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There is a common understanding in quantum optics that nonclassical states of light are states that do not have
a positive semidefinite and sufficiently regular Glauber-Sudarshan P function. Almost all known nonclassical
states have P functions that are highly irregular, which makes working with them difficult and direct experimental
reconstruction impossible. Here we introduce classes of nonclassical states with regular, non-positive-definite P

functions. They are constructed by “puncturing” regular smooth positive P functions with negative Dirac-δ
peaks or other sufficiently narrow smooth negative functions. We determine the parameter ranges for which such
punctures are possible without losing the positivity of the state, the regimes yielding antibunching of light, and
the expressions of the Wigner functions for all investigated punctured states. Finally, we propose some possible
experimental realizations of such states.
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I. INTRODUCTION

Creating and characterizing nonclassical states of light
are two tasks of substantial interest in a wide range of
applications [1,2], such as sub-shot-noise measurements [3–5],
high resolution imaging [6–9], light source and detector cal-
ibration [10–12], quantum cryptography [13,14], or quantum
information processing [15].

In quantum optics, there is widespread agreement that the
most classical pure states of light are coherent states |α〉. These
are eigenstates with complex eigenvalue α of the annihilation
operator a of the mode of the light field under consideration,
a|α〉 = α|α〉, and are characterized by the minimal uncertainty
product of the quadratures X = (a + a†)/

√
2 and Y = (a −

a†)/(i
√

2). In the case of a mechanical harmonic oscillator
the quadratures correspond simply to phase-space coordinates
x and p in suitable units. Hence a coherent state resembles
most closely the notion of a classical phase-space point located
at the mean position of the quadratures. The label α ∈ C
determines these mean values as 〈α|X|α〉 = √

2 Re(α) and
〈α|Y |α〉 = √

2 Im(α). Coherent states of light, which can be
produced by lasers operated far above the threshold [16],
retain the property of minimal uncertainty �X�Y = 1/2,
where �X =

√
〈X2〉 − 〈X〉2 is the standard deviation, under

the dynamics of the harmonic oscillator underlying each
mode of the electromagnetic field. Mixing classically coherent
states (i.e., choosing randomly such states according to a
classical probability distribution) should not increase their
quantumness. Hence (possibly mixed) quantum states given
by a density operator ρ as

ρ =
∫

P (α)|α〉〈α| d2α (1)

with a positive P function are considered “classical states” in
quantum optics. While it may appear that (1) describes only
states that are “diagonal” in a coherent state basis, it was shown

by Sudarshan [17] that in fact all possible quantum states ρ

of the light field (quantum or classical) can be represented
by (1). This is possible due to the fact that coherent states are
overcomplete. The price to pay, however, is that in general
P (α) is not a smooth function, but a functional. Obviously,
indeed, even a coherent state |α0〉 is already represented by a
functional, namely a Dirac-δ peak, P (α) = δ(α − α0). Such
a level of singularity represents the “boundary of acceptable
irregular behavior” of the P function for a classical state. Much
worse singularities arise for example from simple Fock states
|n〉, i.e., energy eigenstates of the mode, a†a|n〉 = n|n〉, for
which the P function is given by the nth derivative of a δ

function [18].
It would be desirable that one could directly reconstruct

the P function and in this way show the nonclassicality of
states that are genuinely quantum. However, in the case of
highly nonregular P functions this is impossible. One way
out is to apply filters that do not enhance the negativity of
the characteristic function, i.e., the Fourier transform of P (α)
[19–22].

Also for the ease of theoretical work one would like to
have classes of P functions that are regular and smooth, but
represent genuine quantumness due to the fact that they become
negative [23]. One class of such states are single-photon added
thermal states [20], i.e., states of the form ρ = Na†ρT a, where
ρT represents a thermal state and N is a normalization factor.
The P function of this state is given by the product of a linear
function of |α|2 and the Gaussian of the thermal state [see Eq.
(4.36) in [18]]. But as Agarwal writes (p. 84 in [18]), “Here we
perhaps have the unique case where P (α) exists but is negative.
Most known cases of nonclassical P involve P functions which
do not even exist.”

In this paper, we introduce whole classes of such genuinely
quantum states with nevertheless smooth P functions (i.e.,
exhibiting at most singularities in the form of Dirac δ func-
tions). The recipe for doing so is very simple: start with a
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classical quantum state with a smooth positive P function and
then superpose some narrow, negative peaks. Altogether, one
must guarantee, of course, that the density matrix ρ remains
a semidefinite positive operator. Finding parameter regimes
where this is the case constitutes the main technical difficulty
for constructing such states. Obviously, this general recipe
allows for an infinity of possibilities, starting from the choice
of the smooth original P function, over the number and form
of the negative peaks superposed, to their amplitudes and
positions. We start with the simplest situation of the rotationally
symmetric Gaussian P function centered at |α| = 0 of a
thermal state, “punctured” with a single negative δ peak whose
position and amplitude we can vary. Only the radial position is
relevant here, and we have herewith already three parameters,
exemplifying the wide range of tunability of punctured states.

The paper is organized as follows. In Sec. II, we introduce
the “punctured states,” their general properties, the conditions
for positive definiteness of their density-matrix representation,
and the conditions yielding nonclassical states. In Sec. III,
we investigate the particular simple case of a thermal state
punctured by a single δ peak. In Sec. IV, we study the
case of a squeezed thermal state punctured by a δ peak. In
Sec. V, we generalize our results by considering a thermal state
punctured by a Gaussian peak of finite width. In each section,
we provide the expression of the Wigner function, calculate the
second-order correlation function and identify the regimes of
parameters yielding antibunching of light, i.e., sub-Poissonian
statistics of the photon counting. In Sec. VI, we discuss some
possibilities of experimentally creating some of these states.
Finally, in Sec. VII, we give a conclusion of our work.

