature increases and the momentum distribution becomes larger in both cases. In
the following section, we analyse the effect of choosing two crossed linear polarisations instead
of a σ+ standing wave. We shall see that this change of laser polarisation leads to a dramatic
decrease of the steady state temperature.

5.2 Sisyphus cooling in a lin⊥lin configuration

The lin⊥lin configuration refers to a laser configuration where two counterpropagating lasers
of identical intensity have perpendicular linear polarisations. As Nienhuis, de Kloe and van
der Straten [86] noticed, an equivalent picture is provided by two standing waves with opposite
circular polarisations σ+ and σ− that are spatially shifted by a quarter wavelength. Indeed,
the field E(z, t) resulting from the superposition of two counterpropagating laser of crossed
polarisations 





EL(z, t) = E0ex

(

ei(kz−ωt) + e−i(kz−ωt)
)

ER(z, t) = E0ey

(

ei(−kz−ωt−π/2) + e−i(−kz−ωt−π/2)
) ,

reads
E(z, t) = E0

(

exe
ikz − ieye

−ikz
)

e−iωt + c.c..
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Since e±ikz = cos(kz)± i sin(kz), we also have

E(z, t) = E0

[

ex
(
cos(kz) + i sin(kz)

)
− iey

(
cos(kz) − i sin(kz)

)]

e−iωt + c.c.

= E0

[(
ex − iey

)
cos(kz) + i

(
ex + iey

)
sin(kz)

]

e−iωt + c.c.

= E0

√
2
(

ǫ− cos(kz) + iǫ+ sin(kz)
)

e−iωt + c.c..

Applying the treatment described in chapter 4, we find that the Hamiltonian of the system
reads

ĤS =
p̂2

2m
+

~Ω√
2

[

cos(kẑ)(Ŝ+
q=+ + Ŝ−

q=+) + sin(kẑ)(Ŝ+
q=− + Ŝ−

q=−)
]

− ~δP̂e, (5.6)

that is the Hamiltonian used by Nienhuis, de Kloe and van der Straten [86]. In Eq. (5.6),
the subscripts appearing in Ŝ+ and Ŝ− indicate the value of q related to the polarisation of
each standing wave. In the following, we work in the {|Je,me, p〉 , |Jg,mg, p〉} basis where the
quantum number p still accounts for the atomic momentum along the z axis and extends from
−nmax~k to nmax~k. Quantum numbers Je/g and me/g still stand for the angular momentum
of the excited/ground state and its projection onto the quantisation axis. Then, we apply
the MCWF procedure which implies [(2Je + 1) + (2Jg + 1)] × (2nmax + 1) basis states, that
is 6× (2nmax + 1) basis states for the Jg = 1/2 ↔ Je = 3/2 transition considered. Compared
to Doppler cooling where we have restricted the discussion to only two levels, we have to
consider all sublevels for the Sisyphus cooling and we have 3 times more basis states, which
is numerically much heavier.

Either the system is evolved under the action of the non-Hermitian Hamiltonian Ĥ = ĤS −
(i~Γ/2)P̂e, or a jump occurs, in which case we have to apply the proper jump operator amongst
the nine possible operators (that is, three times more jump operators than for Doppler cooling)

Ĉk′,q =
√

Γp̄q(k′)e
−ik′ẑ(ǫ∗q · Ŝ

−), (5.7)

with k′ = 0,±k, q = 0,± and p̄q(k′) is given by Eqs. (4.8) and (4.9). Those operators read

Ĉ0,+ =

√

3Γ

5
(ǫ∗+ · Ŝ−), Ĉ0,0 =

√

4Γ

5
(ǫ∗0 · Ŝ

−), Ĉ0,− =

√

3Γ

5
(ǫ∗− · Ŝ−),

Ĉ±k,+ =

√

Γ

5
e∓ikẑ(ǫ∗+ · Ŝ−), Ĉ±k,0 =

√

Γ

10
e∓ikẑ(ǫ∗0 · Ŝ

−), Ĉ±k,− =

√

Γ

5
e∓ikẑ(ǫ∗− · Ŝ−).
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5.2.1 Numerical results

In Figure 5.10, we plot the steady state temperature for different values of both the detuning
and the Rabi frequency.
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Figure 5.10: Steady state temperature as a function of the detuning δ in the case of a Jg =
1/2 ↔ Je = 3/2 transition driven by a lin⊥lin laser field. Error bars show the statistical
error and are so small that they are systematically within the marker. Each point represents
an amount of computation time of approximately 1000 hours if all realisations were run
serially. With a cluster accepting ≃ 30 jobs at the same time, the computation time is still
approximately 30 hours per point. The temperature is averaged over 100 trajectories and in
time over 500Γ−1. Simulation parameters are : δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 25,
Γδt = 0.0005 and |ψ(0)〉 = |Je,me = 3/2, p = 0〉.

Because we have performed 100 trajectories for each point, the related statistical errors are
small and contained within the marker size. We observe that the temperature decreases
when the intensity of the laser decreases and when the detuning increases. As expected, the
Sisyphus cooling mechanism is more efficient at low intensity. We have also plotted the recoil
temperature [27] defined as

Tr =
~k2

2mkB
,

which for sodium atoms amounts TR ≃ 1µK. The recoil temperature is the temperature
corresponding to the kinetic energy kick the spontaneously emitted photon delivers to the
atom. We observe that the steady state temperature, even when the detuning is large and the
Rabi frequency small, is the recoil temperature multiplied by a rather large numerical factor
(comprised between 18 and 84 for the parameters of our simulations).
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In Table 5.1, we give the numerical values for the temperatures plotted in Figure 5.10.

