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We study the Anderson transition on a generic model of random graphs with a tunable branching
parameter 1 < K < 2, through large scale numerical simulations and finite-size scaling analysis. We find
that a single transition separates a localized phase from an unusual delocalized phase that is ergodic at large
scales but strongly nonergodic at smaller scales. In the critical regime, multifractal wave functions are
located on a few branches of the graph. Different scaling laws apply on both sides of the transition: a scaling
with the linear size of the system on the localized side, and an unusual volumic scaling on the delocalized
side. The critical scalings and exponents are independent of the branching parameter, which strongly
supports the universality of our results.
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Ergodicity properties of quantum states are crucial to
assess transport properties and thermalization processes.
They are at the heart of the eigenstate thermalization
hypothesis that has attracted enormous attention lately
[1]. A paramount example of nonergodicity is Anderson
localization where the interplay between disorder and
interference leads to exponentially localized states [2]. In
3D, a critical value of disorder separates a localized phase
from an ergodic delocalized phase. At the critical point
eigenfunctions are multifractal, another nontrivial example
of nonergodicity [3,4]. Recently, those questions have been
particularly highlighted in the problem of many-body
localization [5–9]. Because Fock space has locally a
treelike structure, the problem of Anderson localization
on different types of graphs [10–15] has attracted renewed
activity [16–26]. In particular, the existence of a delocal-
ized phase with nonergodic (multifractal) eigenfunctions
lying on an algebraically vanishing fraction of the system
sites is debated [19–21,25,26].
The problem of nonergodicity also arises in another

context corresponding to glassy physics [27]. For directed
polymers on the Bethe lattice [28], a glass transition leads
to a phase where a few branches are explored among the
exponential number available. As there is a mapping to
directed polymer models in the Anderson-localized phase
[10,29–31], it has been recently proposed that this type of
nonergodicity (where the volume occupied by the states
scales logarithmically with system volume) could also be
relevant in the delocalized phase [18]. Note however that it
has been envisioned that this picture could be valid only up
to a finite but very large length scale [32] so that the
analogy with the usual physics of directed polymers may
not be relevant in the delocalized phase.

In this Letter, we study the Anderson transition (AT) in a
family of random graphs [33–35], where a tunable parameter
p allows us to interpolate continuously between the 1D
Anderson model and the random regular graph model of
infinite dimensionality. Ourmain tool is the single parameter
scaling theory of localization [36]. It has been used as a
crucial tool to interpret the numerical simulations of
Anderson localization in finite dimensions [3,37–39] and
to achieve the first experimental measurement of the critical
exponent of the AT in 3D [40]. In our case, the infinite
dimensionality of the graphs leads to highly nontrivial finite-
size scaling properties: unusually, we find different scaling
laws on each side of the transition. Our detailed analysis of
extensive numerical simulations leads to the following
scenario. A single AT separates a localized phase from an
ergodic delocalized phase. However, a characteristic non-
ergodicity volume (NEV) Λ emerges in the latter phase. For
scales below Λ, states are nonergodic in the sense that they
take significant values only on a few branches, onwhich they
additionally display multifractal fluctuations. For scales
above Λ, this structure repeats itself and leads to large scale
ergodicity. At the threshold, Λ diverges, and the behavior
below Λ extends to the whole system. The critical behaviors
do not depend on the graph parameter p, which strongly
supports the universality of this scenario.
We use two complementary approaches to describe

localization properties. First, we derive recursive equations
for the local Green function using a mapping to a tree [10],
which we solve using the pool method from glassy physics
[16,29], and analyze the critical behavior by finite-size
scaling. Second, we perform exact diagonalization of very
large system sizes, and extract the scaling properties of
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eigenfunction moments. We use the box-counting method
in this new context of graphs of infinite dimensionality to
perform a local analysis and to extract the NEV Λ
unambiguously.
Random graph model.—We consider a 1D lattice of N

sites with periodic boundary conditions. Each site is con-
nected to its nearest neighbors and ⌊pN⌋ shortcut links are
added (⌊ · ⌋ is the integer part). These shortcuts give an
average distance between pairs of sites increasing logarithmi-
cally with N, so that the graph has infinite dimensionality
[41,42]. The system is described by the Hamiltonian H ¼
P