II. DEFINITION, GENERAL PROPERTIES, POSITIVITY,
AND NONCLASSICALITY CONDITIONS

A. General punctured states

Let ρcl represent a classical state, that is a state as defined
in (1) with a smooth non-negative P function Pcl(α) � 0. We
define a “punctured ρcl state” as a state (1) with a P function
of the form

P (α) = N
[
Pcl(α) −

N∑
i=1

wi πi(α − αi)

]
, (2)

where N is a normalization constant, the wi are positive
coefficients representing the weights of the different punctures
i (i = 1, . . . ,N ), and πi(α) are positive functions on the
complex plane that determine their shape. We take them as
normalized according to∫

πi(α)d2α = 1, ∀i = 1, . . . ,N. (3)

If the weights are chosen such that the P function (2)
becomes negative for some α and that the resulting state ρ

is a positive semidefinite operator with unit trace, it follows
immediately that the state is nonclassical. Furthermore, the
P function remains “well behaved” (i.e., sufficiently regular)
if πi(α) are well behaved, as we assumed Pcl(α) smooth.
In agreement with the common understanding that positive
P functions corresponding to simple Dirac-δ peaks are still
accepted in the class of well-behaved functions because they

represent coherent states, we consider in the following sections
Dirac δ(α) functions as worst singularities for the punctures
πi(α). This is the also the simplest case, as it does not contain
any further free parameter.

B. Conditions for (semi)positive definiteness

For a given choice of the functions πi(α) for the punctures,
positivity of the state will depend on the position of the αi ∈ C
and the weights wi . Our task is hence to find the allowed
parameter ranges for {wi,αi} such that ρ � 0, i.e., ρ is a
positive semidefinite operator. The normalization factor N
ensures that

∫
P (α)d2α = 1, i.e.,

N =
(

1 −
N∑

i=1

wi

)−1

. (4)

Since N does not influence the positivity, we will often skip
it.

It is clear that in general the condition for any single
parameter will depend on the values of all the others. This can
be seen immediately from the general necessary and sufficient
condition of positive semidefiniteness, 〈ψ |ρ|ψ〉 � 0 ∀ |ψ〉 ∈
H ≡ L2(C), which for the state (1) with a P function of the
form (2) reads∫ (

Pcl(α) −
∑

i

wiπi(α − αi)
)

|〈ψ |α〉|2d2α � 0 ∀ |ψ〉∈H .

(5)

To go beyond this general criterion, we first review briefly a
few necessary and sufficient conditions for positivity of a linear
operator.

Necessary and sufficient condition (NSC). A necessary
and sufficient condition (NSC) for a Hermitian matrix ρ to
be semipositive definite (ρ � 0) is that all its eigenvalues are
non-negative. While the eigenvalues of an infinite-dimensional
matrix are generally not readily accessible, the condition
nevertheless allows for a numerical approach. Indeed, the
density operator (1) can be expressed in the Fock state basis
{|n〉 : n ∈ N0} using the expansion of coherent states

|α〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉. (6)

Then, by introducing a cutoff dimension in Hilbert space of
sufficiently high excitation nmax, a finite-dimensional matrix
representation can be obtained and one can check numerically
that, when increasing the cutoff, the lowest eigenvalue con-
verges to a value that is sufficiently far from zero for judging
the positivity of the state.

Necessary condition (NC). Since ρ � 0 ⇔ 〈ψ |ρ|ψ〉 � 0
for all states |ψ〉, a necessary condition (NC) for ρ � 0 is that
all diagonal elements ρφφ ≡ 〈φ|ρ|φ〉 of the density matrix are
non-negative for a given class of states |φ〉 ∈ K ⊂ H, where
K is a subset of H, i.e.,

ρφφ ≡ 〈φ|ρ|φ〉 � 0, ∀|φ〉 ∈ K ⇐ ρ � 0. (7)

Sufficient condition (SC). A sufficient condition (SC) for
positivity can be found from Gershgorin’s Circle Theorem.
Consider first the case of finite-dimensional matrices A. The
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theorem then says [24] “Every eigenvalue of a complex square
matrix A of coefficients {aij } lies within at least one of
the Gershgorin disks D(aii,Ri) centered at aii with radii
Ri = ∑

j �=i |aij | or Ri = ∑
j �=i |aji |.” An interpretation of this

theorem is that if the off-diagonal elements of A have small
norms compared to its diagonal elements, its eigenvalues
cannot be far from the values of the diagonal elements. A
matrix is called (strictly) diagonally dominant if |aii | � Ri

(|aii | > Ri) for all i. This leads to the following sufficient
condition: a Hermitian (strictly) diagonally dominant matrix
with real non-negative diagonal entries is positive semidefinite
(definite). Gershgorin’s Circle Theorem has been generalized
to the case of infinite-dimensional matrices in [25], where a
proof was given for matrices of the space L1. The proof for the
space L2 in which our operators live can be done analogously
and leads to the same result, namely that the eigenvalues lie in
∪∞

i=1D(aii,Ri) (just as in the case of a finite space). Hence, by
expressing the density matrix in the Fock state basis, we obtain
the sufficient condition (SC)

ρnn − Rn � 0, ∀|n〉 ⇒ ρ � 0, (8)

where ρnn ≡ 〈n|ρ|n〉 and Rn = ∑
m�=n |ρnm|.

C. Conditions for nonclassicality

There exist various nonclassicality criteria for radiation
fields. In this work, we shall consider criteria based on the
negativity of the P function, the negativity of the Wigner
function and the existence of antibunching [1].

Negativity of the P function. A criterion for a state to be
nonclassical is that its P function takes negative values, so
that it can no longer be interpreted as a probability distribution
in phase space. For example, all physical δ-punctured states
are nonclassical according to this criterion. Other punctured
states, however, could have a non-negative P function in the
whole complex plane, so that general punctured states are not
necessarily nonclassical.

Negativity of the Wigner function. Negativity of the Wigner
function is a widely used criterion for nonclassicality. This is
largely due to the fact that the Wigner function can be directly
measured (see, e.g. [26–31]). Since the Wigner function W (α)
is the convolution of the P function with the vacuum state, i.e.,

W (α) = 2

π

∫
P (β) e−2|α−β|2d2β, (9)

the existence of negative values for the Wigner function implies
the existence of negative values for the P function, but the
reverse is not true. Thus the criterion based on negative
values of the Wigner function detects fewer nonclassical states
than the previous criterion. More specifically, it does not
detect states with partly negative P function but everywhere
positive Wigner function. This explains why the definitions
of punctured states based on the puncturing of P functions
rather than Wigner functions is more appropriate. Moreover, δ
puncturing of a Wigner function would be forbidden as Wigner
functions are always bounded (see, e.g., p. 73 in [32]).