❍
❍
❍
❍
❍❍

δ
Ω

Γ Γ/2 Γ/4 Γ/8

−Γ/2 83.99 ± 1.46 52.83 ± 0.74 49.48 ± 0.63 43.00 ± 0.46
−Γ 49.49 ± 0.54 35.53 ± 0.26 23.65 ± 0.14 19.59 ± 0.08

−3Γ/2 45.67 ± 0.47 31.41 ± 0.22 23.65 ± 0.12 19.08 ± 0.06
−2Γ 43.47 ± 0.47 29.96 ± 0.22 23.45 ± 0.11 19.06 ± 0.05

−5Γ/2 42.90 ± 0.46 29.54 ± 0.21 23.37 ± 0.11 19.03 ± 0.04
−3Γ 41.90 ± 0.43 29.53 ± 0.21 22.60 ± 0.11 18.92 ± 0.04

−7Γ/2 41.20 ± 0.41 29.17 ± 0.20 22.52 ± 0.10 18.83 ± 0.04
−4Γ 40.86 ± 0.39 29.16 ± 0.19 22.17 ± 0.10 18.57 ± 0.04

−9Γ/2 39.46 ± 0.38 28.10 ± 0.19 20.70 ± 0.09 18.43 ± 0.04
−5Γ 38.94 ± 0.37 26.59 ± 0.18 20.45 ± 0.07 17.93 ± 0.03

Table 5.1: Steady state temperature (in µK) for sodium atoms in a lin⊥lin laser configuration
as a function of δ and Ω with the related statistical error.

When the detuning is small, the steady state temperature is very detuning sensitive. For
example, for Ω = Γ, we go from T ≃ 84 µK when δ = −Γ/2 to T ≃ 49 µK when δ = −Γ.
However, when the detuning becomes larger, the steady state temperature seems to saturate
and to reach a minimal value.
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We also present the same data in log-log scale in Figure 5.11.
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Figure 5.11: Steady state temperature as a function of the detuning δ (log-log scale) in
the case of a Jg = 1/2 ↔ Je = 3/2 transition driven by a lin⊥lin laser field. Error bars
show the statistical error and are so small that they are systematically within the marker.
The temperature is averaged over 100 trajectories and in time over 500Γ−1. Simulation
parameters are : δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 50, Γδt = 0.0005 and |ψ(0)〉 =
|Je,me = 3/2, p = 0〉.
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The steady state temperature is now being compared to theoretical predictions given e.g.
in [26, 27, 87]

TS ∝ ~Ω2

α|δ|kB
, (5.8)

where α is a multiplicative factor equal to 3 in [26], 4 in [27] and 8 in [87]. We plot those 3
curves in Figure 5.12 for Ω = Γ/2 and we compare the theoretical predictions to numerical
results.
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Figure 5.12: Steady state temperature as a function of the detuning δ in the case of a Jg =
1/2 ↔ Je = 3/2 transition driven by a lin⊥lin laser field. Error bars show the statistical error
and are so small that they are systematically within the marker. The temperature is averaged
over 100 trajectories and in time over 500Γ−1. Simulation parameters are : δ = −Γ/2, Ω = Γ,
Γtf = 5000, nmax = 50, Γδt = 0.0005 and |ψ(0)〉 = |Je,me = 3/2, p = 0〉.

Numerical results display the same kind of behaviour as the analytical predictions (5.8) except
for the saturation value of the temperature that is higher for the numerical results. Indeed, Eq.
(5.8) suggests that arbitrarily small temperatures are obtained for arbitrary large detuning or
arbitrary small Rabi frequency. In the limit where the Rabi frequency is zero, which amounts
to a zero atom/laser coupling, the steady state temperature would be T = 0K. Equation
(5.8) is manifestly not suitable for the description of the steady state temperature at very
low laser intensity due to departure hypotheses which are no more verified. However, the
tendency followed by the numerical results is in a good agreement with Eq. (5.8).
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We also present the same data in log-log scale in Figure 5.13.
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Figure 5.13: Steady state temperature as a function of the detuning δ (log-log scale) in
the case of a Jg = 1/2 ↔ Je = 3/2 transition driven by a lin⊥lin laser field. Error bars
show the statistical error and are so small that they are systematically within the marker.
The temperature is averaged over 100 trajectories and in time over 500Γ−1. Simulation
parameters are : δ = −Γ/2, Ω = Γ, Γtf = 5000, nmax = 50, Γδt = 0.0005 and |ψ(0)〉 =
|Je,me = 3/2, p = 0〉.

We observe that the data are best fitted when α = 8 in Eq. (5.8) and that our results are in
good agreement with the theoretical prediction (5.8) for small detunings. However, for the
reasons explained previously, this is no more the case as soon as the detuning becomes large.
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In Figure 5.14, we show the momentum distributions corresponding to the highest and lowest
temperatures displayed in Figure 5.10 and Table 5.1.
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Figure 5.14: Final momentum distributions as a function of the detuning δ in the case of a
Jg = 1/2 ↔ Je = 3/2 transition driven by a lin⊥lin laser field. Results are averaged over 100
trajectories and in time over 500Γ−1. Simulation parameters are : δ = −Γ/2 and Ω = Γ for
the dashed red curve and δ = −5Γ and Ω = Γ/8 for the solid blue curve, and with Γtf = 5000,
nmax = 50, Γδt = 0.0005, |ψ(0)〉 = |Je,me = 3/2, p = 0〉 for both curves.

