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The Anderson transition in random graphs has raised great interest, partly out of the hope that its analogy
with the many-body localization (MBL) transition might lead to a better understanding of this hotly debated
phenomenon. Unlike the latter, many results for random graphs are now well established, in particular, the
existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase.
However, the renormalization group flow and the nature of the transition are not well understood. In turn,
recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless
type. In this paper, we show that the Anderson transition on graphs displays the same type of flow. Our work
attests to the importance of rare branches along which wave functions have a much larger localization length
ξ‖ than the one in the transverse direction ξ⊥. Importantly, these two lengths have different critical behaviors:
ξ‖ diverges with a critical exponent ν‖ = 1, while ξ⊥ reaches a finite universal value ξ c

⊥ at the transition point
Wc. Indeed, ξ−1

⊥ ≈ ξ c
⊥

−1 + ξ−1, with ξ ∼ (W − Wc )−ν⊥ associated with a new critical exponent ν⊥ = 1
2 , where

exp(ξ ) controls finite-size effects. The delocalized phase inherits the strongly nonergodic properties of the critical
regime at short scales, but is ergodic at large scales, with a unique critical exponent ν = 1

2 . This shows a very
strong analogy with the MBL transition: the behavior of ξ⊥ is identical to that recently predicted for the typical
localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important
properties for a small-world complex network model and show the universality of our results by considering
different network parameters and different key observables of Anderson localization.
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I. INTRODUCTION

The Anderson transition on random graphs has recently
generated great interest [1–35]. There are several reasons for
this, but certainly the analogy with the many-body localization
(MBL) transition is one of the most important [33,36–38].
The MBL transition is a phenomenon which has proven to
be extremely subtle, and after over a decade of considerable
work, both theoretical and experimental (see [39–41] for re-
cent reviews), it is not even clear whether the MBL phase
exists in one dimension or, if so, from what value of the
disorder [42–44]. In this sense, there is a much better grasp
of the Anderson transition on random graphs with disorder.
The existence and precise value of a critical disorder are well
established [23,24,45], and a number of critical properties are
well understood [14,22,25,29,33]. From the analogy between
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Anderson and MBL transitions, our understanding of one
system can shed light on the other.

In this paper, we investigate the Anderson transition on ran-
dom graphs by taking advantage of the knowledge on MBL.
The numerous studies on the MBL transition, and in particular
the difficulty of describing this phenomenon analytically start-
ing from a microscopic model, have led to the development
of an approach called the phenomenological renormalization
group (RG) [46–50]. This approach is based on an avalanche
mechanism thought to be responsible for an instability of
MBL leading to a transition to a thermal phase [42,51]. The
phenomenological RG allows to describe the renormalization
flow in the vicinity of the MBL transition. Remarkably, recent
studies have shown that this flow is of the Kosterlitz-Thouless
type [48] (or at least very similar to it [50]). Thus, from the
MBL side, we have precise analytical predictions of the flow
and the nature of the transition.

This is not the case for the Anderson transition on random
graphs: although several critical properties are known, the
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flow and nature of the transition are not. The purpose of this
paper is to remedy this. We will show that the flow of the
Anderson transition is of Kosterlitz-Thouless type, extremely
similar to the MBL transition, suggesting that they are in the
same universality class.

This result may seem surprising. Indeed, the analogy
between the MBL transition and the Anderson transition
on random graphs is not consensual with some differences
pointed out in the literature [28,33,52–55]. In the case of the
MBL transition, it is known that the phenomenological RG
predictions are extremely difficult (some studies even claim
impossible [56]) to verify numerically [57,58]. For the An-
derson transition on random graphs, characterizing the flow
is still a very difficult task. Indeed, recent debates about the
nature of the delocalized phase [5–7,9,11,14,17,22,29,30] and
about the value of the critical exponents [14,18,23,25,45,59]
have their origin in the subtlety of this critical behavior. A
large part of the paper will therefore be devoted to the descrip-
tion of our scaling approach, which enables us to characterize
these properties. Once this is done, we will be able to give a
coherent physical picture of the transition and show its close
analogy with the MBL transition.

In any theoretical approach to complex systems, it is im-
portant to have simpler models in which to test predictions.
This analogy between the flow in random graphs and MBL
opens many interesting questions. Could a phenomenological
RG approach be established in this case as well? Can we
test the relevance of the avalanche mechanism on this simpler
model? We believe that the interplay between the two models
will provide considerable insight into the physics of both
systems.

The paper is organized as follows. In Sec. II we present the
context, objectives, and main results of the paper. In Sec. III,
we present the Anderson model on a small-world network and
the exact diagonalization method we used. In Sec. IV, we
define the different observables we used to characterize the
Anderson transition (generalized inverse participation ratios,
correlation functions, and spectral statistics), and we describe
first results about their behavior. In Sec. V, we describe in
detail our finite-size scaling analysis of the transition. We test
systematically different scaling hypotheses and present the
quite rich outcomes of this analysis: different types of critical
behaviors for different observables and phases. In Sec. VI,
we give a global interpretation of the observed behaviors in
terms of a two-parameter scaling theory. In Sec. VII, we
show that our results can in fact be understood within the
framework of existing theories of the transition. In Sec. VIII,
we show that the Anderson transition on random graphs has
a Kosterlitz-Thouless type flow similar to the MBL transition,
suggesting that these transitions are in the same universality
class. Section IX summarizes the main conclusions of our
study.

II. CONTEXT, OBJECTIVES, AND MAIN RESULTS

A. Context

Anderson localization [60] is a paradigmatic interference
phenomenon in the presence of disorder which leads to a
total absence of transport instead of a diffusive one. It is now

well understood in finite dimension [61,62]. In particular, it
induces a metal-insulator transition in dimension three. This
is a second-order phase transition, described by a single-
parameter scaling law [61,63]. The analytical understanding
has been supplemented by a precise numerical determination
of critical properties by finite-size scaling [64–67], confirmed
by experiments with cold atoms [68]. At the critical point of
the transition, the states are multifractal [61,69,70], a nontriv-
ial example of nonergodic behavior.

In random graphs of infinite effective dimension, most of
these properties (critical and nonergodic) have been much
debated recently [1,5–34]. In fact, they are very different
from those in finite dimension, and their understanding is
important because of the analogy between the Anderson tran-
sition on such graphs and the many-body localization (MBL)
phenomenon [36–38]. MBL can be defined as the absence
of thermalization in a certain type of many-body quantum
systems isolated from their environment, in particular in the
presence of disorder and in one dimension (see, e.g., [39–41]
for recent reviews). The analogy between MBL and Ander-
son localization on random graphs can be understood by the
similarity between the structure of the Hilbert space of many-
body systems and that of random graphs of infinite effective
dimension (for limitations of the extent of this analogy see,
e.g., [28,52,53]).

Anderson localization on random graphs was described
quite early, first on the Cayley tree, where one can write an
exact self-consistent equation in a certain regime [1], then by
means of the supersymmetry method [2,3,17,22,33,71–73].
These results predict a transition between a localized phase
and an ergodic phase with a number of notable features: the
correlation volume diverges exponentially at the transition and
the critical eigenstates are localized. Nevertheless, the ergodic
character of the delocalized phase has been questioned more
recently [5–7,9]. After a strong debate, it is now understood
that the nonergodic properties of the delocalized phase de-
pend on the system under consideration. Indeed, the case
of the finite Cayley tree has a nonergodic delocalized phase
[10,12,13,18] while in its infinite counterpart, often called the
Bethe lattice, and in random graphs with loops and no bound-
aries, the delocalized phase is ergodic [11,14,17,22,29,30].
Different random matrix models have been proposed that
describe the mechanisms underlying these various behaviors
[8,26,29,31,59].

B. Main objectives of the paper

The nature of the Anderson transition on random graphs
and the type of its renormalization flow are the two main
questions we address in this paper. As explained above, we
are motivated by the recent predictions of the phenomeno-
logical RG on the MBL transition of a Kosterlitz-Thouless
type flow [47–49]. In this paper, we build a two-parameter
scaling theory describing the Anderson transition on random
graphs. We published recently two letters [14,25] discussing
some specific aspects of this transition, but a detailed and
comprehensive description was still missing.

We address this problem first by exact diagonalization with
state-of-the-art algorithms allowing us to reach very large
system sizes, up to N = 221 sites. Second, to overcome the
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FIG. 1. Illustration of our main results for the Anderson transition on random graphs. Right panel: In the localized regime, states show a
strongly anisotropic localization inherited from glassy nonergodic properties: they lie mainly on a few rare branches where their localization
length is ξ‖ while the localization length perpendicularly to these branches ξ⊥ is much smaller. Middle panel: Close to the transition, ξ‖ ∼
(W − Wc )−1 while ξ⊥ reaches a universal value ξ c

⊥ = 0.5/ ln K with a square-root singularity: ξ⊥ ≈ ξ c
⊥ − c

√
W − Wc with c a constant. This

is very similar to the predictions for the MBL transition [48] and underlies a two-parameter Kosterlitz-Thouless type flow. Thus, two critical
exponents control the finite-size scaling of different observables in the localized phase: ν‖ = 1 for average observables and ν⊥ = 1

2 for typical
ones. From the delocalized side, the correlation volume � diverges exponentially at the transition as ln � ∼ |W − Wc|−1/2. Left panel: In the
delocalized phase, there exists a characteristic volume � such that the behavior is ergodic for N � � (a consequence of the homogeneous
structure represented in the figure by the repetition of correlation volumes). For small system sizes N � �, the system inherits the strongly
nonergodic properties of the critical behavior, with localization on rare branches.

unavoidable finite-size limitations, we use a scaling approach.
In finite dimension, where the size constraints are much less
stringent than on random graphs, the scaling approach was
found necessary to obtain a controlled and precise numerical
determination of the critical behavior [64–67]. The difficulty
in the present case is that the scaling laws describing the
renormalization flow in the vicinity of the transition are not
known analytically, and that they are not controlled by a single
scaling parameter, but by two parameters, as we will show.
Finally, physical observables are characterized by large dis-
tributions, associated with rare events. This has a remarkable
effect with regard to the critical properties of the transition,
which can be distinct for average or typical observables, as in
the MBL transition [48,58].

Our present approach shows that the finite-size scaling of
the transition is quite subtle, but nevertheless allows us to
obtain a clear physical image of its properties. It also allows us
to get a precise, controlled and unbiased determination of the
critical exponents. In this article, we describe this approach
in detail. Finally, we make key observations underlining the
Kosterlitz-Thouless type of flow and the striking analogy be-
tween this transition and the MBL transition.

C. Summary of main results

In the small-world networks considered here, our results
indicate the existence of a transition from a localized to a
delocalized ergodic phase when the disorder strength W is
increased. These results are summarized below and illustrated
in Fig. 1.

In the regime where W is larger than a critical value
Wc, the system is localized with strongly nonergodic, glas-
sylike properties. A state is not localized in the same way
along the different branches of the graph, but on the con-
trary explores only a small number of the available branches,

analogously to directed polymers [5,74–76]. Along these rare
branches, the localization length ξ‖ is much larger than ξ⊥
which controls the extent of eigenstates perpendicularly to
these branches, as illustrated in Fig. 1 (right). This distinction
is all the more marked as one tends towards the transition,
where ξ‖ diverges, while ξ⊥ reaches a finite universal value.
In fact we find that the length ξ‖ diverges as (W − Wc)−1. By
contrast, ξ−1

⊥ ≈ ξ c
⊥

−1 + ξ−1 with ξ c
⊥ = 1/(2 ln K ) and ξ ∼

(W − Wc)−1/2, where exp(ξ ) controls finite-size effects. We
thus see the emergence of a flow with two critical localization
lengths, very similar to that predicted for the MBL transi-
tion [48], and of the Kosterlitz-Thouless type [77]. These
lengths characterize different properties of the system. Some
observables are governed by ξ‖: this is the case of the inverse
participation ratio and of the average correlation function of
eigenstate amplitudes. Other observables are governed by ξ⊥,
in particular the spectral statistics or suitably defined typical
correlation functions. Another remarkable feature is the strong
multifractality: while the large amplitudes of the eigenstates
have a localized behavior, their small-amplitude fluctuations
are multifractal (for more details see Sec. IV A). This strong
multifractality is also controlled by ξ⊥.

At the critical point, the system has an asymptotically
localized behavior: the spectral statistics show a slow con-
vergence to Poisson statistics and the multifractality is
asymptotically strong.

In the regime W < Wc, we find an ergodic delocal-
ized phase with, however, strongly nonergodic properties at
small scales. The characteristic scale is a correlation vol-
ume � which diverges exponentially at the transition as � ∼
exp[a(Wc − W )−1/2] where a is a constant. For small sys-
tem sizes N � �, the system inherits the strong multifractal
properties of the critical behavior, while at large scales it is
found ergodic: it is thus a strongly multifractal metal [70].
This regime is illustrated in Fig. 1 (left). These results, which
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we presented in [14] and that we confirm here, clarified the
debate on this important point. Note that there is now a con-
sensus that the delocalized phase on such graphs is ergodic
[11,14,22,23,26,29,45,78].

In this work the above physical picture of the transition
is obtained by means of a careful finite-size scaling analysis
of different observables across the transition. In the random
graphs we consider, finite-size scaling properties are highly
nontrivial. First, because on such graphs the volume scales
exponentially with its length, which implies that scaling laws
of the ratio between volumes N/� or lengths L/ξ are not
equivalent. This distinction is crucial as it allows us to deduce
whether a phase is ergodic, localized, or multifractal. Second,
because many observables have large distributions with fat
tails which implies the importance of rare events and, as
we show, different critical properties for typical or average
quantities. In the localized regime, we thus obtain two critical
localization lengths ξ‖ and ξ⊥.

Our approach gives a completely unexpected description
of the localized phase near the transition, where the distinc-
tion between two critical localization lengths had never been
anticipated. It shows that the flow depends on two param-
eters: the multifractal dimension D2, which can be seen as
a linear density of the equivalent of “thermal bubbles” in
the MBL problem, and the localization length ξ⊥, and is of
Kosterlitz-Thouless type. The localized phase is a “critical
line” characterized by a vanishing D2 and a finite ξ⊥ up to
Wc where ξ⊥ reaches a finite universal value and then has a
jump in the ergodic delocalized phase. The results we find for
ξ⊥ are identical to what is predicted for the MBL transition by
the phenomenological renormalization group [48]. This is a
compelling evidence that these two transitions are in the same
universality class, despite their important differences.

III. MODEL AND METHODS

A. Model

The Anderson model [60] is the paradigmatic model for
studying Anderson localization. It consists of a network where
vertices have random energies distributed according to a cer-
tain law, and are linked together by hopping amplitudes.
The topology of the considered network is of crucial im-
portance. Anderson localization has been widely studied in
finite-dimensional networks (e.g., the square lattice in dimen-
sion 1 to 10, see [79–81]), but also in fractal networks [82]. We
are interested here in networks of infinite effective dimension,
which means that the number of nodes N scales exponentially
with the diameter dN (the maximum distance between any
two sites) of the graph. Different types of such networks have
been considered: random regular graphs (RRG) [11], critical
Erdös-Renyi graphs [32,81], the (finite) Cayley tree, and the
(infinite) Bethe lattice [5,7,75,83,84].

In this work we consider another type of random network,
called small-world network. The small-world phenomenon,
first introduced by Milgram [85], was subsequently investi-
gated theoretically in the context of network theory [86,87].
The model consists in a one-dimensional (1D) lattice with
nearest-neighbor coupling and additional 	pN
 long-range
links (	· 
 represents the integer part, and p ∈ (0, 1

2 )). The

FIG. 2. Example of small-word model eigenfunction for N =
512, p = 0.01 (	pN
 = 5 small-world links) and W = 0.4. Colors
are proportional to |ψi|2, from large (dark blue) to small (white)
values. Left: 1D lattice with long-range links. Right: Same graph
viewed as a network with vertices arranged according to the under-
lying treelike structure. Long-range links (highlighted in red) occur
wherever a vertex has three neighbors.

corresponding quantum mechanical problem is that of a tight-
binding model on the lattice [88,89]. It can be described by
the following Hamiltonian:

H =
N∑

i=1

εi|i〉〈i| +
∑
〈i, j〉

|i〉〈 j| +
	pN
∑
k=1

(|ik〉〈 jk| + | jk〉〈ik|). (1)

The first term is the onsite disorder with εi independent and
identically distributed random variables, which follow here,
unless otherwise stated, a Gaussian distribution with zero
mean and standard deviation W . The second term runs over
nearest neighbors of the 1D lattice. The third term gives the
long-range links that connect pairs (ik, jk ), randomly chosen
with |ik − jk| > 1.

