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Controlling phase transitions in quantum systems via coupling to reservoirs has been mostly studied
for idealized memory-less environments under the so-called Markov approximation. Yet, most quantum
materials and experiments in the solid state, atomic, molecular and optical physics are coupled to reservoirs
with finite memory times. Here, using the spectral theory of non-Markovian dissipative phase transitions
developed in the companion paper [Debecker, Martin, and Damanet (to be published)], we show that
memory effects can be leveraged to reshape matter phase boundaries, but also reveal the existence of
dissipative phase transitions genuinely triggered by non-Markovian effects.
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Introduction—Finding new ways to control phase tran-
sitions in quantum systems to access desired properties is
at the forefront of research for developing new materials
and technologies. In this context, driven-dissipative mech-
anisms obtained via the coupling of systems to engineered
environments and fields offer opportunities to generate
matter phases otherwise inaccessible [1–3].
However, thus far, dissipative phase transitions (DPTs),

which have been observed in controlled experiments [4–12],
have mostly garnered theoretically attention in systems
coupled to memoryless reservoirs [13–15]. However, most
realistic systems are coupled to reservoirs with a spectral
structure [16], giving the latter a memory of past system-bath
exchanges, which considerably complicates their dynamics.
Such non-Markovian effects are crucial to be understood,
not least because they can be used as a resource to generate
useful phenomena, such as non-Markovian-assisted steady
state entanglement [17], quantum transport [18], spin
squeezing [19], chaotic behaviors [20], or new dynamical
phases [21]. Moreover, from a computational perspective, it
is sometimes desirable to derive reduced descriptions of a
large Markovian open quantum system in order to deal with
a smaller Hilbert space, which usually implies dealing with
non-Markovian effects [22,23].
Here, using the theoretical framework developed in the

companion paper [24], which generalizes the spectral theory
of dissipative phase transitions to non-Markovian systems,
we highlight how non-Markovian effects can be used to
reshape phase boundaries but also capture DPTs totally
overlooked by the Markov approximation; this opens many
possibilities to explore DPTs in a wider range of systems
and to access matter phases in new regimes of parameters
and experimental setups. By contrast with previous studies
of non-Markovian effects in DPTs via other techniques
[25–28], which mostly focus on the paradigmatic spin-boson
model [29–31], here we provide a general method, which we
apply in two specific examples.

Below, we first summarize the theoretical framework
presented in [24] and in particular its central element:
the generalization of the Liouvillian for non-Markovian
systems, its properties and its connections with DPTs and
symmetries. Then, we apply the method to a generalized
Lipkin-Meshkov-Glick model [32] and show that devia-
tions from a Markovian reservoir lead to a shift of the
phase transition boundary. Then, even more remarkably,
we reveal the existence of DPTs triggered by non-
Markovianity.
Theoretical framework—Consider a system S coupled to

a bosonic environment E at zero temperature [33]. The total
Hamiltonian (ℏ ¼ 1) is

H ¼ HS þ
X
k

ωka
†
kak

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
≡HE

þ
X
k

ðgkakL† þ g�ka
†
kLÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Hint

; ð1Þ

where HS (HE) is the system (environment) Hamiltonian,
with ak (a†k) the annihilation (creation) operator for the
kth mode of frequency ωk, and Hint is the interaction
Hamiltonian with L being an arbitrary system operator
and gk being the system-bath coupling strengths. The effect
of the environment on the system is encoded in the spectral
density JðωÞ¼π

P
k jgkj2δðω−ωkÞ or, equivalently, in

the bath correlation function αðτÞ ¼ P
k jgkj2e−iωkτ ¼

ð1=πÞ R∞
0 JðωÞe−iωτdω. We assume that the correlation

function, which depends on the model, is a sum of M
decaying exponentials

αðτÞ¼
XM
j¼1

Gje−iωjτ−κjjτj; κj;ωj∈R; Gj∈C: ð2Þ

This decomposition, which is not unique [34], can be
performed either exactly or with great precision in a wide
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range of situations [35–38]. For Gj ∈R, this amounts to
decompose the non-Markovian environment E into a set of
M modes of frequencies fωjg which are damped with rates
fκjg due to their coupling to independent Markovian baths,
as illustrated in Fig. 1. This pseudomode picture [39–46]
is relevant for atoms in cavities, superconducting
qubits coupled to resonators [47,48], electron-phonon
systems [49,50], or emitters in plasmonic cavities [51].
Using complex Gj is even more general and allows, for
instance, an efficient fit of Ohmic spectral density [34,52]
and the study of critical behaviors [53].
When the global system is initially in the state ρð0Þ ¼