Antibunching. Another standard criterion of nonclassicality
is based on the second-order correlation function

g(2) = 〈a†a†aa〉
〈a†a〉2

, (10)

where 〈 · 〉 = Tr( · ρ), or, equivalently, on the Mandel QM

parameter [33]

QM = (�n)2 − 〈n〉
〈n〉 = 〈n〉(g(2) − 1), (11)

where n = a†a. A state is said to be nonclassical if g(2) < 1
(or, equivalently, QM < 0), which corresponds to antibunching
(sub-Poissonian statistics of photon counting that cannot be
observed for mixtures of coherent states).

It is interesting to note the connection between classicality
in terms of the P function and in terms of antibunching, pointed
out by Kimble et al. [34] and generalized by Vogel to space-
and time-dependent correlations [35]: g(2) < 1 can exist if
the P function is negative somewhere. Conversely, if the P

function of a state is a valid probability density, then there is
no antibunching, i.e., g(2) � 1.

Proof. This statement can be proved using Jensen’s inequal-
ity. We use Eq. (5’) in the original paper [36]. Let P (α) be a
valid probability density defined over the complex numbers.
Then Pr (r) = ∫ 2π

0 rP (reiφ) dφ defines a valid probability
density over the real numbers r ∈ [0,∞). Using Eq. (1), the
second-order correlation function (10) can be written as

g(2) =
∫ |α|4P (α) d2α[∫ |α|2P (α) d2α

]2 =
∫ ∞

0 r4Pr (r) dr[∫ ∞
0 r2Pr (r) dr

]2 . (12)

Defining the convex functions f (r) = ϕ(r) = r2, we can
rewrite the above as

g(2) =
∫ ∞

0 ϕ(f (r))Pr (r)dr

ϕ
(∫ ∞

0 f (r) Pr (r) dr
) . (13)

The condition g(2) � 1 is then equivalent to∫ ∞

0
ϕ(f (r))Pr (r)dr � ϕ

(∫ ∞

0
f (r) Pr (r) dr

)
, (14)

which is true by Jensen’s inequality. �
As a conclusion, for radiation field states, both the negativity

of the Wigner function and antibunching imply that the P

function is not a valid probability density, while the reverse
is not necessarily true.

In the following sections, we investigate the cases of various
punctured states. In each case, we apply the conditions of
positivity of and nonclassicality of ρ to determine the physical
nonclassical states. For the sake of simplicity, we restrict
ourselves in the remainder of the paper to a single puncture
by setting N = 1 in Eq. (2).

III. δ-PUNCTURED THERMAL STATES

We define a δ-punctured thermal state as a state determined
through (1) and (2) with

Pcl(α) = e−|α|2/n̄

πn̄
,

(15)
π (α) = δ(α),

where n̄ = (eh̄ω/kBT − 1)−1 is the average number of thermal
excitations at temperature T of the radiation field with fre-
quency ω.
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A. Conditions for (semi)positive definiteness

Necessary condition. A necessary condition for the positiv-
ity of ρ can be obtained from the condition (7) with K the set
of coherent states. It yields the following upper bound for the
puncture weight w1:

w1 � e−|α1|2/n̄

n̄ + 1
≡ wδ,NC

max . (16)

Proof. Let |γ 〉 (γ ∈ C) denote a coherent state. The density-
matrix element ργγ ≡ 〈γ |ρ|γ 〉 is then given by

ργγ = N
[

1

πn̄

∫
e− |α|2

n̄
−|α−γ |2d2α − w1 e−|α1−γ |2

]
, (17)

where we used |〈γ |α〉|2 = e−|α−γ |2 . The condition that ργγ

must be non-negative for all γ reads

w1 � 1

πn̄

∫
e− |α|2

n̄
−|α−γ |2d2α

e−|α1−γ |2 ∀γ ∈ C. (18)

After integration, this yields the condition

w1 � e−( 1
n̄+1 )|γ |2+|α1−γ |2

n̄ + 1
∀γ ∈ C. (19)

The minimum over γ of the right-hand side (RHS) term
is attained for γ = ( n̄+1

n̄
)α1 and directly leads to the condi-

tion (16). �
Sufficient condition. In the Fock state basis, the Gershgorin

disks D(ρnn,Rn) have center ρnn ≡ 〈n|ρ|n〉 and radius Rn

given by

ρnn = n̄n

(n̄ + 1)n+1
− w1e

−|α1|2 |α1|2n

n!
, (20)

Rn = w1e
−|α1|2 |α1|n√

n!

+∞∑
m=0
m�=n

|α1|m√
m!

. (21)

The sufficient condition (8) then implies the following condi-
tion on w1:

w1 <
e|α1|2

n̄ + 1

1

f (|α1|) min
n∈N

{(
n̄

n̄+1

|α1|

)n√
n!

}
≡ wδ,SC

max , (22)

where

f (|α1|) =
+∞∑
m=0

|α1|m√
m!

. (23)

The bound wδ,SC
max depends only on the absolute value of α1,

not on its phase. Also, we have wδ,SC
max = 0 only if n̄ = 0. The

largest values of w1 allowed by the bound lie in the region
where |α1| and n̄ are small, which is shown in Fig. 1. Since
wδ,SC

max > 0 for all values of n̄ > 0 and α1, this is an analytical
proof that there always exist physical nonclassical δ-punctured
thermal states.

Tightness of wδ,NC
max . Computations based on the diagonal-

ization of δ-punctured thermal states and the application of
NSC suggest that the bound wδ,NC

max given in Eq. (16) is tight.
This claim is further supported by the observation that the
coherent state |( n̄+1

n̄
)α1〉 from which the bound is derived is

an eigenstate of ρ with w1 = wδ,NC
max with eigenvalue zero.