In Fig. 2 an instance of such a random graph is depicted,
together with an example of an eigenfunction of H close to
the band center, in two different representations: either as a
one-dimensional chain with periodic boundary condition and
five additional long-range links, or as a treelike graph. These
representations are of course equivalent since the Hamiltonian
(1) only depends on the topology of the graph.

The small-world graph is characterized by the statistical
properties of paths that relate pairs of vertices. For p = 0, a
1D lattice (and thus the 1D Anderson model) is recovered.
For a moderate number of long-range links (small p), the
graph behaves locally as a tree, with on average K ≈ 1 + 2p
branches leaving from each vertex. This is best seen by plot-
ting the number N (r) of pairs of nodes at a fixed distance
r on the network. As shown in Fig. 3, this number grows
exponentially up to a distance of the order ∼dN/2, where dN

is the diameter of the graph. The exponential growth is given
by N (r) ∝ Kr , with K ≈ 1 + 2p. Thus, at finite p, the model
is a random graph with mean branching number K ≈ 1 + 2p,
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FIG. 3. Left: Number of pairs of nodes at a fixed distance r in the
small-world network for p = 0.06 (triangles), p = 0.25 (squares),
and p = 0.49 (circles). The system size (for the colored symbols)
is N = 217. The gray lines correspond to smaller system sizes. The
straight lines were obtained from fitting N (r) ∼ Kr at small r. The
values of K obtained from these fits are K = 1.199, 1.614, 1.976
which differ slightly from the theoretical prediction K = 1 + 2p (see
[45]). Right: Diameter dN of the graph is well described by a linear
function of log2 N , as shown by the linear fits (solid lines). The
symbol correspondence is the same as in the left panel.

i.e., the sites have, on average, a number of nearest neighbors
Z = K + 1 = 2 + 2p (see also [45]). Moreover, the average
distance between two long-range links is 1/(2p). While the di-
ameter of random regular graphs of connectivity K possesses
similar properties (their diameter scales as the logarithm of
their size [90]), one of the main interests of our model is
that we can continuously control through p the value of the
branching number K and thus access the regime 1 < K < 2.
This is particularly interesting to check the universality of
the critical properties (see also [45]) and allows also to reach
much larger range of diameters as compared to RRG where K
is an integer often taken equal to K = 2 in numerical studies.

Another important property of this graph is that it has no
boundaries and contains loops that typically vary in size like
dN . This is analogous to the case of RRG, but distinct from
the finite Cayley tree, which has no loops and whose number
of sites at the boundaries is proportional to the total number
of sites. This distinction turns out to be crucial. In the case of
the Cayley tree, it has been shown that the delocalized phase is
nonergodic [12,13,18,78], whereas in the case of RRG, Erdös-
Renyi graphs, and the small-world network, borderless and
with loops, there is now consensus that the delocalized phase
is ergodic [11,14,22,23,26,29,45,78,91].

B. Diagonalization method

The Anderson model on the swall-world network defined
in Eq. (1) thus results in an ensemble of sparse random ma-
trices that can be diagonalized to characterize the localization
properties of this system. We are interested in the statistics
of eigenstates and eigenenergies in the middle of the band,
i.e., for eigenenergies close to 0. Working in the middle of
the band, where the density of states is large, represents a nu-
merical difficulty whose solution is nevertheless well known
as the shift-invert method [92]. This method, used since a
few decades in Anderson localization, has recently been trans-
ferred to MBL [93,94], and allows to reach very large Hilbert

space sizes (in this work we consider system sizes up to
N = 221).

We have used the highly optimized library called JADAMILU

[95] which implements the Jacobi-Davidson method with ef-
ficient multilevel incomplete lower-upper (LU) precondition-
ing. The typical number of graph and disorder realizations, for
each value of disorder W , is 104–105 for N � 216 and 103–104

for 216 < N � 221. For each realization and each system size,
we compute 16 eigenvalues and eigenfunctions around the
center of the band.

IV. BEHAVIOR OF OBSERVABLES

The localization properties of the considered model (1) can
be characterized from the spatial distributions of the eigen-
states and the statistical properties of the energy levels. We
describe in this section first the principle and simple results
of the multifractal analysis of the eigenstates that we have
made. Then we describe the spectral analysis method and its
first simple results. Interestingly, we will see that different
observables do not necessarily give the same information on
the localization transition, and therefore are complementary.
This is an aspect that is particularly important in random
graphs, contrary to finite-dimensional networks where it is
much less crucial.

A. Multifractal analysis

Multifractality, introduced in the 1970s [96,97], describes
a whole range of phenomena, from turbulence to the economy
or the DNA structure (see references in [98]). Multifractals
are characterized by the existence of a whole range of fractal
dimensions. Quantum multifractality is a more recent concept.
It was observed, among other systems, at the threshold of the
Anderson transition in finite dimension [99–102], in quantum
Hall systems [103,104], in various random matrix models
such as the power-law random banded matrix model [105,106]
or quantum maps [107,108], and was very recently analyzed
mathematically in singular quantum billiards [109].

One of the manifestations of multifractality is the alge-
braic scaling of the moments of eigenfunctions with system
size N . For an eigenstate (ψi )1�i�N , the qth moment Pq =∑

i |ψi|2q scales as Pq ∼ N−τq . Multifractal dimensions are
defined as 0 � Dq = τq/(q − 1) � 1. In general, multifractal
dimensions depend on q in a nontrivial way. A multifractal
state with 0 < D2 < 1 thus occupies a volume which in-
creases with N as ND2 , but occupies an algebraically small
fraction of the total volume N , a property which has been
called “nonergodic extended” recently [9]. The algebraic be-
havior of the moments corresponds to the fact that there is no
characteristic scale, contrary to the localized and delocalized
regimes which are associated with a localization and a cor-
relation length, respectively. Above this characteristic length
scale, one expects τq = 0 for a localized state (for q > 0),
while τq = q − 1 for an extended state.

Multifractal analysis allows to extract the above proper-
ties from quantum states. It can be done in different ways
(see, for example, [61,67]). In what follows, we study the
average moments 〈Pq〉 = 〈∑i |ψi|2q〉, where 〈·〉 is an average
over disorder and graph realizations as well as over all the
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eigenvectors around the band center considered in each real-
ization. The behavior of these moments as a function of the
size of the system N provides information on the localization
of a state ψ . In particular, if we consider q = 2, we obtain
the inverse participation ratio, which quantifies the number of
sites occupied by a state. Thus, for a localized state, which
occupies Nξ sites [Nξ ∼ ξ d in finite dimension, and Nξ ∼
exp(aξ ) in infinite dimension], P2 ∼ 1/Nξ if N � Nξ . On the
contrary, if the state is delocalized, then P2 ∼ 1/N .

Furthermore, different values of q allow to analyze differ-
ent ranges of the wave-function amplitudes. Thus, for large q,
Pq will be dominated by large amplitudes |ψi|2, whereas for
small q, we will focus on the low values of the amplitudes,
close to zero. In fact, for small q, Pq is strongly dependent
on rare events where the wave function almost vanishes, and
therefore Pq fluctuates strongly despite the average over the
states and the disorder. In this case, it is necessary to use a
coarse-graining approach in order to soften these singularities.
We proceed as follows: We partition the system into N/�

boxes of � sites. In the considered small-world system, we do
this by following the 1D chain. We then define the coarse-
grained amplitude associated to the box k = 1, . . . , N/� as
μk = ∑

i∈k |ψi|2 where the sum is over the � sites i belong-
ing to the box k. Note that by normalization of the state ψ ,∑

k μk = 1. The moments are then expressed as Pq = ∑
k μ

q
k .

We have considered in this work a coarse graining with � = 4
for all the values of q considered. Note that a multifractal
analysis can be done considering the dependence of Pq with
� instead of N . We have presented such a study in [14] which
provides interesting information, allowing in particula to char-
acterize a nonergodic volume in the delocalized phase. We
will not detail these results in this paper but instead focus on
the more standard approach considering Pq as a function of N
at fixed �.1

We have obtained data for 〈Pq〉 and their uncertainties for
q ∈ [0, 4], N from N = 26 to N = 221, and p from p = 0.01
to 0.49 for a normally distributed disorder, and for a box-
distributed disorder. Numerical data are shown in Fig. 4 for
two values of q, one large q = 2 and one small q = 0.25 (the
distinction between small and large being given by q < 1

2
for small and q > 1 for q large, as we will explain in the
following), for p = 0.25. Numerically we can calculate the
local in N multifractal exponents τ̃q(N ), defined as

τ̃q(N ) = log2〈Pq(N )〉 − log2〈Pq(N/2)〉. (2)

They characterize the flow of the multifractal exponents with
system size N , which indicates whether we tend to a mul-
tifractal, localized, or delocalized behavior. The behavior of
such local exponents, obtained from the slopes of the curves
in Fig. 4, as a function of q and for different system sizes, is
shown in Fig. 5. In the localized regime, when N → ∞, τ̃q

1Note that for the Anderson transition in 3D, it has been found [67]
that one needs to work at fixed �/N ratio to determine accurately the
critical exponent of the transition from multifractal data. Whether
this is also the case in random graphs of infinite dimension is an
open question we leave for further studies.

FIG. 4. Average eigenfunction moments 〈Pq〉 as a function of the
system size for p = 0.25 and q = 0.25 (top) and q = 2 (bottom).
Dashed lines are the limiting ergodic behavior 〈P(erg)

q (N )〉 ∼ N−(q−1),
observed at small W . A localized behavior corresponds on the con-
trary to 〈Pq〉 = cst. In contrast to the case of the Anderson transition
in finite dimension, there does not exist for q = 2 a curve with in-
termediate scale-invariant behavior 〈Pq〉 = N−τq . Therefore, it is not
obvious a priori to determine the threshold Wc from these data. For
q = 0.25, there exists a finite range of W for which 〈Pq〉 ∼ N−τq (W )

at large N , i.e., a disorder-dependent multifractal behavior. This is
again very different from the finite-dimensional transition and is
reminiscent of a delocalized nonergodic phase. However, as we shall
see, this multifractal behavior arises in the localized phase W > Wc

for q < 1
2 .

goes to the asymptotic expression

τq =
{

q/q∗ − 1 for q � q∗,

0 for q � q∗ (3)

(see [7,12]). This behavior is called “strong multifractal-
ity,” in the sense that for q < q∗ we have a multifractal
behavior, while for q > q∗ the Dq are 0 and we have a lo-
calized behavior. In this work, q∗ is determined by a linear
fit of τ̃q at small q � 0. It depends crucially on W , and the
system size close to the transition, as shown in the lower
panel of Fig. 5. In fact, this dependence encodes, as we will
show, a new critical exponent characterizing the transition
in the localized regime. The strong multifractality of the lo-
calized regime is reminiscent of the multifractality of the
MBL phase [54,55]. Nevertheless, as we will discuss later,
it is rather the result of an effective algebraic localization
[110].

In the delocalized regime τ̃q goes asymptotically to the
function

τq = q − 1 (4)

as expected for ergodic delocalized wave functions. Never-
theless, the convergence with system size N to this asymptotic
behavior is slow, particularly close to the transition point. This
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FIG. 5. Top: Multifractal exponents τ̃q extracted from the mo-
ments (see Fig. 4) for p = 0.25 and various disorder strengths from
small W (delocalized regime) to large W (localized regime). In the
localized regime, τ̃q tends to the strong multifractal behavior given by
Eq. (3), i.e., τq = q/q∗ − 1 for q � q∗ and τq = 0 for q > q∗. In the
critical regime τ ∗

q is given by the same expression, with q∗ = q∗
c = 1

2 .
In the ergodic phase, τq = q/q∗ − 1 with q∗ = 1. Bottom: depen-
dence of q∗ with W and system size for p = 0.25. The grayscale goes
from L = log2 N = 10 (light) up to L = 20 (dark). There is evidence
of a discontinuous jump at the transition from 0.5 to 1 in the thermo-
dynamic limit. The red line shows the fit q∗ = q∗

c − C(W − Wc )v⊥

for the localized phase. The cross marks the Wc ≈ 4.1 obtained from
this fit. The squares show ξ⊥ ln K where ξ⊥ was obtained from fitting
C̃typ(r) ∼ e−r/ξ⊥ .

is illustrated in the lower panel of Fig. 5 where the conver-
gence of q∗(W, N ) for W < Wc to its ergodic value q∗ = 1 is
clearly visible only sufficiently far from the transition point.
On the contrary, close to the transition, it is unclear at this
stage of the analysis whether it would converge to q∗ = 1,
thus forming the asymptotic step function depicted by the
gray line in the lower panel of Fig. 5, or if it converges to a
function 1

2 < q∗(W ) < 1 for a certain range of We < W < Wc,
only reaching q∗ = 1 at W � We, similarly to what is found in
the Cayley tree [7,12,13]. In the first scenario, the delocalized
phase is ergodic while in the second, there exists a multifrac-
tal, i.e., a delocalized nonergodic regime for We < W < Wc.
This question, which has been much debated recently [5–34],
motivates the finite-size scaling analysis that we will describe
later. We will see that it is the first scenario that is valid: there
exists a characteristic “correlation” volume �(W ) such that
q∗ → 1 for N � �(W ), with �(W ) diverging exponentially
at W = Wc.

At criticality W = Wc (we will explain how we determine
Wc later), local multifractal exponents converge to the same
form (3) as in the localized case with q∗ = 1

2 . The fact that
q∗ = 1

2 at criticality is required by a fundamental symmetry
of the multifractal spectrum [4,110,111]. This critical behav-
ior implies that Pq scales algebraically with N for q < 1

2 , as

FIG. 6. Critical behavior of average moments 〈Pq〉 as a function
of the system size for W near the critical point Wc at p = 0.25:
W = 3.9 (squares), W = 4.0 (circles). Top: For q = 0.25 < 1

2 , the
critical behavior is multifractal with 〈Pq〉 ∼ N−τq (solid lines are the
corresponding fits); inset shows Dq = τq/(q − 1) for various values
of W in the vicinity of Wc. Bottom: For q = 2 > 1

2 , the critical behav-
ior is asymptotically localized. We represent two fitting hypotheses:
A1 + A2/(ln N )0.5 [22] (dark) and B1(ln N )−σ2 [14] (light) with σ2 =
−0.332 ± 0.015 for W = 3.9 and 0.24 ± 0.004 for W = 4.0. We are
unable to distinguish clearly between these two possibilities.

shown in the upper panel of Fig. 6 for q = 0.25, p = 0.25. On
the contrary, Pq at large values of q > 1/2 tends logarithmi-
cally slowly to a localized behavior Pq ≈ A1 + A2/(ln N )0.5

with A1 and A2 two finite constants, in agreement with the
theoretical prediction [3,22]. Our previous prediction Pq ∼
(log2 N )−σq [14], based on the extension to infinite dimension
of the multifractal scaling Pq ∼ L−σq at the transition in finite
dimension [61], with L ∼ log2 N the linear dimension of the
system, fits also very well the data and is almost indistin-
guishable from the other form predicted analytically [3,22].
These two behaviors give, however, two different pictures of
the critical behavior: either localized with logarithmic finite-
size corrections or multifractal on few branches (because the
number of sites on a branch of the graph scales like log2 N and
σ2 < 1). We are unable to distinguish clearly between these
two possibilities. There also remains the question of whether
the analytical predictions of [3,22] are valid for low values of
K < 2 as considered here (see the discussion of correlation
functions, in particular). In the following, we will continue to
assume Pq ∼ (log2 N )−σq as it simplifies some aspects of the
physical interpretations of our analysis.

These behaviors are valid independently of p; only the
value of the critical disorder depends on the value of p, as
illustrated in Fig. 20 in Appendix A. More refined analysis
such as finite-size scaling will be employed later in Sec. V to
characterize the transition.
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B. Correlation functions

Correlations between wave-function amplitudes are an-
other important characterizion of localization properties [61].
We will see here that they make it possible to highlight in
a particularly clear way certain nonergodic properties of the
states. Although many studies have focused on the ergodic
or nonergodic properties of the delocalized phase (see, e.g.,
[5–7,9]), the localized phase has quite remarkable properties
from this point of view [25]. Thus, an analogy can be made
with the problem of directed polymers [1,75,112–115], an
important statistical physics model which, despite its simplic-
ity, has a glassy phase where the replica symmetry is broken
[74,116,117]. This analogy suggests that the quantum states in
the localized phase have spatial properties dominated by rare
events: they only explore a finite number of rare branches,
among the exponential number of branches available. Thus,
the states are not isotropically localized, i.e., with the same
localization length in all directions, but on the contrary the
localization length ξ‖ can be abnormally large along certain
branches, and the localization length ξ⊥ much smaller in the
transverse directions. The rare branches nevertheless domi-
nate the averages [25]. An important point to emphasize is
that these are not rare events in the common sense of a rare
configuration of disorder. Here, for each disorder configura-
tion, there exist rare branches. As we will see, this physical
image implies several interesting properties, in particular, on
the critical behavior of the system. It is central to our work.