The distribution corresponding to Ω = Γ/8 and δ = −5Γ is obviously thiner than the one
corresponding to Ω = Γ and δ = −Γ/2. In the first case, the standard deviation is σ ≈ 5.9~k
whilst in the second case, the standard deviation is σ ≈ 2.8~k. Once again, we can conclude
that the Sisyphus cooling is more efficient at low laser intensity.
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5.3 Comparison between Doppler and Sisyphus cooling results

In this subsection, we compare the results obtained for both cooling schemes treated in this
master thesis. We begin by displaying in Figure 5.15 the steady state momentum distributions
for a σ+ standing wave configuration with Ω = Γ and δ = −Γ/2 (blue solid curve) and to a
lin⊥lin configuration with Ω = Γ/16 and δ = −5Γ (green dashed curve).
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Figure 5.15: Final momentum distributions averaged over 100 trajectories and in time over
500Γ−1 in the case of a Jg = 1/2 ↔ Je = 3/2 transition driven by a σ+ standing wave
(blue solid curve) and by a lin⊥lin laser field (red dashed curve). Simulation parameters
are : nmax = 50, δ = −Γ/2 and Ω = Γ for the solid blue curve and nmax = 20, δ = −5Γ
and Ω = Γ/16 for the green dashed curve, and with Γtf = 5000, Γδt = 0.0005, |ψ(0)〉 =
|Je,me = 3/2, p = 0〉 for both curves.

Whereas the distribution has a standard deviation is σ ≈ 9.7~k in the σ+ standing wave, we
see that the momentum distribution has a standard deviation much smaller σ ≈ 2.6~k in the
lin⊥lin configuration, indicating that smaller temperatures are reached.
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The temperature separation due to the change of laser configuration clearly indicates that
the Doppler cooling theory fails at predicting temperatures produced in some schemes. For
example, in Figure 5.16, we plot the steady state temperature both for the σ+ standing wave
and for the lin⊥lin configuration as a function of the detuning.
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Figure 5.16: Steady state temperatures as a function of the detuning δ, for Ω = Γ. Results
are averaged over 100 trajectories and over 500Γ−1 both for the σ+ standing wave and the
lin⊥lin configuration. The temperature separation is clearly due to the gradient of polarisa-
tion produced by the lin⊥lin configuration. Error bars are contained within markers for the
Sisyphus cooling whilst they are a little larger for Doppler cooling.

Figure 5.16 clearly illustrates the difference of regime in which Doppler and Sisyphus cooling
act. Those results are in excellent agreement with theoretical predictions Eq. (5.5) for Doppler
cooling and follow the same tendency for Sisyphus cooling as Eq. (5.8). For the latter, results
predicted by semiclassical theories are often referred to as magnitude scale in the literature
because the underlying hypotheses are often not verified. For such cases, MCWF method
appears as a good alternative to semiclassical theories or to the full integration of the master
equation.
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The goal we had in mind was to compare the curves in Figure 5.16 with the experimental
data of Phillips et al. [88].

Figure 5.17: Temperature measurements in an optical molasse by Phillips et al. in 1988 [88].

We conclude that our numerical results display the same behaviour as those observed by
Phillips et al. [88].

5.4 Comparison between the classical and the quantum treat-

ment of the atomic motion

In the following, we apply the semiclassical treatment described in chapter 4 which considers
that atomic position and momentum are classical variables of time. Due to optical pumping
occurring in a σ+ standing wave, only the levels |Je = 3/2, 3/2〉 ≡ |e〉 and |Jg = 1/2, 1/2〉 ≡ |g〉
play a role in the system dynamics. The system Hamiltonian for an atom interacting with a
σ+ standing laser wave is obtained from Eq. (5.1) and reads

ĤS = ~Ωcos(kz)
(

Ŝ+ + Ŝ−
)

− ~δP̂e

=
~Ω

2

[

eikz
(

Ŝ+ + Ŝ−
)

+ e−ikz
(

Ŝ+ + Ŝ−
) ]

− ~δP̂e,

where the exponentials are no more translation operators but phase factors that reflect the
position dependence of the laser wave and where the kinetic energy operator has disappeared.
When no quantum jump occurs, the system internal states are evolved by the action of
Ĥ = ĤS − (i~Γ/2)P̂e during a time step δt and the external variables follow the classical
equations (valid for small δt)

z(t+ δt) = z(t) +
pz(t)

m
δt+O(δt2) (5.9)

pz(t+ δt) = pz(t) + F (t)δt+O(δt2), (5.10)
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with

F (t) = −
〈

ψ(t)

∣
∣
∣
∣
∣

∂Ĥ

∂z

∣
∣
∣
∣
∣
ψ(t)

〉

the damping force experienced by the atom due to the optical molasse. When a quantum
jump occurs, the internal wavefunction is projected onto the ground state in which case the
classical momentum is modified according to

pz(t+ δt) = pz(t) + ~k′

and the classical position is modified according to the prescription of Eq. (5.9). The quantum
jump operators read

Ĉ0 =

√

3Γ

5
|g〉 〈e| , Ĉ±k =

√

Γ

5
|g〉 〈e|

and the atomic momentum is subsequentely modified by an amount ∓~k for Ĉ±k and is left
unchanged for Ĉ0.

We had in mind to compare the curve depicted in Figure 5.9 with results obtained by applying
the previous prescription, which is presented in Figure 5.18.
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Figure 5.18: Comparison of the steady state temperature as a function of the detuning δ in
the case of a Jg = 1/2 ↔ Je = 3/2 transition driven by a σ+-polarised 1D standing wave for a
classical and a quantum treatment of the atomic motion. Error bars show the statistical error.
The temperature is averaged over 100 trajectories and in time over 500Γ−1. For the quantum
treatment, simulation parameters are : Γtf = 5000, nmax = 50 and |ψ(0)〉 = |e, p = 0〉. For
the classical treatment, Γtf = 6000, z(0) = 0, pz(0) = 0 and |ψ(0)〉 = |e〉. In both cases :
Ω = Γ and Γδt = 0.0005.