FIG. 1. Plot of the upper bounds wδ,NC
max [Eq. (16), solid curves]

and wδ,SC
max [Eq. (22), dashed curves], and of wδ

max, the w1 which
cancels the smallest eigenvalue of the density matrix, as a function
of |α1| for different n̄ (green squares: n̄ = 0.1; blue dots: n̄ = 0.5;
orange triangles: n̄ = 1; purple diamonds: n̄ = 2). The eigenvalues
are computed in a Fock space of dimension nmax = 15. Inset: conver-
gence of wδ

max (green squares) with increasing cutoff dimension nmax

(nmax = 2, 3, 4, and 15 from top to bottom) for n̄ = 0.1.

In Fig. 1, we display both wδ,NC
max and the value of w1 that

cancels the smallest eigenvalue of ρ. In our computations, the
density matrix is expressed in the truncated Fock state basis
{|0〉,|1〉, . . . ,|nmax〉} with a sufficiently large cutoff nmax in
order to ensure stable numerical results. An analytical proof
of the tightness for a puncture at α1 = 0 will be provided in
the context of Gaussian punctures (Sec. V A). Note that a δ

puncture at α = 0 with maximum weight wδ,NC
max corresponds to

the complete removal of the ground state of the oscillator (“the
vacuum” in quantum-field theory parlance) from the state. We
call such states “vacuum-removed states” for short.

In summary, our results indicate that any δ-punctured ther-
mal state with w1 satisfying Eq. (16) corresponds to a proper
physical state. As can be seen in Fig. 1, the value of the bound
of allowed weights w1 decreases as |α1| increases, showing
that a thermal state cannot be punctured significantly far from
its center. This feature is less pronounced as n̄ increases.

B. Conditions for nonclassicality

Negativity of the P function. All δ-punctured thermal states
are nonclassical due to the presence of the infinite negative δ

peak in the P function.
Negativity of the Wigner function. The Wigner function

of δ-punctured thermal states follows from Eq. (9) and is
given by

W (α) = 2N
π

(
e− 2|α|2

1+2n̄

1 + 2n̄
− w1 e−2|α−α1|2

)
. (24)

It takes negative values for large enough puncture weight

w1 >
e−|α1|2/n̄

1 + 2n̄
. (25)
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FIG. 2. Density plot of the second-order correlation function g(2)

[Eq. (26)] for single δ-punctured thermal states as a function of |α1|
and n̄ for the maximal puncture weight w1 = wδ,NC

max given by Eq. (16)
(top) and as a function of |α1| and w1 for n̄ = 0.2 (bottom). Only
the range where ρ � 0 is shown. The black dashed curve in the top
figure, along which g(2) = 1, delimits the sets of states displaying
antibunching or not. The inset of the bottom figure represents g(2) as
a function of α1 for the maximum weight w1 = wδ,NC

max .

Such weights are still acceptable as long as they do not exceed
the (larger) bound (16).

Antibunching. For δ-punctured thermal states, the second-
order correlation function (10) is given by

g(2) = (1 − w1)
2n̄2 − w1|α1|4
(n̄ − w1|α1|2)2

. (26)

For w1 → 0, we recover the known value g(2) = 2 of the
thermal state [37]. In Fig. 2, we show a density plot of g(2)

as a function of n̄ and |α1| for the maximal allowed value of
the puncture weight w1, i.e., the bound (16). A whole region
of parameter space corresponds to punctured states giving rise
to antibunching (g(2) < 1). Also, g(2) increases beyond 2 for
n̄ � 0.1 and |α1| � 0.5.

IV. δ-PUNCTURED SQUEEZED THERMAL STATES

To generalize the previous results, we now replace the
thermal state by a squeezed thermal state [38,39]

ρcl = 1

πn̄

∫
e−|α|2/n̄S(r)|α〉〈α|S†(r) d2α, (27)

where S(r) = exp (−r[a†2 − a2]/2) is the squeezing operator
and r is the squeezing parameter, taken real for simplicity. We
recall that the P function of a state ρ is given by the Fourier
transform of its normal-ordered characteristic function χ (β) =
tr[ρ ei(βa†+β∗a)]. For the squeezed thermal state ρcl defined in
Eq. (27), the normal-ordered characteristic function reads [38]

χ (β) = e−n̄I β
2
R−n̄Rβ2

I , (28)

where βR and βI are the real and imaginary parts of β ∈ C and

n̄R = e−2r n̄ − e−r sinh r,

n̄I = e2r n̄ + er sinh r. (29)

The Fourier transform of the characteristic function—and thus
the P function—exists only if both the coefficients n̄I and n̄R

in front of β2
R and β2

I are positive, which imposes the condition

e−2|r| n̄ − e−|r| sinh |r| > 0, (30)

thereby limiting the range of allowed squeezing parameters
r ∈ R for a given n̄. The characteristic function of a squeezed
thermal state is an asymmetric Gaussian distribution; the same
goes for its P function. Therefore, a δ-punctured squeezed
thermal state is a state determined through (1) and (2) with

Pcl(α) = e
−

(
α2
R

n̄R
+ α2

I
n̄I

)

π
√

n̄Rn̄I

,

(31)
π (α) = δ(α),

where αR and αI are the real and imaginary parts of α ∈ C.

A. Conditions for (semi)positive definiteness

Necessary condition. Since Pcl(α) is rotationally nonsym-
metric, it is reasonable to assume that the necessary condi-
tion (7) will provide us with a tight bound for w1 only if we
consider states |φ〉 ∈ K with nonsymmetric P functions. By
taking K to be the set of squeezed coherent states [38,39], we
obtain the following upper bound for the puncture weight w1:

w1 � 2
√

n̄Rn̄I e
−

(
α2

1R
n̄R

+ α2
1I
n̄I

)

n̄R + n̄I + 2n̄Rn̄I

≡ wδ,NC
max, squ. (32)

When n̄R = n̄I = n̄, this condition reduces to the condi-
tion (16), as expected.