It is important to try to support this analogy and the physi-
cal image we have discussed above. The correlation functions
that we are going to introduce here allow this. The usual
way to define an average correlation function between the
amplitudes of a wave function is [61]

C̃av(r) =
〈

1

N

N∑
i=1

1

N (r)

∑
j,d (i, j)=r

|ψi|2|ψ j |2
〉
, (5)

where the distance r between two vertices is taken as the
minimal path along the small-world network, and N (r) is the
average number of sites at a distance r from a given site. The
supposed presence of rare branches for each state and each
configuration implies that the sum over the sites j at distance
r from site i, d (i, j) = r, will be controlled by ξ‖.

In order to compute a meaningful typical correlation func-
tion, which escapes the domination of the rare branches, we
can replace the sum over sites at distance r in Eq. (5) by the
contribution of a single site at distance r, taken at random. By
taking the logarithm, we will end up with a typical estimate of
the correlation. Thus, we define

C̃typ(r) = exp

〈
ln

(
1

N

N∑
i=1

|ψi|2|ψ j0 |2
)〉

, d (i, j0) = r (6)

where a single site j0 at a distance r from i is picked at
random. The position of j0 does not matter, as averaging over
disorder is also performed in (6).

These definitions, that can be applied for any graph, are
similar to the average and typical correlation functions that
we defined in [25]. In that paper, we considered the corre-
lations along the 1D chain at the basis of the small-world
network (see discussion in Appendix B). Interpreting in the

FIG. 7. Average C̃av (left) and typical C̃typ (right) correlation
functions of eigenvector amplitudes given by Eqs. (5) and (6), respec-
tively, for p = 0.25, N = 217, and three values of disorder W = 2.5
(delocalized), 4.0 (≈ Wc ), and 5.0 (localized). The average correla-
tion function is controlled by ξ‖ while the typical one is associated
with ξ⊥, with ξ‖ � ξ⊥, resulting in orders of magnitude differences
of the two correlation functions. Dashed lines are small-r fits cor-
responding to Eq. (7) for C̃av and Eq. (8) for C̃typ. ξ‖, shown in
Fig. 15, diverges at the transition, while ξ⊥, represented in the lowest
panel of Fig. 5, reaches a finite universal value at Wc. The values
obtained for the parameter α of Eq. (7) are 1.48 ± 0.23 for W = 2.5,
1.51 ± 0.18 for W = 4, and 1.38 ± 0.15 for W = 5, consistent with
the theoretical prediction α = 3

2 [22].

vicinity of point i this chain as a typical branch, we could
then define the average Cav(r) = 1

N

∑N
i=1〈|ψi|2|ψi+r |2〉 and

typical Ctyp(r) = exp〈ln( 1
N

∑N
i=1 |ψi|2|ψi+r |2)〉 with the aver-

age taken over random realizations. Following the 1D chain
is equivalent to choose one arbritrary branch, which is not
systematically the rare branch. This is similar to the random
choice of j0 in Eq. (6). We have checked the good agreement
between these definitions on the 1D chain and the new graph
correlation functions (5) and (6) (see Appendix).

The average correlation function was described analyti-
cally in [22]. It follows in the localized regime

C̃av(r) ∼ K−r e−r/ξ‖

rα
, (7)

with α = 3
2 , where we have replaced the localization length

considered in [22] by ξ‖ introduced in our work. On the
contrary, we found in [25] that

C̃typ(r) ∼ e−r/ξ⊥ . (8)

Figure 7 shows the strong difference between these two corre-
lations and their associated localization lengths. The data for
the average correlation function are very well fitted by Eq. (7)
with values of the fitting parameter α ≈ 1.5, confirming the
prediction of [22]. On the other hand, the typical correlations
decay exponentially with no power-law corrections and a
much smaller localization length ξ⊥ � ξ‖ leading to values
of typical correlations orders of magnitude smaller than for
the average. We can interpret ξ‖ as the average localization
length and ξ⊥ as the typical one. We will go back to ξ‖ and
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ξ⊥ later, by relating these characteristic lengths to multifractal
properties and finite-size effects. In particular, we will see that
they are associated with different critical exponents.

C. Spectral statistics

We now investigate quantities defined from the spectrum
of H . Let E1, E2, . . . denote the set of ordered eigenvalues
of H , and sn ≡ En+1 − En denote the spacing between con-
secutive energy levels. The distribution of the ratios rn =
min(sn/sn−1, sn−1/sn) allows us to probe the transition from
the localized regime, which should be governed by Poisson
level statistics, to the delocalized regime, controlled by ran-
dom matrix theory (RMT) [118,119]. In the case of ergodic
delocalized wave functions, RMT predicts a distribution of ra-
tios close to the Wigner-Dyson surmise PWD(r) = (27/4)(r +
r2)/(1 + r + r2)5/2, whereas localized states do not show sig-
nificant level repulsion and thus have randomly distributed
energy levels, whose ratios follow the Poisson distribution
PP(r) = 2/(1 + r)2 [120,121].

In order to analyze the crossover from Poisson to Wigner-
Dyson level statistics, we define the parameter ηr as

ηr = 〈r〉 − 〈r〉P

〈r〉WD − 〈r〉P
, (9)

where 〈·〉 denotes an ensemble average and 〈r〉P ≈ 0.3863
(〈r〉WD ≈ 0.5359) is the average of r when r is distributed
according to PP(r) [PWD(r)]. The parameter ηr ranges from 0
for Poisson statistics to 1 for Wigner-Dyson statistics. The ob-
servable r has been considered in many studies to characterize
the Anderson transition and the MBL transition [6,11,122–
124]. We believe that the quantity ηr is more appropriate to
describe the transition, in particular its critical behavior. We
will come back to this statement later.

Figure 8 shows 〈r〉 − 〈r〉P as a function of the system
size for large, critical, and small disorder strengths. For
small disorder (W = 0.8 for p = 0.06), 〈r〉 tends to its RMT
value associated with states delocalized over the whole net-
work with large overlaps; for large disorder (W = 2.4 for
p = 0.06), 〈r〉 converges to its Poisson value, reflecting the
presence of localized states. The inset of Fig. 8 shows the
distribution of ratios. For small disorder, the distribution is
close to PWD(r). For large disorder, the distribution is close to
PP(r).

Between these two extremes, the behavior of ηr as a
function of N is nontrivial. In the delocalized phase near
the transition, W � Wc, we first observe a decrease followed
by an increase. This has been described in several studies
[11,30,91], which associate a correlation volume � with the
value of N at the minimum of ηr. In fact, at the transition
point (or slightly above the transition point Wc determined by
finite-size scaling, see next section) we find, in accordance
with [22,45], that the spectral statistics converges to Poisson
logarithmically slowly with the system size, following

〈r〉 ≈ 〈r〉P + A

(log2 N )α
. (10)

FIG. 8. Top: Average spectral gap ratio 〈r〉 − 〈r〉P as a function
of system size for p = 0.06 and various disorder strengths. Bottom
left middle: 〈r〉 − 〈r〉P slightly above the critical point as a function
of system size, for (p,W ) = (0.06, 1.8) (squares) and (0.25,4.2) (tri-
angles) with Gaussian-distributed disorder, and (p,W ) = (0.49, 18)
(rhombus) with box-distributed disorder. Straight lines are a fit of
the form (10) (left panel) and (11) (middle panel) with (A, α) ≈
(0.90, 1.63) and (B, βr) ≈ (0.09, 0.14) for p = 0.06, (A, α)
≈ (0.66, 1.49) and (B, βr) ≈ (0.06, 0.11) for p = 0.25 and
(A, α) ≈ (0.73, 1.55) and (B, βr) ≈ (0.07, 0.12) for p = 0.49.
Bottom right: Distribution of ratios for N = 210, 214, 218, p = 0.06
and W = 0.8 (yellow), W = 1.80 (blue-green), and W = 2.4 (dark
purple). The gray/black dotted curves correspond to the Poisson and
Wigner-Dyson distributions (see text).

This behavior is shown in Fig. 8 (bottom middle panel). How-
ever one can not entirely exclude an algebraic decay as

〈r〉 ≈ 〈r〉P + B

Nβr
, (11)

that we will justify later. The nonmonotonic behavior of ηr
as a function of N for W < Wc can therefore be interpreted
as first following the critical behavior, until N reaches the
correlation volume beyond which the system is of sufficiently
large size for delocalization to manifest, i.e., ηr increases. This
is after all a behavior commonly observed in continuous phase
transitions.

What is less so is the behavior of ηr at the threshold of
the transition, which decreases logarithmically to its Poisson
value. At the Anderson transition in finite dimension, ηr takes
an intermediate value and the distribution of r is intermediate
between Poisson and RMT [123]. This involves a crossing
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of the curves of ηr as a function of W for different values
of N , thus defining Wc. On the contrary, in the present case,
a drift of these crossings is observed, which simply means
that at the threshold, ηr is not constant but varies with N . The
fact that the spectral statistic described by r converges slowly
towards Poisson indicates a quasiabsence of level repulsion
of the states at Wc, which is consistent with the strong mul-
tifractality of critical states, with Dq = 0 for q > 1

2 . Critical
states are therefore quasilocalized, thus do not show level
repulsion. On the contrary, in finite dimension, critical states
display multifractality with 0 < Dq < 1 for all q > 0, and
thus show level repulsion and an intermediate statistics for r
[125,126].

Note that such a nonmonotonous behavior has been
observed for other observables such as τ̃2, and analyzed fol-
lowing the same type of reasoning, in the delocalized phase
close to the transition [11,78]. This has allowed for a deter-
mination of the correlation volume �(W ) and its exponential
divergence at Wc. Nevertheless, we think that this does not
allow concluding with certainty as to the ergodic nature of
the delocalized phase and does not allow either to describe
the nature of the phase transition, for example, if it is of the
Kosterlitz-Thouless type. This motivates our analysis of the
critical properties through finite-size scaling that we describe
in the next section.

V. FINITE-SIZE SCALING THEORY

We qualitatively described the behaviors of different ob-
servables across the Anderson transition on the small-world
network we consider: moments Pq, correlation functions, and
spectral statistics. A number of observations strongly motivate
the use of a more elaborate method of analysis to characterize
the transition:

(i) First, it is not at all clear how to determine the value
of Wc from these observations. Indeed, certain observables
such as the inverse participation ratio P2 or ηr tend towards a
localized behavior in the vicinity of Wc. On the contrary, Pq for
0 < q < 1

2 has a more usual intermediate multifractal behav-
ior, similar to what is found in the Anderson transition in finite
dimension. Some authors have recently proposed a method
to determine Wc indirectly and quite precisely [23,24,45]: the
type of graph considered should, in the thermodynamic limit,
be equivalent to a Bethe lattice. Indeed, the typical size of the
loops present in the small-world network varies like log2 N
and therefore diverges in the thermodynamic limit, suggest-
ing, if we neglect the subdominant effects of small-size loops,
a mapping between this network and the Bethe lattice. More-
over, it is possible to accurately determine Wc in the Bethe
lattice.

We describe here another approach based on the finite-
size scaling method. This approach that we propose does not
presuppose any form for the critical behavior of the consid-
ered observable, nor any particular property of the network.
It makes it possible to quantitatively determine values of
Wc compatible with our numerical data for each observable
considered. Of course, the good correspondence between the
different values of Wc obtained for different observables and
with the predictions based on the mapping to the Bethe lattice
[23,24,45] will have to be examined closely.

(ii) Second, finite-size effects are particularly marked in the
neighborhood of the transition, and do not allow to conclude
as to the ergodic nature of the delocalized phase. Several
studies [7,9,18] have described extrapolations of the behaviors
of Pq towards the thermodynamic limit suggesting a noner-
godic delocalized behavior. Other studies [11,78], considering
the same observables on the same systems, conclude, via an
analysis of the minimum of τ̃2 in favor of an ergodic behavior.
They identify a characteristic correlation volume �(W ) from
this minimum, which is found to diverge exponentially at
Wc, �(W ) ∼ exp[a(Wc − W )−1/2], as expected theoretically
[3,4,23]. However, the behavior beyond that characteristic
scale has not been shown to be ergodic. This illustrates well
the subtlety of the analysis of the vicinity of the transition. In a
usual phase transition, an extrapolation to the thermodynamic
limit is performed by the method of finite-size scaling. It is
this approach that we have followed in [14,25] and that we
will describe in detail in this section.

(iii) Third, it is interesting to understand the nature of this
phase transition, particularly in view of its supposed link with
the MBL transition [15,28,33,36,38,52,55]. A number of ele-
ments suggest that this is not a second-order phase transition,
in contrast to the Anderson transition in finite dimension. Is it
a Kosterlitz-Thouless type transition as would be the case for
the MBL transition in the phenomenological renormalization
group approach? Note that although many analytic predic-
tions have been made for the Anderson transition on random
graphs, see e.g. [3,4,7,13,18,23,127,128], the nature of the
transition and its renomalization flow have not been described.
A careful finite-size scaling approach can give some elements
allowing progress on this important question.

The scaling theory of localization [61,63–65] has played an
extremely important role in the field of Anderson localization.
On the theoretical level, it allowed the understanding of the
Anderson transition as a second-order phase transition, with
the characterization of its lower critical dimension and of its
universality classes. Numerically, it allowed the demonstra-
tion that dimension two in the orthogonal class is always
localized, and the precise and controlled determination of the
critical exponent ν of the transition from different observ-
ables, in different dimensions and universality classes.

Implementing the scaling approach to analyze numerical
data relies on a number of steps: First, a scaling-law hy-
pothesis is made. Generally, a single-parameter scaling law
is sufficient, which takes the form

X (W, L) = X (Wc, L) F [L/ξ (W )], (12)

where X is the observable considered, X (Wc, L) its critical
behavior, and the scaling function F depends only on the ratio
of L the linear size of the system (here the diameter of our
graph, L = dN ) by the characteristic length scale ξ . ξ depends
only on W and diverges at the transition as ξ ∼ |W − Wc|−ν

with the critical exponent ν. The two asymptotic behaviors of
F at large L � ξ (W ) for W > Wc and W < Wc describe the
asymptotic behavior of the observable X in the two phases, lo-
calized or delocalized. Multiplying F by the critical behavior
allows to describe first a critical behavior for L � ξ (W ) and
then the behavior associated to one of the phases. Irrelevant
corrections can be considered in the form of a two-parameter
scaling function (see [66]).
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In the second step, we test its compatibility with the nu-
merical data. Different approaches can be used. In the first
approach, we try to collapse each curve for X (W, L)/X (Wc, L)
as a function of L for different values of W onto a single
scaling function by plotting the data as a function of L/ξ (W )
[65,129]. In that procedure, no assumption is made on the
form of F or ξ : they are determined by the best collapse of the
curves. This is a good check of the scaling hypothesis, even far
from the transition where nonlinear corrections on the scaling
function and scaling parameter are usually observed.

Another approach is to use a Taylor expansion of the scal-
ing function and scaling parameter close to Wc and to fit the
data with this ansatz [66,67,130]. This is the most controlled
procedure to determine the critical exponent ν, in particular
in the presence of irrelevant corrections. Nevertheless, very
precise data covering a sufficiently large range of disorder W
and system size N are crucial to test conclusively the scaling
assumption and arrive at a controlled estimate of the critical
parameters Wc and ν.

In our study, we have used both approaches to describe the
critical properties of the Anderson transition on the small-
world network we consider. First of all, we will see that
there are different scaling assumptions that can be made in
this infinite dimension case. In order to determine whether
a scaling hypothesis agrees with our data, we have found
that one must consider a large range of W , the system sizes
being limited to N � 221 in our case. Far from the transition,
nonlinear corrections are important and make the approach
by Taylor expansion difficult. Finally, we found unusual be-
haviors in the vicinity of the transition, with different scaling
functions on either side of the transition and exponentially di-
verging scaling parameters, properties that are excluded for a
second-order phase transition, but which could be compatible
with a Kosterlitz-Thouless type transition. Nevertheless, in a
certain number of cases, we have managed to make an analysis
through the Taylor expansion approach of the scaling analysis,
and determine the critical exponent in a precise and controlled
way.