We observe that apart from the fluctuations due to the finite number of trajectories, the
data depicted in Figure 5.18 for the semiclassical approach and the full quantum approach
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are very close together and in rather good agreement with the analytical prediction. We
also show in Figure 5.19 a histogram of the final classical momentum averaged over time.
Contrarily to the quantum treatment where one can associate a momentum distribution to
each trajectory, in the semiclassical approach, the momentum is described by a single value
instead of a distribution. However, momenta resulting from each trajectory at final time
form a distribution which is presented as a histogram. Those histograms are averaged over
1000/Γ in time after the steady state is reached for more accuracy. In Figure 5.19, we plot
the momentum distribution related to the lowest temperature displayed in Figure 5.18, that
is when δ = −Γ/2.
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Figure 5.19: Histogram representing the steady state classical momentum distribution in
the case of a Jg = 1/2 ↔ Je = 3/2 transition driven by a σ+-polarised 1D standing wave
averaged over time in the range Γt ∈ [5000, 6000]. Simulation parameters are : δ = −Γ/2,
Ω = Γ, Γtf = 6000, Γδt = 0.0005, z(0) = 0, pz(0) = 0 and |ψ(0)〉 = |e〉.

As in the quantum treatment, the momentum distribution is bell-shaped. However, contrarily
to the results related to the quantum approach, the results within a semiclassical treatment are
not so smooth. As we already mentioned, this is due to the classical nature of the momentum.
This can be enhanced by averaging over more than 100 trajectories. Unfortunately, this
also involves a much more important computational cost. Once again, we observe that the
semiclassical treatment of the centre-of-motion leads to the same kind of behaviour as the
one observed with a full quantum approach. The semiclassical results are in good qualitative
agreement with those of Smeets et al. [89]. In the model used by Smeets et al. [89], based
after the work of Hoogerland et al. [90], the motion is governed by a Fokker-Planck equation.
Finally, we conclude that semiclassical approach works rather well in the case of a σ+ standing
wave.





Conclusion

The purpose of this master thesis was to present an original synthesis of the Monte-Carlo
wavefunction (MCWF) method in quantum optics and its application to laser cooling of
atoms with a particular focus on Doppler and Sisyphus cooling mechanisms. We introduced
the MCWF method which is used to solve master equations describing the dynamics of open
quantum systems in quantum optics. This method turns out to be much more efficient than
a method based on the full integration of the density matrix. We performed laser cooling
simulations in 1D both with a classical and a quantum treatment of the atomic centre-of-
mass motion.

In chapter 1, we presented a review about the semiclassical theory of laser cooling in which
the centre-of-mass motion is treated classically. This theory explains the slowing and cooling
in terms of a damping force exerted by the optical molasse on atoms. We introduced the three
systems in interaction : an atom which is coupled both to a laser field which we treat classically
and to the quantised electromagnetic field. The laser/atom system evolves unitarily and
coherently whilst the coupling with the quantised field is responsible for damping (spontaneous
emission) and decoherence. We finally introduced the Doppler and Sisyphus cooling theories
and presented the underlying limits of such mechanisms.

In chapter 2, we detailed the density operator formalism suitable for treating open quantum
systems. Indeed, systems exhibiting decoherence cannot be treated as closed systems whose
dynamics is governed by Schrödinger’s equation. We introduced master equations whose
purpose is to describe the evolution of the reduced density operator ρ̂S and we also presented
the underlying hypotheses of derivation. We finally introduced the Lindblad equation which
is a generic form every superoperator considered in a master equation must subscribe to in
order for that master equation to preserve the properties of ρ̂S as a density operator.

In chapter 3, we introduced the MCWF method which we have used to solve master equations.
We detailed thoroughly the principle of the method. The method consists in evolving a
wavefunction in time with two possible types of evolution at each time step. Either the
wavefunction is evolved through a non-Hermitian Hamiltonian, or it is evolved through a jump
operator that projects the wavefunction on the proper ground substate. We then explained
that, as every statistical method, MCWF method has to be repeated over a large number
of realisations, each of which represents a possible history for the atom. We also showed
the equivalence between the MCWF method averaged over many realisations and the master
equation. We illustrated the physical content of the MCWF method through the example of
spontaneous emission. We also presented the related numerical results for an atom at rest
driven by a laser field.
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In chapter 4, we determined the master equations to solve with a quantisation of the atomic
centre-of-mass motion. Starting from a continuum of directions of spontaneous emission, we
restricted the discussion to a discrete set of possible directions of emission and we derived
the related discrete probabilities of emission of a spontaneous photon, which probabilities
explicitely appear in the quantum jump operators. We then derived the system Hamiltonian
that appears in the non-Hermitian Hamiltonian, which is one the two possible evolutions
for the wavefunction at each time step. These derivations are original inasmuch they never
appear in the literature.

In chapter 5, we presented our numerical results about laser cooling. We showed our results
about Doppler cooling in a σ+ standing wave which turned out to be in excellent agreement
with semiclassical predictions. We then considered the dramatic change caused by a passage
from a σ+ standing wave to the lin⊥lin configuration which consists in two crossed linear
polarisations resulting from the superposition of σ+ and σ− standing waves. Once again, our
numerical results turned out to be in very good agreement with those predicted by semiclassi-
cal theories, except for large detuning and/or low intensity laser where semiclassical theories
fail. For such cases, our method provided a good alternative and predicted temperatures
much larger than the recoil temperature. Finally, we considered the classical treatment of the
centre-of-mass motion and compared the subsequent results with those obtained with a full
quantum approach. In the σ+ standing wave, the semiclassical treatment we applied allowed
one to compute temperatures in reasonable good agreement with the quantum results.