Proof. Let us denote by |γ,r ′〉 a squeezed coherent state
defined as [38,39]

|γ,r ′〉 = D(γ )S(r ′)|0〉, (33)

where D(γ ) = exp (γ a† − γ ∗a) is the displacement operator
and S(r ′) the squeezing operator of parameter r ′, where the
prime symbol distinguishes r ′ from r , this latter defining n̄R

and n̄I . The necessary condition (7) with |φ〉 = |γ,r ′〉 reads

w1 �
∫

Pcl(α)|〈γ,r ′|α〉|2d2α

|〈γ,r ′|α1〉|2 , (34)

where the modulus squared of the scalar product between a
squeezed coherent state |γ,r ′〉 and a coherent state |α〉 is given
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FIG. 3. Plot of the upper bound wδ,NC
max, squ (solid curves) and of

wδ
max, squ, the w1 which cancels the smallest eigenvalue of the density

matrix, as a function of |α1| for n̄R = 1, n̄I = 0.1 (squares), and
n̄I = 0.5 (dots). The eigenvalues are computed in a Fock space of
dimension nmax = 25. Inset: convergence of wδ

max, squ (green squares)
with increasing cutoff dimension nmax (nmax = 6, 8, 25 from top to
bottom) for n̄I = 0.1.

by [37]

|〈γ,r ′|α〉|2 = sech(r ′) e−(|α|2+|γ |2)+(α∗γ+γ ∗α)sech(r ′)

× e−th(r ′) Re[α2−γ 2]. (35)

The minimum of the RHS term in Eq. (34) is obtained, after
integration over α, for

γ = n̄R + n̄I + 2n̄Rn̄I√
(n̄R − n̄I + 2n̄Rn̄I )(n̄I − n̄R + 2n̄Rn̄I )

α1,

r ′ = arctanh

(
n̄R − n̄I

2n̄Rn̄I

)
, (36)

and leads to the necessary condition (32). �
Tightness of wδ,NC

max, squ. Computations relying on the diago-
nalization of ρ given by Eq. (1) with Eqs. (2) and (31) suggest
that the bound wδ,NC

max, squ given in Eq. (32) is tight. As for the case
of thermal states, this claim is supported by the observation
that the squeezed coherent state |γ,r ′〉 with γ and r ′ given by
Eq. (36) is an eigenstate of ρ with eigenvalue zero. Figure 3
shows wδ,NC

max, squ and the value of w1 that cancels the smallest
eigenvalue of ρ. Numerical results converge to the bound as
the cutoff dimension increases.

B. Conditions for nonclassicality

Negativity of the P function. As for δ-punctured thermal
states, the presence of a δ peak always enforces nonclassicality.

Negativity of the Wigner function. The Wigner function of
a δ-punctured squeezed thermal state reads

W (α) = 2N
π

(
e
−2

(
α2
R

1+2nR
+ α2

I
1+2nI

)
1 + 2n̄

− w1 e−2|α−α1|2
)

, (37)

FIG. 4. Density plot of the second-order correlation function g(2)

[Eq. (39)] for single δ-punctured squeezed thermal states as a function
of n̄R and n̄I for the maximal puncture weight w1 given in Eq. (32)
for α1R = α1I = 0.1/

√
2. The black dashed curve delimits the region

where g(2) < 1. Note that in the absence of puncture, g(2) > 2 for any
squeezed thermal state (see text).

and takes negative values if the puncture weight satisfies

w1 >
e
−

(
α2
R

n̄R
+ α2

I
n̄I

)

1 + 2n̄
, (38)

which is still acceptable as long as it does not exceed the (larger)
bound (32).

Antibunching. For δ-punctured squeezed thermal states, the
second-order correlation function (10) is given by

g(2) = (1 − w1)
1
4

(
3n̄2

R + 2n̄Rn̄I + 3n̄2
I

) − w1|α1|4(
n̄R+n̄I

2 − w1|α1|2
)2 . (39)

For w1 → 0, we recover the known value for squeezed thermal
states [38]

g(2) = 3n̄2
R + 2n̄Rn̄I + 3n̄2

I

(n̄R + n̄I )2

= 2 + (2n̄ + 1)2 sinh2 r cosh2 r

(n̄ cosh(2r) + sinh2 r)2
� 2. (40)

Figure 4 shows a density plot of g(2) as a function of n̄R

and n̄I for |α1| = 0.1 with the maximal allowed value of
w1, i.e., the bound (32). Again, a whole region of parameter
space (delimited by the black dashed curve) corresponds to
states displaying antibunching (g(2) < 1), to be contrasted with
squeezed thermal states (i.e., without puncture) for which
g(2) � 2.

V. GAUSSIAN-PUNCTURED THERMAL STATES

We now generalize the results of Sec. III by replacing
δ punctures by single narrow Gaussian punctures. We thus
define Gaussian-punctured thermal states as states determined
through (1) and (2) with

Pcl(α) = e−|α|2/n̄

πn̄
,

(41)

π (α) = e−|α|2/b

πb
,
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where b > 0 characterizes the width of the puncture. Note that
δ-punctured thermal states correspond to the limit b → 0.

A. Vacuum-centered Gaussian punctures

We first consider the simple case of a thermal state from
which we subtract a single Gaussian centered at α1 = 0. A
thermal state with the vacuum component exactly removed
(case b → 0, n̄ = 1, w1 = 1/2) has already been considered
in the literature as a simple example of a nonclassical state [40].
Here we keep a variable width and amplitude for the subtracted
Gaussian.