A. Finite-size scaling of the moments of the eigenfunctions

1. Volumic or linear scaling

A specificity of random graphs and tree networks is that
the volume scales exponentially with linear system size. As
we showed in [14], this implies the possibility of two types of
scaling behavior:

〈Pq〉〈
Pc

q

〉 =
{

Flin(dN/ξ ),

Fvol(N/�),
(13)

where Pc
q ≡ Pq(Wc) is the critical behavior of the moment at

W = Wc, dN ∝ log2 N denotes the diameter of the random
graph of volume N (number of sites), ξ denotes a char-
acteristic length, and � a characteristic volume. In finite
dimension d , the two types of scalings Flin and Fvol amount
to the same behavior since in that case � ∼ ξ d and thus
Flin(X ) = Fvol(X d ) for X = dN/ξ . In a graph, however, � =
V (ξ ) ∼ exp(aξ ) and N = V (dN ); as a consequence, N/� =
V (dN − ξ ), which is not a function of dN/ξ , thus the two types
of scalings are distinct.

FIG. 9. χ 2 test for different scaling hypotheses. Top and center
panels: χ 2

vl, χ
2
vv, χ

2
lv, χ

2
ll as a function of Wc, for q = 0.25 and 2,

with p = 0.25 (symbol key as in bottom panel). The straight lines
correspond to exponential fits near the minima for the lin-lin case
(top) and the vol-lin case (bottom). The points marking the line
crossings provide an estimate of Wc (≈3.9 in both cases). Bottom
panel: χ 2 as a function of q for p = 0.25, Wc = 4. The finite-size
scaling was done with sizes 210–220.

In [14] we found that for q = 2 a linear scaling holds in the
localized phase while a volumic scaling better describes the
delocalized phase. By contrast, in [25] we observed a linear
scaling in both phases for q < 1

2 . Our goal here is to discuss
more thoroughly these scalings for different values of q.

2. Determination of Wc and of the type of scaling

We consider a finite-size scaling (FSS) procedure where
the curves for different values of W are rescaled so as to col-
lapse onto a single scaling function, with the only assumption
that the scaling function is either of the form Flin or Fvol, as in
Eq. (13). The value of disorder which gives the best collapse
of the data is characterized by quantitatively estimating the
goodness of the scaling procedure used. This yields a critical
value Wc, as well as the dependence of the scaling parameter
ξ or � on W .

The value of Wc is determined by testing different possi-
ble values of Wc and the two possible scalings (volumic or
linear) in a systematic way, and assessing the quality of the
resulting scaling via a χ2 test. This approach is detailed in
Appendix C. Depending on the scaling hypothesis we make,
we obtain four possible χ2 values: χ2

vv (delocalized volumic +
localized volumic), χ2

ll (delocalized linear + localized linear),
χ2

vl (delocalized volumic + localized linear), χ2
lv (delocalized

linear + localized volumic). The results are reported in Fig. 9,
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FIG. 10. Finite-size scaling of multifractal properties 〈Pq〉(W, N ) for p = 0.25, with Wc set to its optimal value Wc = 4 (see Fig. 9). Left:
For q = 0.25 < 1

2 , the data follow a linear scaling on both sides of the transition. The data shown in Fig. 4, upper panel, for all system sizes
29 � N � 220 and 32 W values in the large range 2.1 � W � 6.2 have been put onto a single scaling function with two branches. The upper
branch corresponds to the delocalized regime W < Wc and the lower branch to the localized phase W > Wc. The straight dashed lines show the
asymptotic behavior of the scaling function Flin (X ) ∼ V (X )βloc/deloc discussed in Sec. VI. The inset shows the scaling length ξ (which is not the
localization length for W > Wc, as explained in Sec. VI) as a function of W . The lines are fits with ξ ∼ |W − Wc|−νloc/deloc . The corresponding
critical exponents obtained are νdeloc ≈ 0.47, νloc ≈ 0.45. Right: q = 2, here the upper branch corresponds to the localized phase and has linear
scaling, while the lower branch corresponding to the delocalized phase shows volumic scaling, as highlighted by the light blue background.
The straight dashed lines correspond to the asymptotic behavior deduced from the scaling hypothesis (see Sec. VI). In the localized phase
Flin(X ) ∼ X σ2 (see Fig. 6 and text), while in the delocalized phase it is given by Fvol(X ) ∼ X −1 which implies an asymptotic ergodic behavior
〈P2〉 ∼ N−1 for N � �(W ). In the inset we show the logarithm of the correlation volume �(W ) ∼ exp[α(Wc − W )−νdeloc ] and the localization
length ξ (W ) ∼ (W − Wc )−νloc as a function of W . In the localized phase we get νloc ≈ 0.94. In the delocalized phase the orange line corresponds
to a fit of ln � with the function A1 + A2(Wc − W )−0.5, showing that our data are in good agreement with a critical exponent νdeloc = 0.5.

where we show χ2(Wc) for p = 0.25, and for two values of q
(larger or smaller than 1

2 ). For small q < 1
2 (here q = 0.25),

the smallest χ2 is attained for the linear-linear hypothesis.
By contrast, for q = 2 the best scaling corresponds to the
delocalized volumic, localized linear case. In both cases the
optimal hypothesis has a minimum for Wc ≈ 3.9 ± 0.2. This
estimate of the critical point is compatible with the value
Wc = 3.8 obtained in Sec. V B from finite-size scaling of the
spectrum. Moreover, using this approach for p = 0.06 we find
Wc ≈ 1.7–1.75. For p = 0.49 we find Wc ≈ 17–17.5. These
values are compatible with the theoretical values recently
obtained in [23,24,45].

As mentioned above, the most relevant scaling hypothesis
depends on the value of q. In order to investigate this more
thoroughly, in Fig. 9 (bottom) we display the values of χ2(Wc)
as a function of q for the four possible scaling hypothe-
ses χ2

vl, χ
2
vv, χ

2
lv, χ

2
ll , at the previously determined Wc = 4.

These plots show that a crossover occurs: while our analysis
clearly indicates a linear-linear scaling for small q � 0.5, for
larger q (q > 1) a linear-volumic scaling describes better the
data.

3. Finite-size scaling and critical exponents

Now that the type of scaling and the value of the critical
disorder have been determined, we can present the outcome of
this procedure which is the behavior of the scaling parameter
(ξ or �) and of the scaling function. Close to Wc, we ex-
pect ξ ∼ |W − Wc|−ν , with ν the associated critical exponent
[14,25]. In the delocalized phase, the scaling volume � has
been theoretically predicted [72] to behave as

� ∼ exp(α|W − Wc|−ν ) (14)

with ν = 1
2 . The results of our finite-size scaling procedure are

displayed in Fig. 10 for p = 0.25 and two values of q, smaller
and larger than 1

2 . Our findings are summarized in Table I.
The left panel of Fig. 10 corresponds to q = 0.25 < 1

2 . The
data shown in Fig. 4, upper panel, for all system sizes 29 �
N � 220 and 32 values of W in the large range 2.1 � W �
6.2, collapse onto a single scaling function with linear scaling
on both sides of the transition. The upper branch of the scaling
function corresponds to the delocalized regime W < Wc and
the lower branch to the localized phase W > Wc. The straight
dashed lines show the asymptotic behaviors Flin(X ) ∼ X −βloc

and Flin(X ) ∼ X βdeloc that we will explain in Sec. VI. The
scaling parameter ξ diverges as ξ ∼ |W − Wc|−ν with ν ≈ 1

2
on both sides of the transition. In Appendix D we show the

TABLE I. Summary of the finite-size scaling properties obtained
from Fig. 10 for q < q∗

c and q > q∗
c where q∗

c = 0.5. We give the
asymptotic behavior of the scaling function (13) at large X = dN/ξ

or Y = N/�.

Delocalized Localized

q = 0.25 Linear Linear
Flin(X ) ∼ X βdeloc Flin(X ) ∼ X −βloc

ξ ∼ |W − Wc|−ν ξ ∼ |W − Wc|−ν

ν ≈ 0.5

q = 2 Volumic Linear
Fvol(Y ) ∼ Y −1 Flin(X ) ∼ X σ2

� ∼ exp(α|W − Wc|−νdeloc ) ξ ∼ |W − Wc|−νloc

νdeloc ≈ 0.5 νloc ≈ 1
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stability and universality of ν ≈ 1
2 by obtaining comparable

results for a wide range of values of p (see Fig. 25) and in a
range of Wc close to the optimal value considered here.

The right panel of Fig. 10 corresponds to q = 2. The
scaling is less conventional. In the localized regime, a linear
scaling puts the data shown in Fig. 4 (lower panel) for W > Wc

onto the upper branch of the scaling function. On the other
hand, volumic scaling better describes the data in the delo-
calized regime W < Wc corresponding to the lower branch.
This volumic scaling implies an asymptotic ergodic behavior
〈P2〉 ∼ N−1 for N � �(W ), shown by the straight dashed line
corresponding to Fvol(Y ) ∼ Y −1. The divergence of the corre-
lation volume �(W ) at the transition is found to be compatible
with Eq. (14) with νdeloc = 0.5. In the localized regime, the
scaling length ξ (W ) diverges as ξ (W ) ∼ (W − Wc)−νloc , with
a critical exponent νloc ≈ 1.

We therefore observe a single critical exponent ν ≈ 0.5 in
the delocalized phase, but two critical exponents ν ≈ 0.5 and
νloc ≈ 1 in the localized phase.

4. Taylor expansion of the scaling function for q < 1
2

A more controlled procedure to determine the critical
exponent(s) consists in making a Taylor series expansion
close to W = Wc of the scaling function and scaling length
[66,67,130]. This procedure has the advantage that it allows
to assess quantitatively the validity of the scaling hypothesis
and the precision of the critical exponent. However, as we
explain in Appendix E, it works only for q < 0.5 where there
is a linear scaling on both regimes sufficiently close to the
transition. We detail this approach in Appendix E. This pro-
cedure confirms our previous analysis that νloc = νdeloc ≈ 0.5
for multifractal properties 〈Pq〉 for q < 1

2 .

B. Finite-size scaling of spectral statistics

Let us now perform a finite-size scaling analysis of ηr
defined in Eq. (9). The method is analogous to the one detailed
in Sec. V A 2. Results were presented in Fig. 3 of [25] for
p = 0.06. Our procedure is the following: ηr(W, N ), plotted
as a function of log2 N , is first rescaled by the critical behavior
ηr(Wc, N ) (see Fig. 8), for system sizes ranging from N = 210

to 218. A second rescaling of sizes by some factor ξ (W ) is then
performed along the x axis, yielding a function of the form

ηr(W )

ηr(Wc)
= Flin

(
log2 N

ξ (W )

)
. (15)

The index “lin” indicates that the rescaling is linear, that is,
it is the linear size log2 N of the system which is rescaled.
In Fig. 11, we observe a very good collapse of the data on
a single scaling curve in the localized phase and not too
far from the transition point Wc in the delocalized phase.
However, we do observe small but systematic deviations in
the ergodic regime at small disorder strengths. We will dis-
cuss the origin of these deviations in Sec. VI. The scaling
length ξ (W ) diverges in the vicinity of the critical disorder
as ξ (W ) = A |W − Wc|−ν , with a critical exponent ν ≈ 0.5.
Similar scaling laws where reported in Ref. [131] for Cayley
trees and scale-free networks.

In Fig. 11 we show that such a finite-size scaling holds
for different values of p, close to 0 and 1

2 , and for different

FIG. 11. Finite-size scaling of ηr (W ) [see Eq. (9)] for different
values of p and different disorder distributions (Gaussian for p =
0.06 and uniform for p = 0.49). The critical exponents extracted
from these finite-size scalings are νdeloc ≈ 0.50 and νloc ≈ 0.51 for
p = 0.06, νdeloc ≈ 0.52 and νloc ≈ 0.50 for p = 0.49.

disorder distributions. In Appendix F we show that critical
exponents are robust to variations in the critical point, for in-
stance, if Wc is known only with limited accuracy, and remain
close to 1

2 on both the localized and delocalized sides of the
transition. The same exponent is found for different values of
p and also for different random distributions of the disorder
(uniform or Gaussian distribution). In Appendix G we present
analogous results for higher-order spacing ratio statistics.

VI. PHYSICAL INTERPRETATION OF THE BEHAVIOR
OF OBSERVABLES USING FINITE-SIZE SCALING

In this section, we give an interpretation of the scaling laws
observed previously by relating them to the multifractal prop-
erties and to the behavior of correlation functions described
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in Sec. IV. What will emerge from this is a simple physical
picture of the localized and delocalized phases, and critical
regime.

A. Multifractal exponents and scaling functions

The different finite-size scaling laws assumed for 〈Pq〉 and
confirmed in Fig. 10 can be combined into a single scaling
assumption of two variables:

〈Pq〉〈
Pc

q

〉 = F (X,Y ), X = dN

ξ
, Y = N

�
. (16)

Here ξ is the linear scaling parameter, and � = V (ξ ) is the
volume associated with the length ξ . We will describe the
asymptotic behaviors that F (X,Y ) needs to follow in order
to recover the localized, multifractal, or ergodic properties
shown in Figs. 5 and 10, and compare these predictions with
our numerical results.

1. Localized phase W > Wc

a. Case 0 < q < 1
2 . In the localized regime W > Wc for

q < 1
2 , Fig. 5 shows that τq has two distinct regimes, τq finite

or τq ≈ 0, depending on whether q is larger or smaller than
a certain value q∗(W ) < 1

2 . As a result, eigenstates have two
distinct behaviors: multifractal, i.e., Pq ∼ N−τq , when τq is
finite, or localized, τq ≈ 0. Note that this multifractality is
not transient in N . q∗(W ) < 1

2 depends crucially on W , as
shown in Fig. 5 (bottom). In turn, at fixed q, the behavior
depends on the value of W : it is multifractal in the vicinity
of the transition where q∗(W ) > W , and localized far from
the transition where q∗(W ) < q. As we will see later, q∗(W )
is one of the most important critical properties of the localized
phases.

Another important observation is that in the multifrac-
tal regime q < q∗(W ), the exponent τq is distinct from the
one characterizing the critical behavior. We have thus a
renormalized multifractality in that regime, at odds with the
finite-dimensional Anderson transition, but similar to the non-
ergodic delocalized phase [14].

This quite complex behavior can be described by means of
the scaling function (16) provided we assume the following
asymptotic behavior:

F (X,Y ) ∼ V (X )−Aq + Y τ c
q for X,Y � 1, (17)

with A some positive constant. As we explained in [14], the
first linear scaling term of Eq. (17) will renormalize the critical
multifractality. On the other hand, the second volumic term
will bring a localized behavior.

We recall that at the transition 〈Pc
q 〉 ∼ N−τ c

q with τ c
q =

(q/q∗
c − 1) for q � q∗

c ≡ 1
2 and τ c

q = 0 for q > q∗
c ≡ 1

2

[Eq. (3) with q∗ = q∗
c = 1

2 ]. Since V (dN/ξ ) = N1/ξ , we get
from Eqs. (16) and (17)

〈Pq〉 ∼ N−q/q∗+1 + �−τ c
q ,

1

q∗ = 1

q∗
c

+ A

ξ
. (18)

The second term of 〈Pq〉 in Eq. (18) is independent of N ,
while the first one goes to 0 or ∞ depending on the sign of
the exponent. Namely, for q < q∗ the first term dominates,
while for q > q∗ the second one dominates, which allows us

lo
c,

de
lo

c

FIG. 12. Parameter |βloc,deloc| obtained by fitting the asymp-
totic behavior of the linear scaling function for q < 1

2 with
log2(〈Pq〉/〈Pc

q 〉) = log2 Flin(log2 N/ξ ) ≈ A0 + βloc,deloc(log2 N )/ξ
for large log2 N � ξ on both sides of the transition for p = 0.25 and
Wc = 4. A0 and βloc,deloc are the two fitting parameters. In the local-
ized regime, βloc is negative, while βdeloc is positive in the delocalized
regime. Figure 10 shows the result of these fits by dashed lines for
q = 0.25. In order to recover from these scaling properties a strong
multifractal behavior in the localized regime, Eq. (3) with q∗(W )
given by Eq. (18), we expect that βloc ∝ q. The data for βloc as a func-
tion of q confirm this expectation for q � 0.25. Beyond that value of
q, we observe deviations from linear scaling due to the presence of a
volumic scaling term [see Eq. (17) and Fig. 13], which are consistent
with the localized behavior observed far from the transition. This
explains the deviations from βloc ∝ q observed for q � 0.25 in the
localized phase. This behavior is also valid in the delocalized regime
but is a transient behavior. Volumic scaling always dominates at large
N and gives an asymptotic ergodic behavior [see Eq. (24)].

to indeed recover the τq observed in Fig. 5, corresponding to
Eq. (3) with q∗(W ) < q∗

c = 1
2 (since A < 0).