ρSð0Þ ⊗ ρBð0Þ, the exact dynamics of S can be described
by the HEOM method which takes the form [38,54–57]

dρðn⃗;m⃗Þ

dt
¼ −i½HS; ρðn⃗;m⃗Þ� − ðw⃗�·n⃗þ w⃗·m⃗Þρðn⃗;m⃗Þ

þ
XM
j¼1

�
GjnjLρðn⃗−e⃗j;m⃗Þ þ G�

jmjρ
ðn⃗;m⃗−e⃗jÞL†

þ
h
ρðn⃗þe⃗j;m⃗Þ; L†

i
þ
h
L; ρðn⃗;m⃗þe⃗jÞ

i�
; ð3Þ

with n⃗ ¼ ðnjÞ and m⃗ ¼ ðmjÞ multi-indices in NM,

w⃗ ¼ ðκj þ iωjÞ∈CM, e⃗j ¼ ðδjj0 Þ unit vectors, and a⃗·b⃗ ¼P
j a

�
jbj the inner product on CM. In Eq. (3), ρð0⃗;0⃗Þ ≡ ρS

corresponds to the physical density operator of the system S
with which all the mean values of system observables are
computed, while ρðn⃗;m⃗Þ for ðn⃗; m⃗Þ ≠ ð0⃗; 0⃗Þ, which are also
operators acting on the system space, correspond to
auxiliary states from which bath correlations can be
obtained [19]. Although the hierarchy is formally infinite,
it can be truncated at large hierarchy depth indices n⃗ and m⃗.
In practice, the stronger the non-Markovianity, the larger
the number of auxiliary states we need to retain to obtain

convergence of the results. Here, we choose the triangular
truncation ρðn⃗;m⃗Þ ¼ 0 ∀ n⃗, m⃗∶

P
jðnj þmjÞ > kmax,

where kmax is the truncation order, yielding a total of
K ¼ ð2M þ kmaxÞ!=ðð2MÞ!kmax!Þ auxiliary states [19].
By stacking in a vector jρ⟫ all the vectorized versions of

the matrices ρðn⃗;m⃗Þ, Eq. (3) can be written in the form

djρ⟫
dt

¼ LHEOMðkmaxÞjρ⟫; ð4Þ

whereLHEOMðkmaxÞ is theHEOM Liouvillian, the generator
of the non-Markovian dynamics of the system, exact for
kmax → þ∞ and which generalizes Lindblad’s Liouvillian.
Instead of using LHEOM, one can sometimes as noted above
enlarge the system by including explicit pseudomode
degrees of freedom damped by standard Lindblad decay
channels, as illustrated in Fig. 1(b). This would define a
Markovian Liouvillian LM for the global system SM.
However, as shown in [24] using LHEOM is computationally
more favorable than LM, especially for large M.
Properties of the HEOM Liouvillian—The superoperator

LHEOM is linear and in general non-Hermitian. We assume
it is diagonalizable and denote its eigenvectors and eigen-
values by jρi⟫ and λi. For a truncation order kmax, its
dimension is D ¼ K dimðHSÞ2. It admits the following
properties: (i) its spectrum is symmetric with respect to
the real axis; (ii) it preserves the trace of the physical state