In this master thesis, we have mainly focussed on 1D laser cooling although the MCWF
method allows one as well to perform 3D calculations. Its versatility actually makes it a
powerful tool for laser cooling simulations, especially in 3D. All derivations and master equa-
tions we considered are derived in a general form and can be easily extended to 3D. However,
the computation time which is already rather important in the 1D case literally becomes
prohibitive in 3D in the scope of a master thesis. It might be interesting to carry out such
computations in order to get 3D distributions of momentum and to have a further insight
of the underlying physics. The semiclassical treatment of the atomic motion could also be
extended to the lin⊥lin configuration. Because the viscous force experienced by the atom
depends onto the internal state, optical potentials should act through the viscous force. Such
a treatment is not expected to be reliable as soon as the de Broglie wavelength λdB = h/p be-
comes of the same order as the laser wavelength. Indeed, the atomic wavepacket spreads over
more than one optical potential, in which case the atom does not feel the optical potentials
as individual potentials. More complicated transitions than the simple Jg = 1/2 ↔ Je = 3/2
transition we considered should also be envisaged to study cooling of more complicated atomic
species. For example, because a thorough literature is still missing, iron is a promising species
that could be a good (master) thesis subject. Indeed, experiments are currently ongoing at
the cold atom laboratory of Prof. Thierry Bastin at ULg. A generalisation of this work could
also be to add a magnetic field which could be at the basis of a magneto optical trap (MOT).
For a proper choice of magnetic field configuration, that turns out to be the anti-Helmholtz
configuration, it would add a position-dependent force exerted on the atom that would drive
it to the centre of the MOT. MCWF method thus also provides a way to compute steady
state properties of a cold atom gas trapped in a MOT. However, because the quantisation
axis is determined by the magnetic field, the treatment becomes much more complex and is
far beyond the scope of this work.



Appendix A

Clebsch-Gordan coefficients

In the particular case of the rotation group SO(3), Clebsch-Gordan coefficients, named after
the German mathematicians Alfred Clebsch and Paul Gordan, are sets of numbers related to
the coupling of angular momenta. We first present those coefficients in the framework of the
general theory of angular momentum without giving any too advanced demonstration. We
then explain how those coefficients come into play when one deals with atomic transitions.
We also give a table with these coefficients computed and explain how to use this table.
In particular, a distinction between coefficients for spontaneous emission and for stimulated
processes has to be made and explained. At last, we provide some examples of the use of
those coefficients in order to clearly establish the way to use them.

A.1 Clebsch-Gordan coefficients in the angular momentum cou-

pling theory

We consider two angular momenta, Ĵ1 and Ĵ2 from two distinct systems. We recall the
fundamental theorem about eigenvalues and eigenvectors of Ĵ2 and Ĵz which are the Hermitian
operators associated to the square and to the projection of the total angular momentum
Ĵ = Ĵ1 + Ĵ2 on a quantisation axis that we choose as being ez.

Fundamental theorem of angular momentum

• The eigenvalues of Ĵ2 take the form J(J + 1)~2 with j being positive integer
or positive half-integer. All possible values for J are not necessarily realised.

• The eigenvalues of Ĵx, Ĵy , Ĵz take the form m~ with m integer or half-integer.
The quantum number m is called the quantum magnetic number.

• The operators Ĵ2 and Ĵz commute and there is a common eigenvectors basis
to both operators. We call {|J,m〉} such a basis

{

Ĵ2 |J,m〉 = J(J + 1)~2 |J,m〉
Ĵz |J,m〉 = m~ |J,m〉

. (A.1)

• For any given J , there are only 2J+1 values for m for which there are eigenvec-
tors |J,m〉 that fulfil the relation (A.1), that is : m = −J,−J+1, . . . , J−1, J .
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The two angular momentum operators ĵ1 and ĵ2 follow explicitely that fundamental theorem
(as any angular momentum operator), which allows one to write (with i = 1, 2)

{

ĵ2i |ji,mi〉 = ji(ji + 1)~2 |ji,mi〉
ĵiz |ji,mi〉 = mi~ |ji,mi〉

.

Consequently, those two momentum operators admit the quantum number Ji and also admit
2Ji + 1 values for the quantum magnetic number : mi = −ji,−ji + 1, . . . , ji − 1, ji. Now, we
consider the vector sum of those two momenta Ĵ = ĵ1 + ĵ2. The resulting operator Ĵ remains
an angular momentum operator and must therefore fulfil the fundamental theorem recalled
thereinbefore.

Therefore, our goal consists in finding the eigenvalues J and M and eigenvectors |JM 〉 satis-
fying the fundamental theorem of angular momentum. The solution which can be found e.g.
in the quantum mechanics book of A. Messiah [91] is given here without any proof and lies
in the fundamental addition theorem.

Fundamental addition theorem

In the subspace E(α, j1, j2), where α represents the additionnal quantum num-
bers required to specify the dynamical state completely [91], of dimension
(2j1 + 1) × (2j2 + 1) spanned by the vectors |α, j1, j2,m1,m2〉 (with only m1

and m2 variable, the rest being fixed) :

1. The possible eigenvalues for the quantum orbital number J associated to
the total angular momentum operator Ĵ are :

J = |j1 − j2| < |j1 − j2|+ 1 < . . . < j1 + j2 − 1 < j1 + j2.

2. To each value of J given hereinbefore corresponds one, and only one, series
of (2J +1) eigenvectors |JM 〉 of the total angular momentum operator Ĵ.

The first of these two assertions have led some authors [91,92] to state that J takes all values
such that j1 + j2+ J is an integer with j1, j2 and J forming the sides of a triangle (see Figure
A.1).