The asymptotic behavior (17) of the scaling function is
illustrated in Figs. 10, 12, and 13. The dashed line just above
the lower localized branch of the scaling function in Fig. 10
represents a fit by log2(〈Pq〉/〈Pc

q 〉) = log2 Flin(log2 N/ξ ) ≈
A0 + βloc(log2 N )/ξ for large log2 N � ξ , which corresponds
to Flin(X ) ∼ V (X )βloc . We have repeated this analysis for dif-

FIG. 13. χ 2 test evaluated as the sum over W [restricted to Wc <

W < W ∗ (top) or Wc < W ∗ < W (bottom)] of the individual χ 2

calculations [see Eq. (C2)] for a volumic (orange squares) or linear
(blue circles) scaling, for p = 0.06. We clearly see that linear scaling
is prevalent for Wc < W < W ∗, leading to a multifractal behavior
〈Pq〉 ∼ N−q/q∗+1, while a volumic scaling describes better the data
for W > W ∗, giving a localized behavior 〈Pq〉 ∼ �−τ c

q [see Eq. (18)].
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ferent values of q and plotted the resulting βloc as a function
of q in Fig. 12. As expected from (17), βloc ∝ q for q � 0.25.

Moreover, for W → Wc, ξ was found to diverge as (W −
Wc)−

1
2 (see Fig. 10, inset of the left panel), thus q∗ is expected

to approach q∗
c as (W − Wc)

1
2 :

q∗ = q∗
c − C(W − Wc)

1
2 , (19)

where C is a constant. This prediction, which is one of our
most important results, is confirmed by the numerical data
shown in Fig. 5. It implies in particular a singular behavior
of ξ⊥ = q∗/ ln K , reminiscent of the predictions for the MBL
transition [48], that we will discuss later.

b. Case q > 1. As seen in Fig. 5, the behavior of 〈Pq〉
for q > 1 in the localized phase is much simpler: it is al-
ways localized since τq � 0 in that regime. As shown in
Fig. 6, the critical behavior is well described by 〈Pc

q 〉 ∼ d
−σq

N ;
the localized behavior can thus be obtained by assuming a
purely linear-type asymptotic scaling F (X,Y ) ∼ X σq . This
yields

〈Pq〉 ∼ d
−σq

N

(
dN

ξ

)σq

∼ ξ−σq , (20)

which remains constant for N → ∞, and thus τq = 0, as
expected. This asymptotic behavior of the scaling function
F (X,Y ) ∼ X σq is indicated in the right panel of Fig. 10 (cor-
responding to q = 2) by the upper dashed line.

Note that this asymptotic behavior corresponds to the usual
one in finite dimension where Pq ∼ L−σq F (L/ξ ) and F (X ) ∼
X σq at large X in the localized phase (L being the equivalent
of dN ∼ log2 N) (see [61,67,70]).

2. Delocalized phase W < Wc

a. Case q > 1. In the delocalized phase,we showed in
Fig. 10 that the behavior of 〈Pq〉 is in agreement with a vo-
lumic scaling law. Moreover, far from the transition, 〈Pq〉 ∼
N−(q−1). This ergodic limit can be recovered from the follow-
ing asymptotic behavior of the scaling function (16):

F (X,Y ) ∼ X σqY −(q−1). (21)

Indeed, the behavior in Y = N/� yields the volumic scaling
observed in Fig. 10, and leads to the ergodic behavior

〈Pq〉 ∼ ξ−σq (�/N )q−1. (22)

This gives τq = q − 1, as expected from Fig. 5.
Our purely volumic scaling analysis, shown in Fig. 10,

does not take into account the linear-scaling prefactor X σq . It
is in fact negligible as compared to the second volumic term
Y −(q−1) and thus does not lead to observable deviations in our
scaling analysis. The asymptotic behavior F (X,Y ) ∼ Y −(q−1)

is indicated in the right panel of Fig. 10 (for q = 2) by the
lower dashed line.

Note that a similar scaling occurs in the finite-dimensional
case, where 〈Pq〉 ∼ L−σq F (L/ξ ) and F (X ) ∼ X σq/V (X )q−1 at
large X in the delocalized phase (L being the equivalent of
dN ). However, the main difference with the finite-dimensional
situation is that the volume here is not V (X = dN/ξ ) but
Y = N/�. Indeed, a scaling depending on V (dN/ξ ) would
mean a linear scaling, which is not compatible with our data;

moreover, it would imply a nonergodic delocalized behavior
(see [14]): V (dN/ξ ) = N1/ξ , thus 〈Pq〉 would behave as 〈Pq〉 ∼
ξ−σq N−(q−1)/ξ , a (multi)fractal behavior.

The observation of a volumic scaling with the asymp-
totic behavior (22) demonstrates that the delocalized phase
is ergodic, a question which has been strongly de-
bated [5–34]. There is now a consensus on this point
[11,14,22,23,26,29,45,78].

b. Case 0 < q < 0.5. In the delocalized regime, we have
shown that a linear scaling prevails for q < 0.5, with a scaling
function of the form Flin(X ) ∼ V (X )Aq (see Table I). However,
as shown in Fig. 5, for q > 1 and for q < 0.5 far from the
transition the behavior is asymptotically ergodic, which is
incompatible with a linear scaling for all N . We therefore
assume that a volumic scaling dominates at large N , with an
asymptotic behavior of F in Eq. (16) as

F (X,Y ) ∼ V (X )Aq + Y τ c
q −q+1. (23)

Under this assumption we get

〈Pq〉 ∼ N−q/q∗+1 + �−τ c
q (�/N )q−1 (24)

with the same relation for q∗ as in (18). The difference with
(18) is that we now have q∗

c = 1
2 < q∗ < 1, which is remi-

niscent of the case of a finite Cayley tree in the nonergodic
delocalized phase [12]. The second term in (24) yields a
contribution ∝N−q+1, which always dominates the first one
since 0 < −q + 1 < −q/q∗ + 1 as soon as q∗ < 1. Thus, the
asymptotic behavior of (24) is ergodic, 〈Pq〉 ∼ N−(q−1), which
reproduces the expected τq = q − 1 observed in Fig. 5. The
presence of the first term in (24) accounts for the deviation
from the straight line τq = q − 1, that can be observed in
Fig. 5 at small N ; this will be discussed in Sec. VI B below.

Figure 10 (left panel) confirms that the scaling function
Flin(X ) has an asymptotic behavior Flin(X ) ∼ V (X )βdeloc (upper
dashed line). In Fig. 12, we plot the exponent βdeloc, extracted
from the finite-size scaling function, as a function of q: it is
indeed linear in q for q � 0.35; beyond that value, volumic
contribution sets in and the linear scaling is not so clear.

Equation (22) and the second term of Eq. (24) are
the signature of a strongly multifractal metal, with 〈Pq〉 ∼
�−τ c

q (�/N )q−1 for q < 1
2 and 〈Pq〉 ∼ ξ−σq (�/N )q−1 for q >

1
2 . This corresponds to the multifractal metal found in the de-
localized phase of the Anderson transition in finite dimension
(see [70]).

B. Volumic or linear scaling for 0 < q < 1/2

1. Localized phase W > Wc

From the considerations below Eq. (18), in the localized
phase the volumic scaling dominates for q > q∗ while the
linear scaling dominates for q < q∗. In the finite-size scaling
plots such as Fig. 10 (left panel), the value of q is fixed, and
data correspond to different values of W , and thus different
values of q∗ (recall that q∗ is a function of W , whose plot is
given by Fig. 5). At the fixed value of q under investigation,
one must therefore distinguish between values of W , depend-
ing on whether the associated q∗(W ) is larger or smaller than
q. To that end, we define W ∗ such that q∗(W ∗) = q. Since q∗
is a decreasing function, q∗(W ) < q = q∗(W ∗) is equivalent
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to W > W ∗. Therefore, for W > W ∗ we should have a volu-
mic scaling, associated with localization, while for W < W ∗
the linear scaling synonym of multifractality should manifest
itself.

This is indeed what we observe, as is confirmed by Fig. 13:
for each fixed value of q the corresponding W ∗ is extracted
from the plot of q∗(W ), and the different linear or volumic
finite-size scalings are compared by calculating their respec-
tive χ2 as in Eq. (C2) but with a sum over W restricted to
Wc < W ∗ < W or Wc < W < W ∗. Figure 13 corresponds to
value p = 0.06; we observe the same effect for p = 0.25 (data
not shown) provided we restrict finite-size scaling to larger
system sizes. For W < W ∗ (top), linear scaling is always
better than volumic; the converse is true for W > W ∗. This is
also manifest in Fig. 9 (bottom), where the χ2

ll becomes large
close to q = 0.5. Note that for q = 0.25 considered in Fig. 10,
the value W ∗ such that q∗(W ∗) = q is above the largest value
of W that we considered, which is why we only see a linear
scaling.

There is an additional effect in the numerical data: finite
values of N may lead to transient effects, where a linear
scaling can be observed instead of the expected volumic one,
or vice versa. For instance, in the localized phase for q < 1

2 ,
moments are governed by Eq. (18); while for q < q∗ the
first term always dominates at large N , as N−q/q∗+1 � �−τ c

q ,
at small N the second term may dominate, in which case
one should observe a volumic scaling. This latter regime is
equivalent to N � �γ with γ = (1 − q/q∗

c )/(1 − q/q∗) (and
γ > 1). Close to W = Wc the exponent γ is close to 1, and
�γ ≈ � diverges; for N � � the linear scaling dominates,
which corresponds to the multifractal insulator regime. For
W → W ∗ one has q∗(W ) → q, and thus �γ diverges; the
linear scaling only dominates at N � �γ . This is summarized
in the sketch of Fig. 14.

2. Delocalized phase W < Wc

In the delocalized phase for q < 0.5, the second term in
Eq. (24) (ergodic behavior) always dominates for large N .
Nevertheless, using q∗

c = 1
2 , we get that the first linear term

dominates iff N � �q∗/(1−q∗ ). The exponent q∗/(1 − q∗) >
1
2 in the delocalized phase as q∗ > 1

2 , and diverges when
q∗ → 1; therefore, �q∗/(1−q∗ ) can be much larger than �.
This explains why we observe a linear scaling for q < 1

2 in
the delocalized regime, as shown in Fig. 10. Moreover, this
leaves room to observe a transient multifractal behavior in
the delocalized regime: a critical multifractality characterized
by τ c

q = (q/q∗
c − 1) for N � �, and a renormalized multi-

fractality τ ∗
q = (q/q∗ − 1) with q∗ > q∗

c = 1
2 for � � N <

�q∗/(1−q∗ ). Nevertheless, close to the transition, q∗ → 1
2 , and

�q∗/(1−q∗ ) ∼ �. Therefore, we do not obtain another critical
exponent associated with the transition to ergodicity, contrary
to what has been claimed in certain recent studies [45]. This
is summarized in the sketch of Fig. 14.

C. Scaling length ξ and localization lengths ξ‖ and ξ⊥
from correlation functions

The scaling length ξ that manifests itself in the
scaling function (16) can be related to the scales ξ‖

FIG. 14. Sketch of the phase diagram for the leading behavior
of 〈Pq〉 for fixed q < 0.5 extracted from the behavior of the scal-
ing function F (dN/ξ, N/�) [Eq. (16)]. A multifractal behavior is
observed when the linear scaling term prevails, while a localized
or ergodic behavior is implied by the dominance of the volumic
term. In the localized regime, there exists a characteristic strength
of disorder W ∗, defined as q∗(W ∗) = q, which separates the multi-
fractal and localized regimes. More precisely, a multifractal behavior
is observed for either N � � [critical multifractality characterized
by τ c

q = (q/q∗
c − 1)] or N � �γ [renormalized multifractality with

τq = (q/q∗ − 1) with q∗ < qc, distinct from τ c
q ]. This is indicated

by the blue domains of the phase diagram delimited by the solid
line for �, and the dashed line for �γ . γ = (1 − q/q∗

c )/(1 − q/q∗),
therefore, �γ diverges at W ∗ where q = q∗. For W > W ∗, only a
localized behavior is obtained for N � �. In the delocalized regime,
the volumic term always dominates for N � �q∗/(1−q∗ ) which leads
to an ergodic behavior. However, q∗/(1 − q∗) > 1 for q∗ > 1

2 as
found in the delocalized phase, and diverges when q∗ → 1, i.e.,
at small W . Therefore, �q∗/(1−q∗ ), indicated by the dashed-dotted
line, can be significantly larger than � (solid line) which explains
why linear scaling is observed for q < q∗

c = 1
2 in the delocalized

regime. This leads to a transient multifractal behavior observed for
N � �q∗/(1−q∗ ): critical multifractality for N � � and renormalized
multifractality for � � N � �q∗/(1−q∗ ).

and ξ⊥ governing the correlation functions and the
spectrum.

In [25] we proposed a simple model of a tree with
connectivity K and depth d , on which a wave function is
exponentially localized with localization length ξ⊥ at the root
of the tree. This model is a natural consequence of the small-r
behavior (8) of C̃typ. The exponential decrease of the wave
function along the branches is compensated by the prolifer-
ation of sites at a given distance. A simple calculation shows
that the moments Pq are given by

Pq =
∑d−1

r=0 Kr[e−r/ξ⊥ ]q[∑d−1
r=0 Kre−r/ξ⊥

]q ∼ N−τq , (25)

with N = Kd and τq given by τq = (q/q∗ − 1) for q � q∗ < 1
2

and τq = 0 for q∗ � q, where q∗ and ξ⊥ are related by q∗ =
ξ⊥ ln K . This model suggests to interpret q∗ as the localization
length ξ⊥ (up to a factor ln K). This is corroborated by the plot
in Fig. 5, where for W > Wc the square symbols given by ξ⊥
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FIG. 15. Comparison of scaling lengths obtained from finite-size
scaling and correlation functions. Solid line: ξ obtained from finite-
size scaling in the localized phase for q = 2 extracted from Figs. 10
and 23. Circles: ξ‖ obtained from a fit of C̃av by Eq. (7). Left:
p = 0.06, Wc = 1.7. Center: p = 0.25, Wc = 4. Right: p = 0.49 (box
disorder), Wc = 17.5.

extracted from the small-r behavior of C̃typ follow the values
of q∗ up to a factor ln K .

In turn, we saw that q∗ is controlled by the scaling length
ξ [see Eq. (18)]. Thus, ξ obtained by the scaling behaviors of
〈Pq〉 for q < 1

2 controls the typical localization length ξ⊥:

1

ξ⊥
= 1

ξ c
⊥

+ D

ξ
, (26)

where D is a positive constant. In other words, the typi-
cal localization length ξ⊥ reaches a universal critical value
ξ c
⊥ = 1/(2 ln K ) from below. Since ξ ∼ (W − Wc)−ν⊥ with

ν⊥ � 0.5 (see Table I), the behavior of ξ⊥ close to ξ c
⊥ has a

square-root singularity:

ξ⊥ ≈ ξ c
⊥ − c(W − Wc)1/2. (27)

This behavior is exactly what is predicted in [48] for the
typical localization length at the MBL transition. Finite-size
effects are controlled by the scaling length ξ ∼ (W − Wc)−ν⊥

with the critical exponent ν⊥ ≡ 1
2 .

On the other hand, for large q > 1, the scaling length di-
verges as ξ ∼ (W − Wc)−1 and controls the asymptotic value
of 〈Pq〉 ≈ ξ−σq [see Eq. (20)], and thus represents a local-
ization length. Since 〈Pq〉 for large values of q focuses on
large amplitudes of the wave functions, following the physical
picture drawn from the analogy with the directed polymer
problem (see [5,74–76] and Sec. IV B), we expect that they
are dominated by the rare branches of the wave functions. We
thus expect that ξ ≡ ξ‖ extracted from the average correlation
function C̃av, Eq. (5).

In Fig. 15 we show a comparison between the scaling
length ξ for finite-size scaling in the localized phase for q = 2
(see Figs. 10 and 23) and the localization length ξ‖ extracted
from a fit of C̃av, Eq. (5), by Eq. (7). The agreement between
them is remarkable and confirms our physical picture. Im-
portantly, this implies that there exist two critical localization
lengths in the localized phase, the average localization length
ξ‖ and the typical one ξ⊥ associated with two distinct criti-
cal exponents ν‖ = 1 and ν⊥ = 1

2 . While typical and average
localization lengths can be defined in finite dimension, they
do not have a distinct critical behavior and are both con-

trolled by a single critical exponent ν. The case of random
graphs of infinite effective dimension brings the importance
of rare events to the point of having two different critical
exponents describing the localization along the rare branches
and that describing the localization transversely to these rare
events.