ρð0⃗;0⃗Þ; (iii) the eigenvalue 0 is always in its spectrum,
guaranteeing the existence of a stationary state; (iv) all the
eigenvalues must have a negative real part in the limit

kmax → þ∞; (v) Tr½1ð0⃗;0⃗Þρi� ¼ 0 with 1ð0⃗;0⃗Þ the projector
onto the physical state space if ρi is a right eigenoperator of
LHEOM associated with the eigenvalue λi with Re½λi� ≠ 0.
As in [13,14], we order the eigenvalues of LHEOM so that
jRe½λ0�j < jRe½λ1�j < … < jRe½λD�j, where λ0 ¼ 0.
DPT and HEOM Liouvillian spectrum—Consider a

system described by Eq. (4) which admits a valid thermo-
dynamic limit N → ∞ and a unique steady state ρss for
all finite N. We say that the system undergoes a phase
transition of order p when a non-analytical change in a
g-independent system observable O occurs when the
parameter g tends to a critical value gc forN → ∞, i.e., [13]

lim
g→gc

���� ∂
p

∂gp
lim

N→þ∞
hOiss

���� ¼ þ∞; ð5Þ

where hOiss ¼ Tr½Oρð0⃗;0⃗Þss �. This definition of DPTs is the
same as for Markovian systems. The only difference is
that the steady state is now obtained from the HEOM
Liouvillian (4). Like for the Markovian case, a nonanalyt-
ical change as described by (5) must occur due to a level
crossing in the spectrum of LHEOM, which implies the
closing of the HEOM Liouvillian gap Re½λ1�. For 1st-order
DPTs, the connection is even stronger as a DPT occurs iff

(a) (b)

FIG. 1. (a): Sketch of a system S interacting with a structured
environment E characterized by a spectral density JðωÞ that can
be decomposed into three Lorentzians, as if the system was
coupled to three pseudomodes coupled to their own unstructured
bath (b). If one enlarges the system S by including the
pseudomodes (system SM in the dashed black box), the dynamics
can be treated by a Lindblad description.
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Re½λ1� ¼ 0 at g ¼ gc and Im½λ1� ¼ 0 in a finite domain
around gc for N → ∞ [24].
Symmetries and DPTs—Wecallweak symmetryofLHEOM

any unitary superoperator U such that ½LHEOM;U� ¼ 0. The
matrix representing LHEOM in the eigenvector basis of U is
block diagonal, i.e., LHEOM ¼ ⨁ukLuk , where each block
Luk is associated with distinct eigenvalues uk of U where
k∈ f0; 1;…g. We define the symmetry sector Luk as the
subspace spanned by the eigenvectors of U associated with
the eigenvalue uk. We can prove, in close analogy with the
Markovian case [13] that if the steady state jρss⟫ of (4) is
unique, then jρss⟫∈Lu0¼1 [24]. A spontaneous symmetry
breaking (SSB) corresponds to the emergence of a zero
eigenvalue in each symmetry sector k in the limit N → ∞.
To be specific, if LHEOM is a direct sum of nþ 1 blocks
and if its eigenvalues are sorted in each block k as

jRe½λðkÞ0 �j < jRe½λðkÞ1 �j < …, a SSB is signaled by λðkÞ0 →

λð0Þ0 ¼ 0 ∀ k > 0 for g ≥ gc, N → þ∞ [58]. This means
that the independent hierarchies associated with each
block k mix in the limit N → þ∞ so that steady state that
explicitly break the symmetry emerge.
1st-order DPT—We first illustrate our approach for a

Lipkin-Meshkov-Glick (LMG) model of the form

HLMG ¼ V
N
ðS2x − S2yÞ ¼

V
2N

ðS2þ þ S2−Þ; ð6Þ

where Sα ¼
P

N
j¼1 σ

ðjÞ
α =2 (α ¼ x, y, z) are the collective

spin operators defined in terms of single-spin Pauli oper-

ators σðjÞα and S� ¼ Sx � iSy. When the spin system
undergoes collective decay as described by Lindblad’s
master equation

ρ̇ ¼ −i½HLMG; ρ� þ
γ

2N
DS− ½ρ�; ð7Þ

where Do½·� ¼ 2o·o† − fo†o; ·g, as would occur if coupled
to an unstructured bath with αðτÞ ¼ ðγ=NÞδðτÞ, the model
exhibits a 1st-order DPT at the critical point VM

c ¼ γ=2
[32], separating a steady state phase, where hSzi → −N=2
(V < VM

c ) to a phase where hSzi → 0 (V > VM
c ) for

N → ∞, as can be seen in Fig. 2(a). Here, we generalize
the study of this DPT to the non-Markovian regime by
considering a finite memory time for the bath with a
correlation function of the form αðτÞ ¼ Ge−κjτj−iωτ, as if
the damping of the collective spin was originating from
the coupling of the system to a structured bath via an
interaction Hamiltonian Hint ¼