1. Condition for (semi)positive definiteness

Necessary and sufficient condition. Since both the original
and the subtracted state are diagonal in the Fock state basis,
NSC can be tackled analytically. The P function of the
vacuum-centered Gaussian-punctured thermal state reads

P (α) = N
(

e− |α|2
n̄

π n̄
− w1

e− |α|2
b

πb

)
. (42)

It takes negative values at α = 0 as soon as w1 > b/n̄. As we
will show, onlyb < n̄ can lead to a positive semidefinite density
operator. Expressing the coherent states in the Fock state basis
using Eq. (6) and performing the Gaussian integrals, we find

ρ = N
∞∑

n=0

[pcl(n) − w1 pπ (n)]|n〉〈n|,

with

pcl(n) = n̄n

(n̄ + 1)n+1
, pπ (n) = bn

(b + 1)n+1
. (43)

Since ρ is diagonal, the positivity condition reads pcl(n) −
w1 pπ (n) � 0 for all n ∈ N0, which is equivalent to

w1 � b + 1

n̄ + 1
inf

n∈N0

{(
n̄b + n̄

n̄b + b

)n}
≡ wG,NSC

max, vac. (44)

We can now distinguish two cases. (i) If b > n̄, then the
fraction in the argument of the infimum is smaller than 1 and
the infimum is obtained in the limit n → ∞ and evaluates
to zero; hence w1 = 0. This shows that we cannot subtract a
broader Gaussian than the original one. (ii) In the other case,
where b � n̄, the minimum is obtained for n = 0 and evaluates
to 1. We can thus subtract a Gaussian that is tighter than the
original one and still obtain a positive semidefinite density
operator. This works as long as

w1 � b + 1

n̄ + 1
≡ wG,NSC

max, vac.

2. Conditions for nonclassicality

Negativity of the P function. In order to obtain a P function
which exhibits negative values for someα, we see from Eq. (42)
that this requires

w1 >
b

n̄
, (45)

showing that, in the limit b → 0, we recover the fact that all
δ-punctured states are nonclassical.

Negativity of the Wigner function. The Wigner function of
a vacuum-centered Gaussian-punctured thermal state reads

W (α) = N 2

π

⎛
⎝ e− 2|α|2

1+2n̄

1 + 2n̄
− w1

e− 2|α|2
1+2b

1 + 2b

⎞
⎠ (46)

and takes negative values if w1 satisfies

w1 >
1 + 2b

1 + 2n̄
, (47)

which is a stronger condition than Eq. (45). Note that for b →
0, Eq. (47) tends to Eq. (25), the bound found for δ-punctured
thermal states.

Antibunching. From the expression of the second-order
correlation function (10), we have

g(2) = (1 − w1)
2n̄2 − w12b2

(n̄ − w1b)2 . (48)

For w1 = wG,NSC
max, vac, the condition for antibunching reads

g(2) < 1 ⇔ n̄2 + b2 < 1. (49)

To summarize, for α1 = 0, a P function that corresponds
to a positive semidefinite density operator and attains negative
values in some region is obtained if and only if

b < n̄,
b

n̄
< w1 � b + 1

n̄ + 1
. (50)

Hence the puncture weight w1 must be smaller than (b +
1)/(n̄ + 1) to ensure the physicality of the state, but greater
than b/n̄ to yield a nonclassical state. Moreover, in the limit
b → 0, the Gaussian puncture becomes a δ puncture and we
recover the value given in (16). This provides an analytical
proof of the tightness of the bound wδ,NC

max in the case α1 = 0.

B. Arbitrarily centered Gaussian punctures

We now consider the more general case of an arbitrarily
centered Gaussian puncture corresponding to a P function of
the form

P (α) = N

⎛
⎝e− |α|2

n̄

π n̄
− w1

e− |α−α1 |2
b

πb

⎞
⎠. (51)

We first obtain an upper bound on the amplitude of the puncture
and then support the tightness of this bound with numerical
results. Finally, we find the regimes of parameters yielding
nonclassicality and antibunching.

1. Condition for (semi)positive definiteness

Necessary condition. Using Eq. (7) with K the set of
coherent states, we find that we can only subtract a Gaussian
tighter than the original state (b < n̄) and obtain as a necessary
condition for positivity

w1 � b + 1

n̄ + 1
e− |α1 |2

n̄−b ≡ wG,NC
max . (52)
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Proof. Using |〈γ |α〉|2 = e−|α−γ |2 and Eq. (41), we find for
the expectation value of ρ in the coherent state |γ 〉

ργγ =
∫ (

1

πn̄
e− |α|2

n̄
−|α−γ |2 − w1

πb
e− |α−α1 |2

b
−|α−γ |2

)
d2α.

(53)
Evaluation of the Gaussian integrals leads to

ργγ � 0 ⇔ w1 � b + 1

n̄ + 1
e− |γ |2

n̄+1 + |γ−α1 |2
b+1 . (54)

That needs to be true for all γ ∈ C in order to keep the possi-
bility of a positive semidefinite density operator. Minimizing
this expression over γ gives us the upper bound wG,NC

max . Since
the exponential function is strictly monotonically increasing
and the prefactors are positive we can focus on minimizing the
exponent:

f (γ ) ≡ − |γ |2
n̄ + 1

+ |γ − α1|2
b + 1

.

By applying a rotation in phase space, the puncture’s center
can always be brought along the real axis, so that we can set
α1 = x1 ∈ R. We then split γ into its real and imaginary part
γ = γR + iγI , leading to

f (γ ) = h(γI ) + g(γR) + x2
1

b + 1
,

with

h(γI ) = γ 2
I

(
1

b + 1
− 1

n̄ + 1

)
,

g(γR) = γ 2
R

(
1

b + 1
− 1

n̄ + 1

)
− 2γRx1

b + 1
.

Here we have to distinguish two cases (the case b = n̄ is
trivial). (i) If b > n̄, h(γI ) is an inverted parabola and can attain
arbitrary negative values and the same holds for f , thus pushing
the exponential in (54) arbitrarily close to zero, implying that
the above condition can only be fulfilled for all coherent states
if w1 = 0. This means that we cannot subtract any Gaussian
wider than the original thermal one and still obtain a valid state.
This generalizes what we have already seen in the case of the
vacuum centered Gaussian. (ii) For b < n̄, the dependence of
f on the parameters γR,γI splits into the two functions h and
g that depend on different independent arguments γR and γI .
Thus we can minimize both h and g separately. Obviously h

is minimized for γI = 0. We find that g(γR) is minimized for
γR,min = (n̄ + 1)x1/(n̄ − b) and we get the minimal values

g(γR,min) = −x2
1
n̄ + 1

b + 1

1

n̄ − b
,

f (γR,min) = − x2
1

n̄ − b
.