J

j1 j2

Figure A.1: Triangle rule for the quantum angular momentum numbers j1, j2 and J .

Therefore, one can write, for the operators associated to the projection on ez and to the
square of the resulting momentum operator Ĵ that
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{

Ĵ2 |J,M〉 = J(J + 1)~2 |J,M 〉
Ĵz |J,M 〉 =M~ |J,M 〉

,

with J taking values satisfying the fundamental addition theorem (J = |j1 − j2|, . . . , j1 + j2)
and M taking 2J + 1 values satisfying the fundamental angular momentum theorem (M =
−J, . . . , J). Considering the fact that the Hilbert space H spanned by the vectors |JM 〉 admits
the orthogonal basis {|j1,m1〉 ⊗ |j2,m2〉}, any state vector |J,M 〉 of H can be decomposed
on that basis

|J,M 〉 =
∑

m1+m2=M

Cj1j2J
m1m2M

|j1,m1〉 ⊗ |j2,m2〉 . (A.2)

Coefficients1 Cj1j2J
m1m2M

= 〈j1, j2,m1,m2|j1, j2, J,M〉 are the so-called Clebsch-Gordan coeffi-
cients. Therefore, those coefficients are nothing more than the coefficients of the spectral
decomposition of the total angular momentum operator eigenstates on a tensor product basis
of momenta that give rise to Ĵ. The decomposition (A.2) can be inverted in order to produce
the tensor product basis of the initial momenta as follows

|j1,m1〉 ⊗ |j2,m2〉 =
∑

J

Cj1j2J
m1m2M

|J,M 〉 . (A.3)

Remark : in the literature, one often finds the final state marked as |J,M 〉 instead of the full
notation |j1, j2, J,M 〉.

A.2 Example

Before coming to the introduction of the Clebsch-Gordan coefficients in atomic transitions,
we shall give a simple example of expansion of the eigenvectors |J,M 〉 on the tensor product
basis of uncoupled momenta |j1,m1〉 ⊗ |j2,m2〉. We shall also provide a table in which the
coefficients have been computed and explain how to read that table. For the purpose of our
example, let us consider that we want to couple the momenta j1 = 3/2 and j2 = 1 in order
to produce |j1, j2, J = 1/2,M = 1/2〉 ≡ |J = 1/2,M = 1/2〉. The possible values for m1 and
m2 are : m1 = −3/2,−1/2, 1/2, 3/2 and m2 = −1, 0, 1. The spectral decomposition theorem
allows one to write
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1In the litterature, one can find two equivalent and alternative notations for the Clebsch-Gordan coefficients
Cj1j2Jm1m2M

= 〈j1, j2,m1, m2|j1, j2, J,M〉. Those notations are used interchangeably according to the purpose of
the problem.
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If one wants to invert the decomposition, then for m1 = 1/2 and for m2 = 0, one can write
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Now that it has been illustrated through this example how the eigenvectors of the resulting
momentum are decomposed on a basis of tensor product of uncoupled momenta, we still have
to show how to compute the Clebsch-Gordan coefficients. A formal computation of these
coefficients requires the repeated action of the raising and lowering operators on the total
angular momentum operator and leads to the so-called Racah recursion formula [92]

√

J(J + 1)−M(M ± 1) 〈j1, j2,m1,m2|J,M ± 1〉
=
√

j1(j1 + 1)−m1(m1 ∓ 1) 〈j1, j2,m1 ∓ 1,m2|J,M〉
+
√

j2(j2 + 1)−m2(m2 ∓ 1) 〈j1, j2,m1,m2 ∓ 1|J,M〉 .

In this recursion formula, if M = ±J , the left hand side vanishes, in accordance with the
fundamental theorem of angular momentum. If we take into account the fact that the sum
of the square of all coefficients must be equal to one (in order to ensure the normalisation of
the state |J,±J〉), we can compute all coefficients by using that relation. Such a recursive
computation has already been done for a long time and is reachable in Table A.1.
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Table A.1: Clebsch-Gordan coefficients table [93]. The sign convention is that of Wigner [94]
also sometimes referred to as Condon and Shortley phase convention [95] and has been used
by Rose [96] and Cohen [97].
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Such a table is simpler to use than it looks but we however explain how to use it through
a simple example. For example, consider that we want to couple the momenta ĵ1 and ĵ2
exhibiting the quantum numbers j1 and j2 and the quantum magnetic numbers m1 and m2

satisfying the conditions mentioned previously. That coupling gives rise to the state |J,M 〉
which can be, as we have seen, expanded onto the |j1,m1〉 ⊗ |j2,m2〉 basis. Suppose we want

to get one of the coefficient of that expansion, say C
3
2
, 1
2
,2

1
2
, 1
2
,1

. That example is illustrated on

Figure A.2.

Figure A.2: How to read the Clebsch-Gordan coefficients table through the simple example
of m1 = m2 = 1/2, j1 = 3/2, j2 = 1/2, J = 2 and M = 1.

First of all, we have to find the proper table amongst all given in Table A.1. That table is
given by the product of the two quantum numbers j1 × j2 and is indicated in the upper left
corner of each table (surrounded in dotted blue in the Table A.2). Then one has to find the
column to look at, which is given by the quantum number J and M (surrounded in dot-dashed
pink in the Table A.2). At last, one must find the correct line, which is performed by looking
at the two quantum numbers m1 and m2 (surrounded in dashed green in the Table A.2).
Those three informations yield a single number which is (at a sign apart) the square root of
the wanted Clebsch-Gordan coefficient. In case a permutation of j1 and j2 occurs (i.e. their
product is not in the same order as the one in the table), then the coefficient is the following
one

〈j1, j2,m1,m2|j1, j2, J,M〉 = (−1)J−j1−j2〈j2, j1,m1,m2|j2, j1, J,M〉.
In the following, we apply this prescription to compute coefficients appearing in Figure 4.4.