N
i¼1 εijiihij þ

P
hi;jijiihjj þ

P⌊pN⌋
k¼1 ðjikihjkj þ jjkihikjÞ in

position basis fjii; 1 ≤ i ≤ Ng. The first term describes on-
site disorder with εi independent and identically distributed
Gaussian random variables with zero mean and standard
deviation W. The second term runs over nearest neighbors.
The third term gives the long-range links that connect pairs
ðik; jkÞ, randomly chosenwith jik − jkj > 1.p ¼ 0 is the 1D
Anderson model. At finite p, our system is a random graph
with mean connectivity K ¼ 1þ 2p, giving access to the
regime 1 < K ≤ 2.
Glassy physics approach.—We first use a recursive

technique used to investigate localization on theBethe lattice
[10,16,28,29,45]. It is exact for a Cayley tree (which has no
loop), but only an approximation for a generic graph. For a
regular tree withK þ 1 neighbors, the diagonal elementsGii

of the Green operator follow Gii ¼ ðϵi − E −
P

K
j¼1GjjÞ−1,

where the sum is over theK children j of node i [10]. In our
model, each parent node has either one or two children. This
leads to three recursion equations determining theprobability
distribution of G [42].
To probe localization properties, we use the belief

propagation method (or pool method), which consists of
sampling the distribution ofGwith a Monte Carlo approach
[16,29]. For a fixed value of E, we start from an initial
pool of Mpool complex values for the local variables Gii,
1 ≤ i ≤ Mpool, and calculate the next generation by applying
the recursion relations. The important quantity is the typical
value of the imaginary part ImG, which goes to zero in the
localized phase as hln ImGi ∼ −Mg=ξl when the number of
generations Mg tends to infinity, (hXi denotes ensemble
averaging) whereas in the delocalized phase hln ImGi
converges to a finite value.We observed that the localization
length ξl diverges at the transition as ξl∼ ½W−WcðMpoolÞ�−νl
with the critical exponent νl ≈ 1 and a critical disorder
WcðMpoolÞ that depends on Mpool (see also Refs. [16,29]).
We determinedWcðMpoolÞ for values ofMpool up to 106. The
results, presented in the inset of Fig. 1, show thatWcðMpoolÞ
converges to W∞

c ≈ 1.77 for p ¼ 0.06 as Mpool → ∞.
Following Refs. [16,46], we assume that hln ImGi

follows a single parameter scaling law:

hln ImGi ¼ −ðMgÞρFGðMg=ξÞ ð1Þ

with the scaling parameter ξ ∼ jW −WcðMpoolÞj−ν [47].
To correctly sample the distribution of ImG, values of
Mpool as large as possible are usually considered, with
typically Mg ≤ Mpool (see above). However, our numerical
results show that the scaling behavior (1) is visible only
for Mg ≫ Mpool. Moreover, for a given initial pool,
the fluctuations of hln ImGi when Mg is varied can be
extremely large (especially at criticality). In order to
analyze the scaling behavior (1) we therefore considered
values ofMpool from 50 to 800, andMg from 2Mpool to 105,
and averaged additionally over 100 different realizations of
the pool. The scaling hypothesis (1) is confirmed by the
data collapse shown in Fig. 1, allowing us to extract the
scaling exponents ν ≈ 1.4� 0.2 and ρ ≈ 0.28� 0.07,
which do not depend on Mpool. Therefore, in the delocal-
ized phase, the typical value of ImG vanishes at the
transition with an essential singularity limMg→∞hln ImGi ∼
−ðWcðMpoolÞ −WÞ−κ with κ ¼ ρν ≈ 0.39� 0.16 the criti-
cal exponent in the delocalized phase, compatible with the
value 1=2 predicted analytically [14,15]. Moreover, from
νl ¼ νð1 − ρÞ we recover the value νl ≈ 1.0� 0.2 (see
also Ref. [16]).
Scaling analysis of eigenfunction moments.—We now