Finally, for the general case α1 ∈ C, plugging f (γR,min) into
Eq. (54) yields the bound (52). �

Tightness of wG,NC
max . As for the previous bounds obtained

from the necessary condition (7), diagonalizing the density
operator of the Gaussian punctured thermal state [i.e., Eq. (1)
together with Eqs. (2) and (41)] and using the NSC suggest
that the bound wG,NC

max [Eq. (52)] is tight. This result is shown
in Fig. 5, where we plotted the analytic bound (lines) and
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FIG. 5. Plot of the upper bound wG,NC
max (solid curve) and of wG

max,
thew1 which cancels the smallest eigenvalue of the density matrix, as a
function of |α1| for b = 1 and n̄ = 1.5 (squares) and n̄ = 2 (dots). The
eigenvalues are computed in a Fock space of dimension nmax = 40.
Inset: convergence of wG

max (green squares) as a function of the cutoff
dimension nmax (nmax = 8,12,40 from top to bottom).

the numerical bound (squares and dots) for different cutoff
dimensions nmax as a function of the center of the puncture
|α1|. Also, we found that the coherent state |γ 〉 with γ =
(n̄ + 1)/(n̄ − b) α1 is an eigenstate of ρ with eigenvalue zero
when w1 is given by the bound (52).

2. Conditions for nonclassicality

Negativity of the P function. From Eq. (51), we see that
partly negative P functions can be obtained when

w1 >
b

n̄
e− |α1 |2

n̄−b , (55)

which generalizes Eq. (45). Hence the lower bound of the
weight decreases with the distance between the center of the
thermal state and the position of the puncture. Further this is
smaller than wG,NC

max given in (52) since n̄ > b, implying that
for all allowed values of α1, n̄, and b, there is a puncture weight
such that the P function is negative somewhere in the complex
plane and the state is nonclassical.

Negativity of the Wigner function. The Wigner function of
an arbitrarily-centered Gaussian-punctured thermal state reads

W (α) = 2N
π

⎛
⎝ e− 2|α|2

1+2n̄

1 + 2n̄
− w1

e− 2|α−α1 |2
1+2b

1 + 2b

⎞
⎠ (56)

and is negative if w1 satisfies

w1 >
1 + 2b

1 + 2n̄
e− |α1 |2

n̄−b , (57)

a stronger condition than Eq. (55).
Antibunching. The correlation function (10) for the

state (51) is given by

g(2) = (1 − w1)
2n̄2 − w1(|α1|4 + 4|α1|2b + 2b2)

[n̄ − w1(|α1|2 + b)]2
. (58)

023832-8



NONCLASSICAL STATES OF LIGHT WITH A SMOOTH … PHYSICAL REVIEW A 97, 023832 (2018)

FIG. 6. Density plot of the second-order correlation function g(2)

as a function of n̄ and b < n̄ for single Gaussian-punctured states with
α1 = 0.1 for the maximal puncture weight w1 given in Eq. (52). The
black dashed curve delimits the region where g(2) < 1. In the top left
corner is shown the P function for the parameters indicated by a dot
in the density plot.

Note that in the limit b → 0, Eq. (58) tends to Eq. (26) found
in Sec. III for a δ-punctured thermal state. We have that, for
n̄ < 1, the minimum of g(2) is obtained for b → 0. For n̄ → 0
this minimum tends to zero. We also have that, for n̄ > 1, the
minimum of g(2) is obtained for a finite value of b. Figure 6
shows Eq. (58) as a function of n̄ and b < n̄ for α1 = 0.1 and for
the maximal puncture weight w1 = wG,NC

max given in Eq. (52).

VI. POSSIBLE EXPERIMENTAL REALIZATIONS
OF PUNCTURED STATES

A. Vacuum-removed states

A δ-punctured thermal state with puncture at α1 = 0 and
maximum weight of the puncture, b

gaus,vac
NSC , i.e., a vacuum-

removed thermal state,

ρ = N
∞∑

n=1

n̄n

(1 + n̄)n+1
|n〉〈n| = n̄ + 1

n̄

[
ρT − 1

1 + n̄
|0〉〈0|

]
,

(59)

is probably the example of a punctured state that is easiest to
realize experimentally. Since a thermal state has no coherences
between Fock states, a projective measurement in the Fock
basis does not destroy the quantum properties of the state, but
only alters its statistical character. Discarding the ground state
when it is found leads to an ensemble of states that realizes
the vacuum-removed thermal state. This generalizes to any
initial state that is diagonal in the Fock basis. When single-
photon sources are available, one can of course synthesize a
given vacuum-removed state diagonal in the Fock basis from
the beginning by mixing Fock states with the corresponding
statistical weight without the need for any measurement.
This generalizes to states where the vacuum is not removed
completely by adjusting the statistical weight of the vacuum
state to the desired value.

The measurement-based procedure faces the problem that
traditional photon-counting methods destroy the photons dur-
ing the measurement. Here we propose a procedure suitable for

q = 1

ρT

|0〉, |2〉, ...

|1〉, |3〉, ...

q = 2

|0〉, |4〉, ...

|2〉, |6〉, ...

q = q

|0〉, |2q 〉, ...

|q 〉, |3q 〉, ...

ρ′

FIG. 7. Sketch of realization of vacuum-removed thermal state.
A thermal state ρT is subjected to multiple QND measurements that
distinguish the vacuum state of other photon number states. If at least
one of the measurements yields “−”, the vacuum has definitely not
been realized and the measured state is added to the ensemble. If
all measurements yielded “+” the state is discarded. Since we only
perform a finite number of measurements, the final state ρ ′ given in
Eq. (60) can slightly deviate from the desired state ρ given in Eq. (59).
The deviation can be quantified calculating the fidelity (61).

cavity QED or circuit QED that realizes a vacuum-removed
state diagonal in the Fock basis, based on the nondestruc-
tive detection of photons [41–45] in a mode of the cavity
(see Fig. 7). Two-level atoms in the cavity in a superposition
|+〉 of their two states |g〉,|e〉, where |±〉 = (|g〉 ± |e〉)/√2,
experience a phase shift ϕ = π(n mod 2q)

q
between |g〉 and |e〉

that depends on the number of photons in the cavity, with
an integer q that can be controlled through the interaction
time and strength. A projective measurement of an atom
in the basis {|±〉} (corresponding to measurement results
labeled ±) updates our knowledge of the photon number.
Since ϕ is defined modulo 2π , 2q different Fock states can
be distinguished.