ffiffiffiffi
G

p ðS−a† þ SþaÞ with
G ¼ γκ=ð2NÞ and a the annihilation operator of a damped
pseudomode of Hamiltonian HE ¼ ωa†a. This model
allows us to study non-Markovian effects on the DPT
and compare them to the Markovian case by tuning the
“loss” rate κ of the pseudomode. Indeed, the collective spin

and the pseudomode form an extended Markovian system
governed by the master equation

ρ̇tot ¼ −i½H; ρtot� þ κDa½ρtot� ð8Þ

withH ¼ HLMG þHE þHint. Adiabatic elimination of the
pseudomode’s degrees of freedom recovers Eq. (7) in the
limit κ → ∞ (see Supplemental Material [59]), as expected
since αðτÞ → ðγ=NÞδðτÞ for κ → ∞. When κ is finite,
memory effects arise and affect the DPT as described
below. Note that Eq. (8) has a Z2 symmetry represented by
U2 ¼ U2·U

†
2 with U2 ¼ eiπðSzþa†aÞ. U2 has two distinct

eigenvalues uk ¼ eikπ ¼ �1 with k ¼ 0, 1, so there are two
symmetry sectors, with Lk¼0 containing ρss.
The impact of memory effects on the DPT based on

LHEOM for the spin system can be seen in Fig. 2. First, we
see in panel (b) that the steady state spin magnetization hSzi
exhibits a sharp transition at a critical point smaller than in
the Markovian case shown in Fig. 2(a). This demonstrates
that deviations from a flat spectral density can reshape
phase boundaries. A mean-field analysis of (8) shows that
the shift in the critical point increases as κ decreases (see
Supplemental Material for all details [59]). Physically, this
can be understood as follows: the smaller κ, the greater the
probability that excitations escaping from the system will
be reabsorbed at later times. The degree of openness of the
system therefore decreases as κ decreases, which leads to a
stabilization of the phase dominated by the Hamiltonian (6)

(a)

(c) (d)

(b)

FIG. 2. Signatures of the 1st-order DPT for the generalized
dissipative LMG model (6) obtained from LHEOM, showing how
environmental spectral structures affect the DPT. (a),(b) Steady
state magnetization hSzi as a function of V=γ for κ=ω ¼ 50 (a)
and κ=ω ¼ 1 (b). The vertical green and red dashed lines indicate
the critical points for κ=ω ¼ 50 and 1, respectively. (c),(d):

Liouvillian gap −Re½λð0Þ1 � (c) and −Re½λð1Þ0 � (d) as a function
of V=γ, indicating, respectively, the DPT and the SSB associated
with the DPT. The insets of (a) show the same quantities for the
Markovian case. Truncation orders are kmax ¼ 2 (a) and kmax ¼ 6
(N ¼ 10–30), 7 (N ¼ 40), 9 (N ¼ 50) (b)–(d).
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for small V. For κ → 0 (i.e., for a closed system), the phase
transition disappears because the Hamiltonian dynamics no
longer competes with dissipative dynamics. In the opposite
limit κ → ∞, we recover the Markovian case. The HEOM
Liouvillian spectrum correctly captures all DPT signatures.
Indeed, it captures the emergence of both the level touching
at the critical point in the symmetry sector k ¼ 0, i.e.,

−Re½λð0Þ1 � → 0 as N → ∞ and the SSB associated to the

DPT, i.e., −Re½λð1Þ0 � → 0 for V above the critical point as
N → ∞, as can be seen in panels (c) and (d).
Note that this DPT cannot be studied via an approximate

reduced description of the spin dynamics obtained after
adiabatic elimination of the pseudomode, as the related
mean-field approach predicts qualitatively different steady
states (see Supplemental Material [59]). In general, reduced
descriptions cannot account for all the features of a
DPT and can even fail to capture DPTs, as elaborated
on further below and strongly motivates again the use of
our framework.
2nd-order DPT—The second model we consider,

also experimentally relevant for cavity QED [63], is of
the form (1) with HS ¼ HLMG þ hSz and L ¼ Sx. For an
unstructured bath with αðτÞ ¼ γδðτÞ, the system dynamics
is governed by the master equation