describe the results of our second approach. We performed
exact diagonalizations of many realizations of graphs with
up to N ∼ 2 × 106 sites and obtained for each realization 16
eigenfunctions at the band center using the Jacobi-
Davidson method [48]. We performed a multifractal analy-
sis of the eigenfunctions jψi by considering the scaling of
average moments hPqi ¼ hPN

i¼1 jψ ij2qi for real q as a

FIG. 1. Single parameter scaling of hln ImGi versus number of
generations Mg, for Mpool ¼ 400, Mg from 2Mpool to 105,
p ¼ 0.06, and W ∈ ½1.3; 1.65� (see color code). hln ImGi ∼
−Mg

ρ with ρ ≈ 0.28 at W ¼ 1.46 ≈WcðMpoolÞ. Finite-size scal-
ing of −hln ImGi=Mg

ρ following Eq. (1). The scaling parameter ξ
diverges at the threshold as ξ ∼ jW −WcðMpoolÞj−ν with ν ≈ 1.4
and WcðMpoolÞ ≈ 1.46. Inset: critical disorder WcðMpoolÞ versus
Mpool. The line is a fit byWcðMpoolÞ ¼ W∞

c þ A0Mpool
−β with A0

a constant, W∞
c ¼ 1.77, and β ¼ 0.33. The error bars are of the

same order as the fluctuations of the data points.
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function of N. For a d-dimensional system of linear size L
and volume N ¼ Ld, multifractal eigenfunctions have
hPqi ∼ L−τq at large L, or equivalently hPqi ∼ N−χq with
χq ¼ τq=d, defining nontrivial multifractal dimensions
Dq ¼ τq=ðq − 1Þ. In the localized case Dq ¼ 0 whereas
for wave functions delocalized over the whole space
Dq ¼ d. Our graphs however have infinite dimensionality
[49], with system volume N ¼ VgðdNÞ exponential in the
linear size dN ∼ log2N, the diameter of the system [42].
Figure 2 shows that a critical behavior hP2i ∼ ðlog2 NÞ−τ2 ∼
dN−τ2 actually holds with τ2 ≈ 0.42 for p ¼ 0.06 and
W ¼ 1.6 ≈Wc (upper right inset). This dN−τq dependence
entails that a behavior hPqi ∼ N−χq would lead to χq ¼ 0, in
line with the analytical predictions [4,13,15] at infinite
dimensionality. Moreover, in analogy with directed poly-
mers, in the localized phase eigenfunctions are located on a
few branches of the graph on which they are exponentially
localized. At criticality the localization length diverges to
the system size dN and one should observe critical wave
functions located on a few branches on which they display
additional multifractal fluctuations.
The following one-parameter scaling hypothesis should

naturally follow:

hPqi ¼ d
−τq
N F linðdN=ξÞ: ð2Þ

It is consistent with the scaling theory for both the AT in
finite dimension [50] and the glassy physics approach
above. A careful finite-size scaling analysis of our data
shows that Eq. (2) yields a very good data collapse on the
localized side of the transition, see Fig. 2, upper branch in
the main panel. The scaling parameter ξ ∼ ξl, with ξl the
localization length, diverges as ξ ∝ ðW −WcÞ−νl near the
AT, with νl ≈ 1 (in agreement with the value found by our
glassy physics approach).
However, in the delocalized phase, small but systematic

deviations are observed [42]. This leads us to propose a
scaling hypothesis in this phase different from Eq. (2); the
system volume N could instead be rescaled by a character-
istic volume Λ:

hPqi ¼ d
−τq
N F volðN=ΛÞ: ð3Þ

Scaling hypotheses (2) and (3) are strictly equivalent in
finite dimension, but lead to very different behaviors for
infinite dimensionality. In the linear scaling (2), delocalized
states consist of the repetition of linear critical structures of
size ξ and moments behave as hPqi ≈ ξ−τqN−ðq−1Þ=ξ. It is
reminiscent of the nonergodic behavior discussed in
Refs. [19–21,25]. In the volumic scaling (3), delocalized
states consist of N=Λ volumic critical structures of size Λ,
and moments behave as hPqi ≈ ðΛ=NÞq−1½1 − τqðξ=dNÞ�
[42]. This is consistent with previous analytical results
[14,15]. The finite-size scaling shown in Fig. 2 clearly
indicates that the volumic scaling (3) puts all the curves
onto a single scaling function in the delocalized phase,
W < Wc, with the correlation volume diverging exponen-
tially at the transition as lnΛ ≈ ðWc −WÞ−κ, κ ≈ 0.5 (in
good agreement with our glassy physics approach, the
analytical prediction κ ¼ 1=2 [14,15], and the recent
numerical results [22]).
Nonergodicity volume.—To probe the local properties of

localization, we use the box-counting method, which
consists of investigating the scaling properties of moments
of coarse-grained wave functions. Dividing the system ofN
sites into boxes of l consecutive sites along the lattice (i.e.,
not following the long-range links) and defining a measure
μk ¼

P
i∈boxkjψ ij2 of each box, moments are defined as

PqðlÞ ¼
P

kμ
q
k . For multifractal states, they scale as

hPqðlÞi ∼ lπq at large N with nontrivial πq [51]. πq ¼ 0

for localized states, and πq ¼ q − 1 for completely delo-
calized states. Figure 3 displays the moments hP2ðlÞi
versus l for different W, and shows that three distinct
regimes can be identified. At scales below the mean
distance 1=ð2pÞ between two long-range links, moments
have a power-law behavior with π2 ≈ 0.5� 0.1, in the
vicinity of Wc where ξ ≫ 1=ð2pÞ. For l ≤ 1=ð2pÞ, only
one branch is probed and the value of π2 should measure
the critical multifractality on a few branches. π2 is indeed
close to τ2 ≈ 0.42 found above. At intermediate scales,
moments follow a plateau characteristic of a strongly

FIG. 2. Scaling of moments hP2i with N for p ¼ 0.06 and
W ∈ ½0.7; 3�. For W > Wc (localized phase), linear scaling of
hP2i=ðlog2 NÞ−τ2 following Eq. (2) with τ2 ¼ 0.42. ForW < Wc
(delocalized phase), volumic scaling following Eq. (3). Data for
W ¼ Wc have been shifted horizontally for visibility. Dotted line
shows asymptotic ergodic behavior N−1ðlog2 NÞτ2 corresponding
to hP2i ∼ N−1. Upper inset (note the log scale): the critical
behavior of hP2i at W ¼ 1.6 ≈Wc is very well fitted (black line)
by hP2i ¼ A0ðlog2 NÞ−τ2 with A0 a constant and τ2 ≈ 0.42.
Lower inset: correlation volume Λ (circles) and localization
length ξ (squares) on both sides of the transition. Solid lines
are the fits: lnΛ ¼ A1 þ A2ðWc −WÞ−κ (for W ∈ ½1; 1.5�) and
ξ ¼ A3ðW −WcÞ−νl with Wc ¼ 1.6 and κ ¼ 0.5 (assigned val-
ues), yielding νl ≈ 1. Error bars on hP2i are below the symbol
size, and not taken into account in the scaling analysis.
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nonergodic behavior. This corresponds to the critical behav-
ior we observe when changing N, i.e., hP2i ∼ ðlog2NÞ−τ2 ;
thus, hP2i ∼ N−χ2 with χ2 ¼ 0 (see Fig. 2 and Fig. S4 of
Ref. [42]). Beyond a characteristic scale λ that depends onW
and N, moments are linear in l, which corresponds to an
ergodic behavior. In the localized case λ ∼ N, so that there is
no ergodic behavior, while in the delocalized case, λ
saturates to a finite value (see below), and states are ergodic
at scales above λ, and nonergodic below; we therefore call λ
the NEV. One can extract λ from a rescaling of the local
slopes ~πqðlÞ≡ ðd lnhPqðlÞi=d lnlÞ [51] in the ergodic
regime l ≫ λ (see inset of Fig. 4).
The data shown in Fig. 4 can be described by a linear