In the delocalized regime W < Wc, a linear behavior is
expected for small enough N (see Fig. 14). The value of
q∗ numerically extracted from the plot in Fig. 5 at small q
should therefore also correspond with the ξ⊥ extracted from
the small-r behavior of C̃typ, but only for small N . This is
also manifest in Fig. 5, where q∗ and ξ⊥ ln K coincide for
the lowest values of N . Moreover, as observed in Fig. 7, C̃typ

reaches a plateau for r larger than a certain characteristic
length scale. That scale should be related with V −1(�), where
� is the correlation volume displayed in the inset of Fig. 10
(right).

D. Scaling and level repulsion

In this last subsection, we motivate and interpret the scaling
law (15) proposed to describe the spectral statistics. This
scaling law was discussed in Sec. V B and tested in Fig. 11.
As in the case of 〈Pq〉, we will generalize this scaling as-
sumption to a two-parameter scaling F (X,Y ) with X = dN/ξ

and Y = N/�, with ξ the linear scaling parameter, and �

the scaling volume. We will describe and test the asymptotic
behaviors of F (X,Y ) required to recover the localized and
ergodic behaviors of 〈ηr〉. We will start with the localized
phase, then we will address the delocalized phase, which has
a more complex behavior.

1. Localized phase W > Wc

a. Level repulsion is governed by ξ⊥. The parameter ηr
defined in Eq. (9) characterizes the difference between 〈r〉
and its value in the absence of level repulsion 〈r〉P = 0.3863.
As the system size increases, ηr goes to 〈r〉P, as shown in
Fig. 8. At finite system size N , the discrepancy between 〈r〉
and 〈r〉P = 0 is therefore an indicator of the repulsion be-
tween nearest energy levels. In random matrix theory, level
repulsion is characterized by the small-s behavior of the
nearest-neighbor spacing distribution P(s) ∼s→0 sβ , where
for Wigner-Gaussian ensembles β is the Dyson index. For
more general systems, following the Brownian motion ap-
proach to random matrix spectral statistics proposed by Dyson
[132], it has been proposed that the analog of the index β can
be defined as [133,135,136]

β = 2〈Y〉
〈P2〉 − 〈Y〉 , (28)

where P2 is the inverse participation ratio and Y =∑N
i=1 |ψn(i)|2|ψn+1(i)|2 is the density correlation between two

eigenstates n and n + 1 with neighboring energies. The expo-
nent β defined by Eq. (28) goes to 1 for extended states and to
0 asymptotically in the localized phase [133].

In the present system, eigenstates in the localized phase
are localized on rare branches, as discussed in Sec. VI C.
If level repulsion is absent or small, then eigenstates with
nearby energy ψn and ψn+1 should lie on distinct branches,
and therefore the finite-size behavior of their correlation Y
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FIG. 16. Top: log2 β as a function of log2 N , for p = 0.06 and
many values of disorder W . β is the level repulsion exponent of
(28). The dashed black line corresponds to a linear fit with slope
a ∼ 0.106. Bottom: log2 ηr [see Eq. (9)] as a function of log2 N/q∗,
for p = 0.06 and many values of disorder W . The dashed black line
corresponds to a linear fit with slope b ∼ 0.111.

should be controlled by ξ⊥ rather than ξ‖ (see however [134]).
If this holds, we would then expect Y to decrease exponen-
tially as exp(−adN/ξ⊥) = N−a/q∗

, where a is some constant
and dN is the diameter of the graph (that is, the maximum
distance that can exist between the localization centers of ψn

and ψn+1). As a consequence, since in the localized phase the
inverse participation ratio is a constant given by Eq. (20), β

defined in (28) would decrease as β ∼ N−a/q∗
. This is indeed

the behavior we observe, as we checked in Fig. 16 (top panel).
The finite-size behavior of 〈r〉, which directly depends on

level repulsion, can be conjectured to also be controlled in the
same way by q∗, or equivalently ξ⊥, and to decay exponen-
tially in the localized phase, as

ηr ∼ exp(−bdN/ξ⊥) = N−b/q∗
(29)

with b some constant. This is confirmed by the data in Fig. 16
(bottom panel), where it is found b ≈ a.

b. Decay of level repulsion at criticality. Naively, one may
conclude from the above arguments that ηr should decay ex-
ponentially with dN at the transition since q∗

c = 1
2 = ξ c

⊥ ln K
is finite at the transition. However, ξ‖, which represents the
localization length along the rare branches, diverges at the
transition and thus the states ψn and ψn+1 cannot be simply
thought of as being at a maximal distance dN from each other.
Hence, the arguments above need to be revisited at criticality.
At the critical point, or slightly above it, we saw in Fig. 16
(bottom panel) that our data are compatible with the exponen-
tial decay (29) with q∗ = q∗

c = 1
2 , but also with a power-law

decay with dN as in Eq. (10), ηr ∼ d−α
N . In the following, we

analyze the consequences of assuming an exponential decay
as Eq. (29) at criticality.

c. Asymptotic behavior of the scaling function. The asymp-
totic exponential decay in the localized regime, Eq. (29), can

be recovered by the following asymptotic dependence of the
scaling function (15) in the localized phase:

Flin(X ) ∼ exp(−DX ), (30)

for X = dN/ξ � 1, with D a constant. Indeed, if the critical
behavior is Eq. (29) with q∗

c = 1
2 , i.e., ηc

r ∼ exp(−bdN/ξ c
⊥),

then Eq. (15) gives

ηr ∼ exp(−bdN/ξ c
⊥) exp(−DdN/ξ ) ∼ exp(−bdN/ξ⊥). (31)

The coefficient D in (30) coincides with the coefficient D ap-
pearing in the relation (26) between ξ⊥ and ξ . The asymptotic
behavior (30) of the scaling function is shown by the lower
dashed line in Fig. 11. Since in the localized regime q∗ < q∗

c
(see Fig. 5 bottom), ξ c

⊥ < ξ⊥ and thus D > 0.

2. Delocalized phase W < Wc

The description of the delocalized phase is more subtle, but
it follows from two key observations.

a. Linear scaling close to the transition. For system sizes
smaller than the correlation volume, N � �, the system be-
haves as in the critical regime. Indeed, inside a correlation
volume, wave functions lie on a few branches with a trans-
verse localization length ξ⊥. In this transient regime in N ,
we thus expect an exponential decay of level repulsion ηr ∼
exp(−bdN/ξ⊥) ∼ N−b/q∗

following the critical result (29). As
discussed in Sec. VI B 2, for q < 0.5 in the delocalized phase,
we obtain a linear scaling. We should thus get an asymptotic
behavior

Flin(X ) ∼ exp(D̃X ) (32)

for X � 1. The asymptotic behavior (32) of the scaling func-
tion is shown by the upper dashed line in Fig. 11. Since
for W < Wc we have q∗ > q∗

c = 1
2 [see Fig. 5 (bottom)], we

now have ξ c
⊥ < ξ⊥ and thus D̃ > 0. The behavior (30) for

the localized case is very similar to the behavior (32) for the
delocalized case; only the sign in the exponential differs.

b. Volumic scaling far from the transition, in the ergodic
regime. By contrast, as discussed in Sec. VI B 2 for multifrac-
tal properties, in the delocalized ergodic regime far from the
transition we expect a volumic scaling:

〈r〉 = 〈r〉WD[1 − Fvol(N/�)]. (33)

This is confirmed in Fig. 17. The scaling function has the
asymptotic behaviors Fvol(Y ) → 0 for Y � 1 and Fvol(Y ) →
1 for Y � 1. We can fit the correlation volume by

ln � = a0 + a1(Wc − W )−ν (34)

with Wc = 1.8 fixed (the value for p = 0.06 given in [45]), a1

and ν two free parameters, and a0 fixed by the fact that � = 1
for the smallest disorder value considered. The corresponding
fit is displayed in the inset of Fig. 17. We find a critical ex-
ponent ν ≈ 0.49. This confirms that there is a unique critical
exponent ν ≈ 0.5 in the delocalized phase and that � = V (ξ )
is the correlation volume associated with ξ (contrary to what
is reported in [45]). These results based on spectral properties
corroborate those of Sec. VI B 2 for the eigenstates.

c. Two-parameter scaling in the delocalized phase. To take
into account the presence of the linear scaling close to the
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FIG. 17. Volumic scaling of the average spectral gap ratio
〈r〉WD − 〈r〉 in the ergodic delocalized regime at small W values, for
p = 0.06. Inset: critical volume � as a function of Wc − W . The gray
dashed line is a two-parameter fit of the form (34) (see text) over
the interval W ∈ [0.8, 1.5], with Wc = 1.8 fixed and fit parameters
a1 ≈ 15.8 and ν ≈ 0.49. This confirms that the delocalized phase is
governed by a unique critical exponent ν = 1

2 .

transition and the volumic scaling in the ergodic regime one
can conjecture the following two-parameter scaling function:

〈r〉 = [〈r〉P + 〈
η̃c
r

〉
Flin(dN/ξ )

]
Fvol(N/�)

+ 〈r〉WD[1 − Fvol(N/�)], (35)

where 〈η̃c
r〉 = 〈ηc

r〉(〈r〉WD − 〈r〉P). The volumic scaling func-
tion Fvol(N/�) → 1 for N � � and we recover the linear
scaling (15) close to the transition. Globally testing the data
using this two-parameter scaling law is a difficult challenge
due to the exponential divergence of the correlation volume
�. This two-parameter scaling is left for future study.

VII. COMPARISON WITH PREVIOUS
THEORETICAL RESULTS

A. Analytical calculations

One of the most important results we have obtained is the
equation for q∗ in the vicinity of the transition, Eq. (19), and
the equivalent equation (27) for ξ⊥ governing the exponen-
tial decay of the typical correlation function C̃typ(r), Eq. (8).
These important formulas, even though they had never been
stated explicitly before, can in fact be understood within the
framework of the theory developed in [4,7,13,18].

Indeed, a similar formula concerning the typical decay of
localized wave functions can be deduced from [4]. In fact,
the distribution of amplitudes u = |ψ |2 of localized eigen-
functions is known to follow T (u) ∼ u−(1+γ ) [4,6,7,18], as
illustrated in Fig. 18. The exponent γ reaches a maximum
at the transition γ ≈ 1

2 − const(W − Wc)1/2 [see Fig. 15 of
[18] and Eq, (21) of [23]]. The typical value of the wave
function at the maximal distance r = dN = ln N/ ln K from its

FIG. 18. Probability distribution T [log10(u)] with u = |ψi|2 for
N = 219, p = 0.06 and three disorder values: delocalized W =
1.05, critical W = 1.725, and localized W = 2.3. The lines are fits
T (log10 u) ∼ u−γ (W ) for the critical and localized cases. The values
obtained from the fit are γ (W = 1.725) ≈ 0.46 and γ (W = 2.3) ≈
0.25. This confirms the theoretical expectation that γ reaches a value
1
2 at the transition, while γ < 1

2 in the localized regime [4,6,7,18].
This exponent controls the typical decay of wave-function ampli-
tudes, i.e., ξ⊥ [see Eq. (36)].

localization center can then be obtained from normalization
[see Eq. (14) of [4]] and it reads as

u(r = dN ) ∼ exp[−r(2 ln K + const(W − Wc)1/2)]. (36)

Using the identities derived earlier, we have 2 ln K = 1/ξ c
⊥

and 1/ξ ∼ (W − Wc)1/2. Equation (36) can then be rewritten
utyp(r) ∼ exp(−r/ξ⊥). In other words, we recover the typical
decay of wave-function amplitudes that we derived.

In turn, Eq. (19) for q∗ can be recovered from Eqs. (26)
and (30) of [13] (see also [7]). In [13], the authors describe
the multifractal properties of a finite Cayley tree, which are
found to be similar to what we find in the localized phase.
In the delocalized phase, the finite Cayley tree has a delo-
calized nonergodic phase with multifractal properties, while
this is true only for a transient regime of N for q < 1

2 in the
delocalized phase of small-world networks. The appearance
of the critical exponent 1

2 is quite similar to the appearance of
the index 1

2 for the correlation length on the delocalized side
[see, e.g., Eqs. (20)–(25) of [23]].

It is quite remarkable that our systematic finite-size scaling
analysis highlighted these critical behaviors, the importance
of which had not been understood in the localized phase.
Indeed, let us recall that the localized phase was thought to
be understood in an exact way, characterized in particular by
a single localization length diverging with a critical exponent
1 [see, e.g., [23], Eq. (30)]. On the contrary, we have shown
that there exist two critical localization lengths ξ‖ and ξ⊥ and
two critical exponents 1 and 1

2 . Both critical exponents control
the finite-size scaling properties of distinct observables.
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B. Comparison with mathematical results

On the Cayley tree, there exist rigorous results [127,128]
which give a criterion for the transition. Consider the two-
point Green function Gi j = 〈i|(E − H )−1| j〉. The exponential
decay of this observable is characterized by the typical Lya-
punov exponent λtyp = −limd→∞〈lnGi j〉/d , and the averaged
λav = −limd→∞ ln(〈Gi j〉)/d , where d is the distance between
i and j (see [18]). In [127], it was shown that a sufficient con-
dition for delocalization is that the typical Lyapunov exponent
is λtyp < ln K . A simple heuristic picture can be provided.
The density of the states whose localization center is at dis-
tance d from that of a given state increases exponentially
with a rate governed by ln K while λtyp governs the typical
exponential decay of wave functions; if this exponential de-
cay is slower than the increase in the density, delocalization
must set in. This argument is reminiscent of the proliferation
of many-body resonances in the MBL problem, leading to
the prediction of an ETH-prethermal MBL crossover (where
ETH denotes eigenstate thermalization hypothesis) discussed
recently in [42,44,137] (see also [35] for a random matrix
perspective).

However, in [128] the authors showed that the localization
transition is in fact controlled by the other averaged Lyapunov
exponent λav = ln K at the delocalization-localization transi-
tion. This is a consequence of a large deviation analysis which
takes into account slower wave-function decays (along rare
branches in our physical picture).

We stress that the Green’s function Gi j is distinct from the
correlators C̃av and C̃typ that we have defined in Eqs. (5) and
(6). In some sense, Gi j is a correlator of wave functions ψ

while C̃av and C̃typ are correlators of wave-function amplitudes
|ψ |2. Nevertheless, it is tempting to say that the exponential
decay of 〈Gi j〉 with λav = ln K is equivalent to the K−r decay
of the correlation function C̃av at the transition. Our results
thus suggest [138] λav ≈ ln K + c(W − Wc) in the localized
phase W > Wc, with c a positive constant. In [127,128] the
importance of λtyp as a critical quantity was not discussed.
Our results suggest [138] λtyp ≈ 2 ln K + c′(W − Wc)1/2 for
W > Wc, with c′ a positive constant. It would be interesting to
assess this important conjecture on the behavior of the Green
function.

VIII. EVIDENCE THAT THE ANDERSON TRANSITION
ON RANDOM GRAPHS IS OF KOSTERLITZ-

THOULESS TYPE, IN THE SAME UNIVERSALITY
CLASS AS THE MBL TRANSITION

The many-body localization (MBL) phase transition sep-
arates a delocalized from a many-body localized phase in
quantum systems in the presence of interactions and disorder.
In the delocalized phase thermalization occurs and the eigen-
state thermalization hypothesis (ETH) is expected to hold
[139–141]. In the MBL phase, thermalization is precluded. In
[51], a theory was proposed to describe how small ergodic re-
gions due to disorder fluctuations trigger an instability leading
to the MBL transition. This instability argument is closely re-
lated to the argument involving the typical Lyapunov exponent
for the Anderson transition on the Cayley tree [128,142]. The
MBL transition was described via a phenomenological renor-

malization group approach involving this quantum avalanche
mechanism [46,48,49], where locally thermalized parts of
the many-body system gradually extend to the whole system
[143]. In [47,48], it was shown that such an approach leads to
a Kosterlitz-Thouless type renormalization group (RG) flow
[144], described by a system of differential equations cou-
pling the density of thermal parts with the inverse of the
characteristic scale. The typical decay length ζ of the effective
interactions, which governs the localized phase, follows these
RG equations, and a critical line separates a phase where ζ−1

converges to a finite value ζ−1
∞ from a phase where it goes to

zero under renormalization. In the vicinity of the transition,
one predicts [48]

ζ−1
∞ = ζ−1

c + c1
√

W − Wc, (37)

for W > Wc. This equation is identical to our Eq. (27) for
ξ⊥ in the vicinity of the transition. In particular, ζ−1

c =
ln 2 in (37) is a universal number which depends only on
how the Hilbert space volume grows with system size L,
similarly to our critical value ξ c

⊥
−1 = 2 ln K . Finally, finite-

size effects are predicted to be controlled by an exponentially
diverging scale ξ+ ∼ ec+/

√
W −Wc , which is the analog of our lo-

calization volume � = V (ξ ) ∼ ecst/
√

W −Wc , where ξ ∼ (W −
Wc)−1/2 controls the scaling properties of typical observables.