However, we need no information on which Fock state is
actually realized, but only need to systematically exclude the
vacuum state. This can be achieved with an iterative procedure.
In the first step one sets q = 1 = 20. If “−” is measured,
the state is tagged as part of the ensemble. If “+” is
measured, we still need to distinguish the states |n〉 with
n = 0,2,4,6,8, . . . in order to not truncate more states than
the vacuum. So we set q = 2 = 21 yielding a phase shift of
ϕ = π(n mod 4)

2 that allows us to distinguish states with n =
2 + 4k, k ∈ N0 photons (measurement result −) from states
with n = 4k, k ∈ N0, including the vacuum (measurement
result +). This can be continued with q = 2l−1, l =
3,4, . . . ,lmax, as long as needed to exclude the ambiguity
of states with even photon numbers as high as wished.

In general, setting q = 2l−1, with l ∈ N, we can definitely
distinguish the vacuum from all states with n = q + 2kq,k ∈
N0. If after a finite number of repetitions lmax all measurements
yielded +, we need to completely discard the remaining state.
This obviously causes some errors, since we also exclude possi-
ble realizations other than the vacuum from being further used.
The smallest photon number that was not distinguished from
the vacuum, and was therefore also subtracted in the remaining
state, is then n0 = 2qmax = 2lmax , where qmax corresponds to
the smallest interaction time that has been realized, i.e., the
last measurement. The whole procedure postselects states
|n〉 �= |2lmaxk〉∀k ∈ N0, whereas states |n〉 = |2lmaxk〉, k ∈ N0

are truncated. The procedure only works because the thermal
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state is diagonal in the Fock basis; all coherences between
different Fock states are lost. In such a case, however, the
procedure is very effective: if we want to make sure that states
with photon number less than n0 were not truncated, we only
need to perform lmax = �log2(n0)� different measurements.

For a thermal state, occupation for high photon number
states decays very rapidly for small temperatures, and the
overall error can be kept small. To quantify this, we can
calculate the fidelity of our desired state (59) with respect to
the state that was actually constructed

ρ ′ = N ′
[
ρT −

∞∑
n=0

n̄2lmax n

(1 + n̄)2lmax n+1
|2lmaxn〉〈2lmaxn|

]
. (60)

Since both density operators are diagonal in Fock basis the
fidelity is simply evaluated as [46, p. 409]

F (ρ,ρ ′) =
∞∑

n=0

√
ρnnρ ′

nn = 1 − 1

n̄

1(
n̄+1
n̄

)2lmax − 1
. (61)

In the limit of large lmax this reduces to

F = 1 − 1

n̄

(
n̄

n̄ + 1

)2lmax

= 1 − e− log( n̄+1
n̄

)2lmax

n̄
, (62)

i.e., the fidelity approaches 1 exponentially with 2lmax .
This shows the theoretical viability of the procedure. Exper-

imental imperfections, as for example the nonperfect linearity
of the phase shift in the photon numbers [43], may worsen the
result and will have to be evaluated for a given experimental
setup.

B. “Vacuum or not” measurements

The vacuum state can be removed from a broader class of
states, namely states that do not contain coherences between
the vacuum state and other Fock states. Indeed, if ρnn = 0 in
the Fock basis, then ρ0n = ρn0 = 0 is implied by the positivity
of the state [47]. Then one can remove the vacuum state with
a measurement operator A of the form

A = a0|0〉〈0| + a1

∞∑
n=1

|n〉〈n|, (63)

with a0 �= a1: when a0 is measured one discards the state, for a1

one continues the experiment and effectively gets the desired
punctured state through postselection. Recently, a procedure
was proposed that realizes the measurement operator A [48].

C. Synthesizing arbitrary states

The above considerations are only valid for a complete sub-
traction of the vacuum state. The procedure does not translate
easily to more general subtractions, especially for α1 �= 0, and

we therefore present another, completely different approach,
based on approximately synthesizing our states from scratch
as follows: we can numerically express the density operator
of the desired punctured state up to a chosen dimension N in
the Fock basis, neglecting terms involving states with higher
photon number than N :

ρ ′ =
N∑

n=0

N∑
m=0

cmn|n〉〈m|.

This is in general a mixed state and we can express it as a sum
of pure states:

ρ ′ =
∑
i=1

pi |ψi〉〈ψi |,

|ψi〉 =
N∑

n=0

c(i)
n |n〉.

We can then create our state by choosing with the right proba-
bility one of the pure states and constructing it with the method
proposed in [49–52] and demonstrated experimentally in [53].
Multiple repetition (creation of an adequate ensemble of states)
then gives us our state up to a certain accuracy. In a single run
we actually do not have the complete state, but for further
experiments one anyway needs typically multiple repetitions
for obtaining measurement statistics of any observable. Hence
this procedure creates the desired mixed state in the ensemble
sense.

VII. CONCLUSION

In this work, we introduced a class of nonclassical states
with regular nonpositive Glauber-Sudarshan P function that
we call punctured states. These states are obtained from
the addition of sufficiently narrow negative peaks to smooth
positive P functions. We determined the regimes of parameters
yielding proper physical (i.e., positive semidefinite) nonclas-
sical states in the case of δ and Gaussian punctures of thermal
or squeezed thermal states. We showed that their second-order
correlation function can be modified through an appropriate
choice of the punctures and identify the regimes yielding
antibunching of light. All states exhibiting antibunching have
a negative P function in some region. Finally, we presented
possible experimental realizations of punctured states based on
vacuum-or-not measurements and on complete synthesizing.
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