ρ̇ ¼ −i½HLMG þ hSz; ρ� þ
γ

2N
DSx ½ρ�; ð9Þ

whose unique steady state is the maximally mixed state
ρss ∝ 1Nþ1, preventing the emergence of any DPT.
However, if we add again a realistic finite memory time
for the bath by considering αðτÞ ¼ ðγκ=2NÞe−iωτ−κjτj, we
unveil the existence of two consecutive 2nd-order DPTs
separating three different phases upon varying the squeez-
ing strength V. This can be seen in Fig. 3, where we show
that our approach captures all the features of the DPTs
in agreement with mean-field predictions detailed in the
Supplemental Material [59]. Panels (a)–(c) show the steady
states expectations hSzi and hS2yi as a function of V, which
distinguish the phases [labeled as (I), (II), and (III)], as we
have hS2yi ¼ 0 in phases (I) and (II) and hSzi ¼ −N=2 in
phase (II) only. In addition, as there is a Z2 symmetry
represented by U2 in our model akin to the symmetry that is
broken in the DPT of the Dicke model [22], we expect a

SSB manifesting as λð1Þ0 → 0 as N → þ∞ in phases (I)
and (III), accompanied by an exponential closure of the
gap [23]. This behavior is illustrated in panels (b) and (d).
Also, note that as the critical points are at V ¼ −hþ
γκω=½2ðκ2 þ ω2Þ� and V ¼ h, taking the limit κ → ∞
does not recover the prediction of the Lindblad scenario,
i.e., no DPT. In other words, we have limκ→∞limN→∞ ≠
limN→∞limκ→∞. Physically, taking κ → ∞ amounts to
consider equal absorption and emission rates for the
system, pushing it inevitably to the infinite temperature

state. Considering a finite κ restores a memory for the bath,
i.e., a system-frequency-dependent response, thereby pro-
viding the necessary competition between Hamiltonian and
dissipative dynamics for the emergence of DPTs.
Conclusion—We applied the spectral theory of non-

Markovian dissipative phase transitions developed in the
companion paper [24] to demonstrate non-Markovian reser-
voir engineering of a 1st-order DPTwith a discrete SSB and
how DPTs can be genuinely triggered by non-Markovian
effects. Our Letter highlights the importance of exploring
out-of-equilibrium matter phases beyond the idealized
Markovian limit, featuring non-Markovianity as a resource
for triggering or controlling them. This is so far uncharted
territory as most works dealing with dissipative many-body
dynamics is generally constrained to Lindblad dissipation,
which potentially hinders the evidences of DPTs [22,23].
There are many perspective of our Letter, such as studies

of initial system-bath correlations [64] or connections in
the non-Markovian regime between DPTs and symmetry
breaking [65,66], geometric phase curvature [67,68], or
dynamical [69,70] or measurement-induced [71,72] phase
transitions, or dissipation engineering of long-range
order [73], also for systems with non-Lorentzian environ-
ments that exhibit criticality [26,64,74].
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FIG. 3. Signatures of the 2nd-order DPT of the second model
obtained from LHEOM, showing the emergence of three phases
[(I), (II), and (III)] as V=γ is varied. (a) and (c) Steady-state values
of hSzi and hS2yi as a function of V=γ for different N, allowing for
distinguishing the phases. The solid black lines correspond to
mean-field predictions and the vertical dashed red lines indicate

the critical points. (b) Real part of λð1Þ0 (i.e., the gap) as a function
of V=γ, signaling the SSBs associated with the DPT. Three
vertical dotted lines indicate the values of V=γ taken for the finite-
size scaling of the gap shown in panel (d), i.e., V=γ ¼ −1.75
(green), −0.05 (blue), 2 (pink), revealing an exponential closure
of the gap in phases (I) and (III), as shown by the straight line fits.
Parameters ω ¼ κ ¼ 2h ¼ 2γ. Truncation orders kmax ¼ 6
(N ¼ 10–30), 7 (N ¼ 40–60), 9 (N ¼ 70, 100).
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