Interestingly, a similar Kosterlitz-Thouless type flow can
be obtained in our system, with linear system size dN playing
the role of the renormalization parameter. In the localized
regime, multifractal wave functions are essentially supported
on a few branches, which can be seen as nonergodicity bub-
bles, whose extent is governed by ξ‖ along the branch [14].
These wave functions extend from that branch with character-
istic length ξ⊥, which from the model described in Sec. VI C
can be related to q∗ by q∗ = ξ⊥ ln K . Either ξ⊥ or q∗ itself
thus plays the role of the decay length ζ of interactions. In the
vicinity of the critical point, the volume occupied by a multi-
fractal wave function is given by its inverse participation ratio,
which scales as ∼ND2 ; as a consequence, its linear extension
scales as ∼D2 ln N . The quantity P−1

2 /N therefore gives the
volumic density, and ln P−1

2 / ln N ∼ D2 corresponds to the
linear density of nonergodicity bubbles. Since the inverse
of the decay length behaves as ξ−1

⊥ ∼ ξ c
⊥

−1 + C|Wc − W |−κ ,
κ ≈ 0.5 at the transition, 1/q∗ approaches the termination
point 1/q∗

c = 2. The RG flow goes to a density 0 in the lo-
calized regime, and to a finite value in the delocalized regime
(with D2 = 1).

This RG flow is illustrated in Fig. 19, where we plot the
multifractal dimension D2 as a function of 1/q∗. Each curve
corresponds to a fixed W , and N (or the RG flow parameter
dN ) increases from right to left along a given curve. The
critical line (circles) separates a localized phase (blue curves),
where the curves have a finite termination point at D2 = 0,
from a delocalized phase (red curves), where D2 goes to 1. At
the critical value of disorder, one has q∗ = q∗

c = 1
2 . Figure 19

strikingly resembles the RG flow picture of the MBL setting
in [48] or [49], showing the close relationship between our
model and MBL. Analogous results are shown in Fig. 31 in
Appendix H for p = 0.06 and 0.49.

We also note that linear and volumic scalings have been
observed in the MBL transition [54,58,145,146]. Another
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FIG. 19. Two-parameter RG Kosterlitz-Thouless type flow for
p = 0.25. The q∗ is directly obtained from fitting τ̃q with q/q∗ − 1
for q ∼ 0. The ordinate is the “flowing” multifractal dimension D2,
i.e., the logarithmic derivative of the moment 〈P2〉 as a function of
system size (for N = 28 to 220). D2 can be interpreted as the linear
density of the equivalent of thermal bubbles in the MBL problem (see
text), while q∗ = ξ⊥ ln K controls the value of the typical localization
length ξ⊥. In the localized phase W > Wc, the flow is towards a
“critical line” with D2 = 0 and q∗ finite, while at the critical point
q∗ reaches a universal value q∗ = 1

2 . Both D2 and q∗ flow to 1 in
the ergodic delocalized regime. The critical behavior is shown by the
red open circles and separates these two types of flow. This important
figure demonstrates a Kosterlitz-Thouless type flow for the Anderson
transition on random graphs and is very similar to what is predicted
for the MBL transition [48]. In the inset we show the whole scale
where the limit q∗ → 1, D2 → 1 is observed.

analogy with MBL manifests itself in the behavior of the
radial probability distribution of an eigenstate around its max-
imum. In Appendix I we show that we obtain qualitatively
similar results to those obtained in [143,145] for the MBL
transition in random quantum Ising models.

The great similarity of these behaviors, in particular the
exact correspondence between Eq. (27) for ξ⊥ and (37) for
ζ and the correspondence between the RG flows, is strong
evidence that the Anderson transition on random graphs is in
the same universality class than the MBL transition. However,
this should not obliterate important differences between these
two problems. First, the comparison between the finite-size
effects for the MBL transition [48,58] and the Anderson tran-
sition on random graphs suggests that the size of the system
L for a many-body system would correspond to the volume
N of a graph (see, however, [54] which suggests that L cor-
responds to dN ). This helps to understand why we can clearly
observe the transition in the case of random graphs, where N
reaches several million sites, whereas it is much more delicate
in the MBL transition (where L reaches 24 sites in exact
diagonalization). Second, the latest developments on the phe-
nomenological renormalization group approach on the MBL
transition [49,50], which take into account large fluctuations
in ζ , indicate a renormalization flow which is distinct from
[48], although similar to the Kosterlitz-Thouless flow found
previously. Third, the MBL phase is not strictly speaking

localized in Hilbert space, but on the contrary is multifractal
[54,55], thus can be seen as a nonergodic delocalized phase
[8,12,29]. Fourth, disorder in the Hilbert space of an MBL
system is strongly correlated [52]. There are indications that
this type of strong correlation might change the nature of the
Anderson transition on random graphs [28]. Fifth, there has
been a long debate about the value of the critical disorder at
the MBL transition. This debate does not exist for the Ander-
son transition, where rigorous approaches make it possible to
estimate the threshold Wc very precisely [23,24,45]. Finally,
the MBL transition is thought to be driven by avalanches
[46,48,49,51]. It is not clear at present whether such a mech-
anism is relevant for the Anderson transition, although the
strong similarity between the RG flows suggests it might be
the case.

IX. CONCLUSION

In this paper, we have described the critical properties of
the Anderson transition on random graphs from a scaling
approach. This problem has raised a very strong interest re-
cently [1,5–34,45], in particular because of its analogy with
the MBL transition [15,28,33,38,55,143]. It has generated
several debates, on whether the delocalized phase is ergodic
or not [5–18,21–27,29], and more recently on the value of the
critical exponents [14,18,23,25,30,45]. The scaling theory that
we describe in this paper makes it possible to answer these
questions and many others: In fact, even if the Anderson tran-
sition on random graphs was reputed to be better understood
than the MBL transition, in particular by the existence and the
precise value of a critical disorder Wc [23,24,45], the nature
of the transition and its renormalization group flow were not
known. In contrast, the phenomenological RG approach of
the MBL transition allows to describe the corresponding RG
flow as being of the Kosterlitz-Thouless type [47,48,50]. It is
therefore of high interest to clarify the nature and the type of
flow of the Anderson transition. This is what we have done in
this paper.

We have found compelling evidence that there exist not
one but two critical localization lengths, associated with two
distinct critical exponents. In other words, the RG flow has
two parameters, and we find that it is of Kosterlitz-Thouless
type. This had never been anticipated: the localized phase was
deemed to be exactly understood and associated with a single
critical exponent ν = 1 (see, e.g., [23]). In fact, all recent
attention on the Anderson transition on random graphs has
been focused on the delocalized phase [5–7,9]. The picture
we present is also very different from what is known for the
Anderson transition in finite dimension, which has only one
scaling parameter [61].

Although there are many subtleties associated to the be-
havior of the finite-size scaling, our approach has allowed
us to give a global and consistent physical picture of the
Anderson transition on random graphs. We constructed the
scaling analysis in the least biased way, by making the fewest
possible assumptions and by characterizing quantitatively the
different possibilities. The robustness of the results and their
universality have been carefully tested by analyzing the be-
havior of different key observables: multifractality, correlation
functions, and spectral statistics.
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In the type of random graphs considered here, of infinite
effective dimension, with loops and without boundary, the
results presented in the paper indicate the existence of a single
transition from a localized to a delocalized ergodic phase.
Again, the critical behavior is quite different from the Ander-
son transition in finite dimension [61,66,67].

The localized regime W > Wc is strongly nonergodic with
distinct localization properties along the different branches
of the graph. There are a few rare branches where the lo-
calization length ξ‖ is much larger than ξ⊥ which controls
how eigenstates extend perpendicularly to these branches. As
one approaches the transition, the distinction between the two
lengths becomes more prominent since ξ‖ diverges, while ξ⊥
tends to a finite universal value.

We have been able to show how these lengths control
different critical properties. On the one hand, the inverse
participation ratio and the average correlation function are
governed by ξ‖. On the other hand, other key observables,
like the spectral statistics or a suitably defined typical corre-
lation function, depend on ξ⊥. Furthermore, we have shown
that there are strong multifractal features that depend on the
small amplitudes of the eigenstates that are also controlled
by ξ⊥.

One additional important result we obtained is that ξ‖ and
ξ⊥ have different critical exponents. Indeed, we find that the
length ξ‖ diverges as (W − Wc)−1. By contrast, ξ−1

⊥ ≈ ξ c
⊥

−1 +
ξ−1 with ξ ∼ (W − Wc)−1/2 controlling finite-size effects in
that case. We thus see the emergence of a flow with two
parameters: the multifractal dimension D2, which can be in-
terpreted as the linear density of the equivalent of “thermal
bubbles” in the MBL problem, and the localization length
ξ⊥. This two-parameter flow is of Kosterlitz-Thouless type.
In the localized phase up to the critical point, we reach at
large system sizes a “critical line” where D2 = 0 and ξ⊥
reaches a finite value. At the transition point, ξ⊥ reaches
a finite universal value. In the ergodic regime it goes to a
constant value which presents a discontinuity with the critical
values. This is very similar to the flow predicted for the MBL
transition [47,48,50]. In fact, the behavior for ξ⊥ is exactly
that recently predicted for the typical localization length at the
MBL transition using the phenomenological renormalization
group approach [48].

The delocalized regime is ergodic at large scales. However
at small scales, below a characteristic correlation volume �,
it exhibits signs of strong nonergodicity, inheriting the strong
multifractality of the critical behavior.

The existence of the new critical exponent ν⊥ = 1
2 in the

localized phase is proved a posteriori compatible with pre-
viously formulated theories [4,7,13,18]. Moreover, ν⊥ = 1

2
can be understood as the limit of the critical exponent in
finite dimension, which tends towards 1

2 and not 1 when the
dimension increases [17,79,80]. In this sense, it is rather the
exponent ν‖ = 1 that is abnormal, i.e., specific to random or
tree graphs of effective infinite dimension, and reflects the
importance of rare events, i.e., rare branches. On the other
hand, our results clearly indicate the existence of a unique
critical exponent ν = 1

2 in the delocalized phase, clarifying
a recent debate [14,18,23,25,30,45].

Our work shows a very strong analogy between the Ander-
son transition on random graphs and the MBL transition. This

opens interesting perspectives. First of all, the analogy of the
critical behaviors suggests that these two transitions could be
governed by the same avalanche mechanism. This mechanism
is crucial in the MBL problem [46,51], but remained difficult
to characterize numerically and experimentally [42,43,147–
150]. It would be interesting to clarify if an analogous mech-
anism takes place in random graphs. If this is the case, a
phenomenological RG approach could be developed for the
Anderson transition, complementary to other known analyti-
cal approaches [2,3,18,22,29,91], where, according to several
studies [42,44,56], finite-size effects are too strong to properly
describe the transition.

The methods presented here could also be used to un-
derstand the critical properties of transitions to nonergodic
delocalized phases, whose existence has been demonstrated in
a large class of systems [8,12,29,31]. In particular, the MBL
phase can be seen as a nonergodic delocalized phase in the
Hilbert space since it is multifractal there [54,55]. Moreover,
many-body ground states are multifractal [151–154], thus
nonergodic delocalized, and their transitions could be inter-
preted as transitions between different nonergodic delocalized
phases, where our scaling theory could be very useful.
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APPENDIX A: DEPENDENCE OF Wc ON
THE PARAMETER p

Figure 20 shows that the critical disorder strength Wc deter-
mined on the basis of spectral statistics follows a power law as
a function of p with an exponent 0.58 (purple line). This expo-
nent is close to 1

2 , expected from the following simple physical
picture: In the absence of long-range links, the localization
length of the 1D Anderson model scales as ξloc ∼ 1/W 2 at
small W . When this length is smaller than the mean distance
1/(2p) between two long-range links, the states remain lo-
calized. By contrast, when ξloc exceeds 1/(2p), delocalization
sets in. Hence, the transition should occur at Wc ∼ p1/2 [88].
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FIG. 20. Log-log plot of the critical value Wc of the (Gaussian-
distributed) disorder strength as a function of the long-range link
probability p. Data points have coordinates (p,Wc ) = (0.01, 0.58),
(0.03,1.10), (0.06,1.60), (0.15,2.78), (0.25,3.78), and (0.49,5.85).
The straight dashed line shows the best power-law fit W fit

c =
8.55 p0.58.

APPENDIX B: OTHER CORRELATION FUNCTIONS

In [25], we considered the average Cav and typ-
ical Ctyp correlation functions along the 1D chain,
defined as

Cav(r) =
〈

1

N

N∑
i=1

|ψi|2|ψi+r |2
〉
, (B1)

Ctyp(r) = exp

〈
ln

(
1

N

N∑
i=1

|ψi|2|ψi+r |2
)〉

. (B2)

These correlation functions are also characterized by the two
critical localization lengths ξ‖ and ξ⊥. It was shown in [25]
that they behave asymptotically as

Cav(r) ∼ e−r/ξ‖

rα
, (B3)

Ctyp(r) ∼ e−r/ξ⊥ . (B4)

This is similar to the behavior of the correlation functions
C̃av and C̃typ. Note that the chain can be considered a branch
only up to a certain length ≈ dN/2 (after that length, the
local tree-graph structure is lost, as shown in Fig. 3, where
Nr deviates strongly from its Kr behavior). Since for each
realization only a few branches are significantly populated, in
some instances of the random disorder the main chain will be
one such branch, which justifies the analogy between Cav, Ctyp

and C̃av, C̃typ.

APPENDIX C: NUMERICAL IMPLEMENTATION
OF FINITE-SIZE SCALING

In practice, the numerical implementation of the finite-size
scaling procedure is done in the following way, schematically
depicted in Fig. 21. A candidate value for Wc is chosen, and
either volumic or linear behavior (see Eq. (13) is assumed
on each side of the transition. All curves 〈Pq(N,W )〉 are
then rescaled by 〈Pq(N,Wc)〉; namely, we calculate the quan-

FIG. 21. Schematic representation of the finite-size scaling pro-
cedure in the numerical implementation. Here � ≡ y(lN/ξ,W ) −
ylin.fit (lN ,W ′) is the quantity used to compute χ 2 in Eq. (C1).

tities y(lN ,W ) = ln[〈Pq(lN ,Wr )〉/〈Pq(lN ,Wc)〉], where lN =
ln N for volumic scaling and ln ln N for linear scaling. We fix
the value of W which is farthest from Wc (on the side of the
transition we are considering) as the reference value (denoted
Wr); our aim is then to find the parameters ξ (or �) such that
the curves y(lN ,W ) as a function of N collapse best, for all W
onto the curve y(lN ,Wr ). This is done by collapsing the curves
one after the other, starting from the value of W closest to Wr .
For instance in the linear scaling case, suppose the curve for
some W ′ has already been collapsed on top of the curve for Wr .
Then, the length ξ associated with W is obtained by finding
the rescaling which minimizes the quadratic error between all
data points. Since the curve for W ′ has been shifted by ξ (W ′),
the available point abscissas do not necessarily coincide for
different W . We therefore introduce ylin.fit (lN ,W ), the value
of y obtained by a linear fit of consecutive points of y. The
parameter ξ is the one minimizing

χ2(W ;Wc) =
∑

N

[y(lN/ξ,W ) − ylin.fit (lN ,W ′)]2. (C1)

For each candidate Wc we can then assess the validity of our
hypothesis by defining

χ2(Wc) =
∑
W

χ2(W ;Wc). (C2)

APPENDIX D: FINITE-SIZE SCALING OF MOMENTS
FOR OTHER PARAMETER VALUES

In the main text, we presented results for a parameter
p = 0.06. Here we show that our analysis extends to a range
of parameter values (up to p ≈ 1

2 , which corresponds to a
3-regular random graph), and that the critical properties are
not sensitive to the choice of disorder distribution (Gaussian
or box disorder distributions).