scaling λ=ðN=log2NÞ ¼ Glinðlog2N=ξÞ in the localized
regime, with ξ ∼ ξl the localization length, and by a
volumic scaling λ=ðN=log2NÞ ¼ GvolðN=ΛÞ in the delo-
calized regime. The behavior at the threshold λ ∼ N= log2 N
shows that critical states are located on a few branches of
log2N sites. This confirms that critical states have multi-
fractal fluctuations on a logarithmically small fraction of
the system volume. Moreover, the volumic scaling shows
that in the limit N ≫ Λ the NEV λ saturates to the
correlation volume Λ [42]. This implies that the delocalized
phase is ergodic in the limit of large N ≫ Λ.
We have checked that the scaling properties are the same

for q ≥ 1 whereas for q < 1 the volumic behavior of the
delocalized phase extends to the critical and localized
regimes. This is to be expected [15,17]: for q < 1 all small
values of the wave function, even outside the few locali-
zation branches, contribute to the moment.
Universality.—We have considered different values of

the graph parameter from p ¼ 0.01 to p ¼ 0.49 [42],
changing the average branching parameter K ¼ 1þ 2p
from K ¼ 1.02 to K ¼ 1.98. Our data show that the critical
scalings are insensitive to p. Moreover, the critical expo-
nents have universal values κ ≈ 0.5 and νl ≈ 1.

Conclusion.—Our study strongly supports the following
picture. A single transition separates a localized phase from
an ergodic delocalized phase. In the delocalized phase, the
NEV Λ separates a nonergodic behavior reminiscent of
glassy physics at small scales from an ergodic behavior at
large scales. At the transition, Λ diverges, so that the
behavior below Λ extends to the whole system. This
highlights a new type of strong nonergodicity with states
located on a few branches on which they display additional
multifractal fluctuations. The ergodic character of the
delocalized phase is controlled by the unusual volumic
scaling in this phase, different from the linear scaling that
applies in the localized phase and to the whole transition in
the Cayley tree as found in our glassy physics approach.
Therefore, the absence of a boundary may change the
nature of the AT, as envisioned in Ref. [26].
Our results apply to random graphs with 1 < K < 2. In

particular, for K ¼ 1.98, we found results in agreement
with the case K ¼ 2 investigated in Refs. [14,15,22,32].
Recent results [21,52] suggest that a nonergodic delocal-
ized phase could still arise at large K (see however
Ref. [23]). It will thus be very interesting to investigate
this regime K ≫ 2 with our approach. Last, nonergodicity
is usually linked with a specific dynamics, such as
anomalous diffusion, which will be instructive to study.
Another fascinating perspective would be to probe if our
nontrivial scaling theory applies to many-body localization.
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FIG. 3. hP2i versus box volume l for N ¼ 221 with p ¼ 0.06
and W ¼ 1.0 (square), 1.3 (circle), 1.6 (triangle), 2.4 (diamond).
The gray shaded area on the left delimits the small l < 1=2p
multifractal behavior (the dotted lines have a slope ranging from
0.44 to 0.66). The light-blue shaded area on the right delimits the
large scale l ≫ λ ergodic behavior (the dashed line has slope 1).

FIG. 4. Scaling behavior of the NEV λ with N ¼ 210 to 221,
p ¼ 0.06, and W ∈ ½0.8; 2.4�. At the threshold W ¼ Wc ≈ 1.6,
λ ∼ N= log2 N. In the localized phase, the data collapse is
excellent when plotted as a function of ðlog2 NÞ=ξ (linear scaling,
see text). In the delocalized phase, a volumic scaling as function
of N=Λ makes the curves collapse. The dotted line shows
asymptotic ergodic behavior N−1ðlog2 NÞ corresponding to
λ ¼ Λ [42]. Inset: determination of the NEV λ through rescaling
of ~π2ðlÞ data (see text) versus l=λ, in the large scale l ≫ λ
ergodic regime, for W ¼ 1.6 and N ¼ 210 (square), 214 (circle),
218 (triangle), and 221 (diamond).
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