A.2.1 Absorption or stimulated emission of light

Clebsch-Gordan coefficients in case of stimulated process, for example for a |J,MJ 〉 → |J ′,M ′
J 〉

transition, read CJ,1,J ′

MJ ,q,M
′
J
, where J and MJ stands for the angular momentum and its pro-

jection onto the quantisation axis of the related ground (resp. excited) substate, J ′ and M ′
J

stands for the angular momentum and its projection onto the quantisation axis of the related
excited (resp. ground) substate and q for the polarisation of the absorbed photon. For exam-
ple, if we consider the absorption of σ−-polarised light from |1/2, 1/2〉 to |3/2,−1/2〉, we find
J = 1/2, MJ = 1/2, J ′ = 3/2, M ′

J = −1/2 and q = −1. Following the example of Figure A.2,
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we find that C1/2,1,3/2
1/2,−1,−1/2 = 1/

√
3. This procedure is then repeated for all possible absorptions

of light. Coefficients are the same for stimulated emission.

A.2.2 Spontaneous emission of light

Because spontaneous and stimulated processes do not have the same nature, the related
Clebsch-Gordan coefficients are different. For a |J ′,M ′

J 〉 → |J,MJ 〉 transition, they read

CJ ′,1,J
M ′
J ,q,MJ

, where J and MJ stands for the angular momentum and its projection onto the

quantisation axis of the related ground substate, J ′ and M ′
J stands for the angular momentum

and its projection onto the quantisation axis of the related excited substate and q for the
polarisation of the emitted photon, considered from the absorption point of view. For example,
if we consider the emission of σ+-polarised light from |3/2, 3/2〉 to |1/2, 1/2〉, we find J = 1/2,
MJ = 1/2, J ′ = 3/2, M ′

J = 3/2 and q = −1 (because it is considered from the absorption
point a view, the sign of q is inverted). Following the example of Figure A.2, we find that

C
3/2,1,1/2
3/2,−1,1/2 = 1/

√
2. This procedure is then repeated for all possible spontaneous emissions

of light. Although the coefficients are not the same as for stimulated processes, their squares
are in the same ratio.

A.3 Raising and lowering operators

Thanks to the discussion led hereinbefore, we are now able to compute all Clebsch-Gordan
coefficients appearing in the raising and lowering operators defined in Eq. (4.24). The non-
vanishing components of the raising operator appearing in Eq. (4.24) read

Ŝ+ = C
3/2,1,1/2
3/2,1,1/2 |3/2, 3/2〉 〈1/2, 1/2| E+ + C

3/2,1,1/2
1/2,0,1/2 |3/2, 1/2〉 〈1/2, 1/2| E0

+ C
3/2,1,1/2
1/2,1,−1/2 |3/2, 1/2〉 〈1/2,−1/2| E+ + C

3/2,1,1/2
−1/2,−1,1/2 |3/2,−1/2〉 〈1/2, 1/2| E−

+ C
3/2,1,1/2
−1/2,0,−1/2 |3/2,−1/2〉 〈1/2,−1/2| E0 + C

3/2,1,1/2
−3/2,−1,−1/2 |3/2,−3/2〉 〈1/2,−1/2| E−

Therefore, the system Hamiltonian (4.23) reads

ĤS =
p̂2

2m
+

~Ω

2
(eik · r̂Ŝ+ + e−ik · r̂Ŝ−)− ~δP̂e

=
p̂2

2m
+

~Ω

2

[

eik · r̂
(

C
3/2,1,1/2
3/2,1,1/2 |3/2, 3/2〉 〈1/2, 1/2| E+ + C

3/2,1,1/2
1/2,0,1/2 |3/2, 1/2〉 〈1/2, 1/2| E0

+ C
3/2,1,1/2
1/2,1,−1/2 |3/2, 1/2〉 〈1/2,−1/2| E+ + C

3/2,1,1/2
−1/2,−1,1/2 |3/2,−1/2〉 〈1/2, 1/2| E−

+ C
3/2,1,1/2
−1/2,0,−1/2 |3/2,−1/2〉 〈1/2,−1/2| E0 + C

3/2,1,1/2
−3/2,−1,−1/2 |3/2,−3/2〉 〈1/2,−1/2| E−

)

+ h.c.

]

− ~δP̂e. (A.4)

In the appendix B, we show how such a form is implemented.





Appendix B

Numerical implementation

In this appendix, we explain how to implement the MCWF method numerically using all
expressions derived in chapter 4. In the following, we still restrict the discussion to 1D and we
stress the points where the generalisation to the 3D case has to be performed. The discussion
remains nontechnical and is performed for one laser to avoid unnecessary complications.

As a reminder, we consider a Jg ↔ Je atomic transition. To each angular momentum quantum
numbers Je/g considered, are associated 2Je/g + 1 Zeeman sublevels labelled by the value of
the quantum magnetic number me/g related to the projection of the angular momentum onto
the quantisation axis. This amounts to considering (2Je + 1) + (2Jg + 1) internal substates.
Because the wavefunction of the system is a tensor product between the internal and external
states, |ψ〉 = |Je/g,me/g〉 ⊗ |p〉, one also has to consider the linear momentum of the atom
along the z axis, which we denote by p. In Eq. (5.3), we had explained that we restricted
the momentum space to a finite set of discrete values separated by ~k and extending from
−nmax~k to nmax~k : we discretise the momentum range over 2nmax+1 values with a step size
~k. Therefore, to all of the (2Je + 1) + (2Jg + 1) internal substates, are associated 2nmax + 1
values that account for the atomic linear momentum along the axis of motion.