In Fig. 22 we show the analog of Fig. 5 for different
values of p. For each case we plot the behavior τ̃q = q/q∗ − 1
for three regimes: localized, critical, and delocalized. In the
critical case q∗ = 1

2 , in the delocalized case q → 1 (as N
grows), and in the localized case q∗ < 1

5 . We show very sta-
ble numerical results in a wide range of connectivity values
(p = 0.01, 0.06, 0.49). The critical disorder can be estimated
from these curves for the case where q∗ is closest to 1

2 . We use
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FIG. 22. Multifractal exponents τ̃q extracted from the averaged
moments 〈Pq〉 for p = 0.1, 0.06, 0.49 (for p = 0.49 we used a
box disorder distribution instead of a Gaussian distribution), for
various disorder strengths, from small W = 0.25, 1.05, 11 (delocal-
ized regime), critical W = 0.64, 1.725, 17, to large W = 1, 2.2, 26
(localized regime) for p = 0.01, 0.06, 0.49, respectively. We show
system sizes N = 212, 215, 220.

these values to compute the finite-size scaling curves shown
in Fig. 23 for p = 0.06 and 0.49 in analogy with Fig. 10. We
observe that for q = 0.25 the finite-size scaling is compatible
with linear scaling on both sides of the transition. For large
values of q on the localized side a linear scaling is better
suited, while on the delocalized side we see that a change to
volumic scaling works best. Straight lines in Fig. 23 indicate
the asymptotic behaviors of the scaling functions. These data
confirm the results reported in Table I.

In Fig. 24, we show that for large moments q = 3 and 4 we
obtain the same critical properties as for the case q = 2 shown
in Fig. 10 for p = 0.25. In Fig. 25, we show the stability of
the value of the critical exponent obtained when q = 0.25 and
p = 0.25 for different choices of Wc close to the optimal value
found Wc ≈ 4.

APPENDIX E: DETAILS OF THE TAYLOR EXPANSION
OF THE SCALING FUNCTION AROUND Wc

For q < 0.5, a linear scaling behavior is observed in the
vicinity of the transition with the same critical exponent on
both sides of the transition. In this case, it is possible to use
the more controlled scaling approach which consists in a fit of
the data by a Taylor expansion of the scaling function in the
vicinity of the transition [66,67].

In order to put in operation this approach, we consider the
quantity 〈Pq(W )〉/〈Pq(Wc)〉, where Wc is some fixed value of
the critical disorder, chosen arbitrarily. We assume that this
quantity follows the scaling law (corresponding to a linear
scaling)

ln
〈Pq(W )〉
〈Pq(Wc)〉 = F

(
w d1/ν

N

)
, (E1)

where w = (W − Wc) + A2(W − Wc)2 + A3(W − Wc)3 and
F (X ) = ∑5

k=1 BkX k . In this analysis, the fitting parameters
are the {Ak}, {Bk}, and ν, whereas Wc is fixed and all data for
different W and N are fitted simultaneously.

This approach is illustrated in Fig. 26 for p = 0.06, q =
0.25. Importantly, we quantify the quality of our fits by cal-
culating the sum of squared residuals, which incorporates the
error bars on the fitted data, and the associated goodness of fit
Q. We obtain for Wc = 1.75 and the range of 1.3 � W � 1.95
and 210 � N � 220 values considered, a fit whose goodness
Q ≈ 0.7 is perfectly acceptable. A critical exponent ν ≈ 0.5
is obtained.

We have checked the robustness of the scaling results with
respect to the choice of Wc in the vicinity of 1.75 (data not
shown). Moreover, we have repeated this procedure for differ-
ent values of q and find acceptable goodness of fit for Wc ≈
1.75 and consistent values of ν ≈ 0.5. However, the range of
values of W for which the quality of fit is acceptable narrows
down as q → 0.5. This confirms the results obtained in Fig. 9
by the standard finite-size scaling method and discussed in
Sec. VI B: linear scaling is observed in a restricted range
near the transition. For q � 0.5 volumic and linear scalings
compete, and a two-parameter scaling is in order. For q � 1
the scaling is volumic in the delocalized phase and linear in
the localized phase.

APPENDIX F: FINITE-SIZE SCALING OF SPECTRAL
GAP RATIOS FOR OTHER PARAMETER VALUES

In Fig. 27 (left) we show the result of a finite-size scaling
analysis of ηr for different values of the estimated criti-
cal disorder Wc for p = 0.49 and box-distributed disorder.
In all cases, after an appropriate rescaling ηr(W )/ηr(Wc) =
Flin( log2 N/ξ (W )), the data can be satisfactorily made to col-
lapse. The rescaling lengths ξ (W ), which are shown on the
panels on the right, are then fitted as ξ (W ) = A |W − Wc|−ν .
This yields approximately the same exponent ν ≈ 0.5 ± 0.05
on both (localized and delocalized) sides of the transition for
the values of Wc associated with the best collapse (Wc = 18
for p = 0.49). When Wc is slightly different from these values
the exponents associated with the divergence of ξ (W ) remain
close to 1

2 , as shown in Fig. 28 for different values of p. We
also obtained similar plots for values p = 0.01, 0.25, data not
shown.

APPENDIX G: FINITE-SIZE SCALING OF
HIGHER-ORDER SPACING RATIOS

Following Refs. [155–157], we consider the distribution of
nonoverlapping higher-order spacing ratios defined by

r
(k)
i = s(k)

i+k

s(k)
i

= Ei+2k − Ei+k

Ei+k − Ei
, i, k = 1, 2, 3, . . . . (G1)

This spectral quantity allows us to probe spectral fluctuations
at a scale different from the one probed with nearest-neighbor
spacing ratios.

Let us denote by P(k)(r) the probability distribution of the
r

(k)
i . For random matrices, it was conjectured and numerically

checked that [155]

P(k)
WD(r) = Cα

(r + r2)α

(1 + r + r2)1+3α/2
, (G2)
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FIG. 23. Finite-size scaling of moments for p = 0.06 with Gaussian disorder (top row) and p = 0.49 with box disorder (bottom row). In
both cases the left column corresponds to q = 0.25 and the right column to q = 2. For p = 0.06 the finite-size scaling was done assuming
Wc = 1.725 and for p = 0.49, Wc = 17.5. For q = 0.25 we find linear scaling on both sides of the transition. In the insets we show the length
ξ as a function of W . The lines are fits ∼|W − Wc|−νloc/deloc . The corresponding critical exponents obtained are νloc ≈ 0.42 and νdeloc ≈ 0.42
for p = 0.06; νdeloc ≈ 0.48 and νdeloc ≈ 0.45 for p = 0.49. The right column corresponds to q = 2. Here, the top branch corresponds to the
localized phase and has linear scaling, while the bottom branch corresponding to the delocalized phase shows volumic scaling. In the inset we
show the logarithm of the scaling volume � and the scaling length ξ as a function of W . In the localized phase we get νloc ≈ 1.14 for p = 0.06,
and νloc ≈ 0.99 for p = 0.49. Note that in the delocalized regime for q = 2 (orange curve) we fixed the critical exponent to 0.5 and plotted the
fit of ln � with the function A1 + A2(Wc − W )−0.5 with A1 and A2 as fitting parameters.

FIG. 24. Finite-size scaling of moments for p = 0.25 and q = 3 (left) and q = 4 (right). Finite-size scaling was done assuming Wc = 4.
The top branch corresponds to the localized phase and has linear scaling, while the bottom branch corresponding to the delocalized phase
shows volumic scaling. In the inset we show the logarithm of the volume � and the length ξ as a function of W . In the localized phase we get
νloc ≈ 0.97 for q = 3 and νloc ≈ 1.09 for q = 4. In the delocalized regime, in orange we fit ln � with the function A1 + A2(Wc − W )−0.5.
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FIG. 25. Stability of the critical exponent ν⊥ obtained from
the finite-size scaling analysis of moments (assuming linear scal-
ing on both sides) for q = 0.25, for different values of p. The
straight lines correspond to the average value and the shaded re-
gions mark the standard deviation σ . Left: p = 0.06 the lines show
the average 〈νloc〉 = 0.43 ± 0.02, 〈νdeloc〉 = 0.45 ± 0.04. Center: p =
0.25, 〈νloc〉 = 0.45 ± 0.01, 〈νdeloc〉 = 0.47 ± 0.02. Right: p = 0.49,
〈νloc〉 = 0.47 ± 0.02, 〈νdeloc〉 = 0.51 ± 0.03.

where Cα is a normalization constant and

α = (k + 2)(k + 1)

2
− 2, k � 1. (G3)

In contrast, for randomly distributed energy levels (Poisson
statistics), we have [155]

P(k)
P (r) = (2k − 1)!

[(k − 1)!]2

rk−1

(1 + r)2k
. (G4)

FIG. 26. Finite-size scaling analysis of 〈Pq〉 for q = 0.25 < 1
2

using a Taylor expansion of the scaling function (E1) with a chosen
value of critical disorder Wc = 1.75. The data for ln(〈Pq〉/〈Pc

q 〉) are
represented as symbols with their error bar, while the lines represent
the fit. The goodness of fit Q = 0.73 confirms quantitatively that the
fit goes through all data within error bars. The critical exponent ob-
tained from this procedure is ν ≈ 0.44 close to 0.5, as obtained using
the standard finite-size scaling approach (see Fig. 10). The parame-
ters are p = 0.06, 10 � log2 N � 20 (from lighter shade log2 N = 10
to darker shade log2 N = 20), and 1.2 � W � 2.2.

FIG. 27. Robustness of finite-size scaling of spectral data with
respect to changes in the estimated value Wc of the critical disor-
der strength for p = 0.49 and box-distributed disorder. The critical
exponents extracted from these finite-size scalings are displayed in
Fig. 28, top-right panel.

As an illustration, Fig. 29 displays the distributions P(k)(r) for
1 � k � 3 in the localized, critical, and delocalized regimes.

A set of parameters {η(k)
r }k�1 can be defined to interpolate

between Poisson and Wigner-Dyson level statistics as

η(k)
r = 〈min(r(k), 1/r(k) )〉 − IP

IWD − IP
, (G5)

FIG. 28. Robustness of the critical exponents of spectral data for
the localized and delocalized branches with respect to changes in the
estimated value Wc of the critical disorder strength for p = 0.06, 0.15
and Gaussian-distributed disorder (left panels) and for p = 0.49 and
box-distributed disorder (top-right panel). The bottom-right panel
shows the robustness of the critical exponents extracted from the
finite-size scaling based on higher-order spacing ratios.
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FIG. 29. Probability density of the higher-order spacing ratios r(k) of the spectra for k = 1 (left), k = 2 (middle), and k = 3 (right). Here,
p = 0.49, N = 215, and the strength of the box-distributed disorder is W = 9 (yellow curves), W = 18 (blue-green curves), and W = 25 (dark
purple curves).

FIG. 30. Top: Finite-size scaling of higher-order spectral function η(k)
r as function of system size for k = 1 (left), k = 2 (middle), and k = 3

(right), same data for all values of k. Here, p = 0.49 and the disorder is box distributed. Bottom: Finite-size scaling of η(k)
r (W ) for different

values of k. For Wc = 18, the critical exponents extracted from these finite-size scalings are νdeloc ≈ 0.58, νloc ≈ 0.51 for k = 1, νdeloc ≈ 0.58,
νloc ≈ 0.53 for k = 2, and νdeloc ≈ 0.58, νdeloc ≈ 0.52 for k = 3.
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FIG. 31. The same two-parameter RG flow plot as in Fig. 19 for
moments, with p = 0.06 (top) and p = 0.49, box disorder (bottom).
The insets show q∗ as a function of W for different system sizes
(grayscale). The squares in the insets correspond to ξ⊥ ln K where ξ⊥
was obtained from the exponential fit of C̃typ ∼ e−d/ξ⊥ . For p = 0.06
the correlation functions were computed for N = 218 for p = 0.49
we used N = 217.

where 〈. . . 〉 denotes an ensemble average, and IP and IWD

are the average of min(r(k), 1/r(k) ) when r(k) is distributed
according to P(k)

P (r) and P(k)
WD(r), respectively. The parameter

η
(k)
r is equal to 0 for Poisson statistics and to 1 for Wigner-

Dyson level statistics. Figure 30 shows the behavior of η
(k)
r

for k = 1, 2, 3 for various disorder strengths as function of
system size. The top row shows the raw data and the bottom
row shows the result of the same linear finite-size scaling
procedure as described in the main text for Wc = 18. These
finite-size scalings consistently yield critical exponents close
to 0.5 for both localized and delocalized branches (see caption
of Fig. 30 for details).

APPENDIX H: ANDERSON TRANSITION AND MBL
TRANSITION: TWO-PARAMETER RG FLOW

FOR OTHER PARAMETER VALUES

In Fig. 19 we showed that for p = 0.25 the RG flow is
identical to that of MBL. The same can be seen in Fig. 31
for other parameter values.

APPENDIX I: ANOTHER OBSERVABLE: THE RADIAL
PROBABILITY DISTRIBUTION

Another way to compare the Anderson transition on ran-
dom graphs with the MBL transition is to consider the radial
probability distribution of eigenstates introduced in [143]. By
denoting imax the site where a given state reaches its maximum

FIG. 32. Radial probability distribution of eigenstates. Left: �(r) for W ∈ [0.7, 2.4] and N = 217. Its behavior can be inferred from that
of C̃av [Eq. (5)], shown in Fig. 7. It decays exponentially in the localized phase, �(r) ∼ e−r/ξ‖/rα , as a power law at the transition (where ξ‖
diverges), �(r) ∼ r−α , and follows Nr (see Fig. 3), thus is peaked at r ≈ dN/2, for r sufficiently large, in the delocalized phase. The orange
curve corresponds to W = 1.75 ≈ Wc. The black line corresponds to the fit �(r) ∼ r−α , where we find α ≈ 1.36. This is compatible with
α ≈ 1.3 which we obtain from what we find for C̃av(r) ∼ K−re−r/ξ‖/rα for p = 0.06 (data not shown). Center: Mean distance 〈r〉, calculated
from the radial probability distribution of eigenstates �(r) defined by Eq. (I1) as in [143] for the MBL problem, as a function of W . Different
curves correspond to different system sizes N = 2L . In the ergodic delocalized phase, 〈r〉 ∼ dN/2 at large N , while 〈r〉 is finite (independent
of N) in the localized phase. At the transition, 〈r〉 ∼ dN

2−α . Right: �2r for the same values as the left panel. Importantly, �2r is finite in both
localized and delocalized regimes, but diverges at the transition. The behaviors at criticality and in the delocalized phase are very similar to
what is found in the MBL problem [143]. The localized behaviors are to be contrasted with the MBL case where 〈r〉 ≈ pdN with p < 1

2 , which
reflects the multifractal property of this phase. The parameters are as follows: p = 0.06 and system sizes N = 210, 212, 214, 215, 216, 217, 218.
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amplitude, we define the radial probability distribution as

�(r) =
〈 ∑

d (imax,i)=r

|ψi|2
〉
, (I1)

where we average over the different eigenstates, disorder, and
graph configurations considered. This distribution, plotted in
Fig. 32(b), allows us to assess the spatial properties of wave
functions on the graph, in complement to the average C̃av

[Eq. (5)] and typical C̃typ [Eq. (6)] correlation functions.
The mean value 〈r〉 is displayed in Fig. 32(a). In the local-

ized regime, the curves of 〈r〉 as a function of W , for different
N , collapse. This collapse is compatible with the exponential
decay of the average correlation function C̃av [Eq. (5)]. In-
deed, Eq. (5) implies that �(r) ∼ e−r/ξ‖/rα , thus (neglecting

the rα correction) 〈r〉 ≈ e−1/ξ‖/(1 − e−1/ξ‖ ) and the variance
�2r = 〈r2〉 [shown in Fig. 32(c)] are finite, independent of
N , in the localized phase W > Wc. This behavior is to be
contrasted with that found in the MBL phase where 〈r〉 ∼ pdN

with p < 1
2 [143], which reflects the fact that the MBL phase

is multifractal.
At the transition, ξ‖ diverges and �c(r) ∼ r−α with 1 <

α < 2. Therefore, 〈r〉 ∼ d2−α
N and �2r ∼ d3−α

N diverge at the
transition. In the delocalized phase, C̃av tends to a constant
(for r � ξ , ξ the correlation length) such that �c(r) is peaked
at ≈ dN/2 [�c(r) behaves like N (r), shown in Fig. 3, for
r � ξ ], hence, 〈r〉 ≈ dN/2 and �2r is finite at large N .
These behaviors are strikingly similar to what is found in
the critical and delocalized regimes of the MBL transition
[143].
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