A state is univocally determined by the quantum numbers Je/g, me/g and p : they form a
basis denoted by {|Je,me, p〉 , |Jg ,mg, p〉} which counts [(2Je + 1) + (2Jg + 1)]× (2nmax + 1)
basis states. In the following, we restrict the discussion to the transition we considered in
this master thesis, that is a Jg = 1/2 ↔ Je = 3/2 transition. In that case, we work with six
internal substates and 2nmax + 1 external momentum eigenstates per internal substate.

B.1 Definition of all suitable quantities in the {|Je, me, p〉 , |Jg, mg, p〉}
basis

When the basis is chosen, all quantities must be expressed within that basis and all future
calculations reduce to matrix calculations.
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Wavefunction

The wavefunction |Je/g,me/g, p〉 = |Je/g,me/g〉 ⊗ |p〉 consists in six blocks, each of 2nmax + 1
values that represent the momentum related to each internal substate and reads

|ψ(t)〉 7→





































nmax~k
(nmax − 1)~k
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(−nmax + 1)~k

−nmax~k
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−nmax~k











































Je =
3

2
,me =

3

2







Jg =
1

2
,mg = −1

2

(B.1)

that is a block structure beginning by |Je = 3/2,me = 3/2〉 and ending by |Jg = 1/2,mg = −1/2〉,
each of which with all possible values for p.

System and non-Hermitian Hamiltonians

As a reminder, the system Hamiltonian given in Eq. (4.25) particularised to 1D and with
momentum discretised as in Eq. (5.3) reads

ĤS =
p̂2

2m
+

~Ω

2





nmax∑

n=−nmax

Je∑

me=−Je

Jg∑

mg=−Jg

(

Ξmemg |Je,me, n~k〉 〈Jg,mg, n~k − ~k|

+ Ξ∗
memg

|Jg,mg, n~k〉 〈Je,me, n~k + ~k|
)]

− ~δP̂e

=
p̂2

2m
+

~Ω

2
(Ŝ+ + Ŝ−)− ~δP̂e.

Such a form gives rise to a block matrix constituted of submatrices for each transition between
substates, as it clearly arises from (A.4). The term ~δP̂e simply consists in a diagonal term
appearing for each block related to excited substates. The kinetic energy is discretised over
the momentum space and consists in diagonal terms for each diagonal block, starting from
p = nmax~k for the first diagonal term and going to p = −nmax~k for the last diagonal term,
with step ~k. Finally, the atom/laser coupling parts consist in off diagonal blocks coupling two
substates. Those blocks are labelled by the quantum numbers identifying internal substates in
play, as Figure B.1 illustrates. This figure displays the matrix form of the system Hamiltonian
in the case of an atom interacting with a copropagating laser. The translation operators
involved in the coupling are such that each non-diagonal block has only non-zero terms either
on the first secondary diagonal (if p → p + ~k) or on the second secondary diagonal (if
p → p − ~k) or finally on the main diagonal (if p → p). Each block is therefore made of 1
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or 0 that should be multiplied by the proper Clebsch-Gordan coefficient coupling the related
substates, by the Rabi frequency (that could possibly be zero for certain laser polarisations)
and by ~/2. The non-Hermitian Hamiltonian is obtained by subtracting i~Γ/2 to diagonal
terms of the submatrices related to excited state sublevels.

Quantum jump operators

As a reminder, quantum jump operators are defined according to (5.7)

Ĉk′,q =
√

Γp̄q(k′)e
−ik′ẑ(ǫ∗q · Ŝ

−),

with k′ = 0,±k, q = 0,± and p̄q(k
′) defined in Eqs. (4.8) and (4.9). Once again, quantum

jump operators explicitely involve translation operators whose action is the same as for the
atom/laser coupling part, that is either shifting non-zero terms from the main diagonal to one
of the two secondary diagonal or possibly leaving them unchanged. For the rest, by contrast
with the atom/laser coupling matrix where submatrices related to all possible transitions
between sublevels have non-zero terms, only the block related to the quantum jump which
has occurred contains non-zero terms. Those terms are given by the proper Clebsch-Gordan
coefficient multiplied by the numerical prefactor

√

Γp̄q(k′). In Figure B.2, we also give the
matrix form of the first operator, that is

Ĉ−k,+ =

√

3Γ

5
eikẑ(ǫ∗q · Ŝ

−).

Once all suitable quantities are expressed under matrix form, all subsequent computations
are matrix calculations.

B.2 Computational cost

Due to the size of the matrices involved in the computations, that is for Je = 3/2, Jg = 1/2
and nmax = 50 a total number of elements 6062 = 367236 and to the number of matrix
products at each time step, computations are quite expensive. At each time step, a matrix
product is performed for the system evolution (either the wavevector is evolved by the action
of Ĥ or by a quantum jump operator). At time steps where where the expectation value of
physical observables is computed, there are as many additional matrix products as there are
physical observables we want to know the expectation value. Therefore, because of the huge
amount of matrix products, even a single trajectory requires at least 25 hours of calculation.

Even when we restricted the momentum range discretisation to nmax = 25 for Sisyphus cool-
ing related calculations, because we did not expect the wavepacket to overcome such values,
a single trajectory still requires at least 10 hours of calculation. Because we systematically
performed 100 trajectories, the computational time increases to 1000 hours per simulation.
Thanks to the "Consortium des Équipements de Calcul Intensif" (http://www.ceci-hpc.be/),
we were able to launch several trajectories at the same time (from 10 to 50, depending on
the cluster load) which drastically reduced the computational time requested by the MCWF
method.

http://www.ceci-hpc.be/
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