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Kapitza stabilization of a repulsive Bose-Einstein condensate in an oscillating optical lattice
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We show that the Kapitza stabilization can occur in the context of nonlinear quantum fields. Through this
phenomenon, an amplitude-modulated lattice can stabilize a Bose–Einstein condensate with repulsive interactions
and prevent the spreading for long times. We present a classical and quantum analysis in the framework of
Gross-Pitaevskii equation, specifying the parameter region where stabilization occurs. Effects of nonlinearity
lead to a significant increase of the stability domain compared with the classical case. Our proposal can be
experimentally implemented with current cold atom settings.
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I. INTRODUCTION

The striking example of the Kapitza pendulum shows
that an oscillating force with zero average can lead to the
phenomenon of Kapitza stabilization, with transformation of
an unstable fixed point into a stable one [1,2]. The theory of this
nonlinear system is well established in a classical context [3].
Some applications to quantum systems have been proposed,
including optical molasses [4], stability of optical resonators
[5], trapping by laser fields [6,7], cold atoms with oscillating
interactions [8], the periodically driven sine-Gordon model [9],
and polariton Rabi oscillations [10]. However, the emergence
of this phenomenon for nonlinear quantum fields of repulsive
interactions has not been analyzed. In this paper, we show
that a similar effect appears for a repulsive Bose-Einstein
condensate (BEC) in an oscillating optical lattice. For this
system, the oscillating lattice enables the localization of a
wave packet of repulsive atoms through Kapitza stabilization:
thus, while in the absence of the lattice the atoms spread over
the system, they remain trapped in a localized wave packet
in the presence of the oscillating force with zero mean, an
effect due to the interplay between dynamical renormalization
of the potential and atom-atom interactions. The evolution is
described by the Gross-Pitaevskii equation [11] (GPE), with
the repulsive nonlinear interaction creating the unstable fixed
point in the vicinity of the maximum of the wave packet.
In contrast with the standard classical Kapitza pendulum,
where the potential is fixed in the vicinity of the unstable
fixed point, the present GPE setting creates a more complex
situation where the potential varies with the shape of the
wave function. In the following we describe the physics of
this remarkable phenomenon and present realistic parameter
values for an experimental realization with a BEC. We note that
the general problem of stabilization by oscillating fields finds
various important applications; e.g., Paul traps for charged
particles [12].

II. CLASSICAL SYSTEM DYNAMICS

We first analyze a classical inverted harmonic oscillator in
one dimension in an oscillating periodic potential with the
Hamiltonian

H = p2

2m
− 1

2
mω2

i x
2 + V0(x) cos (ω�t), (1)

with V0(x) = U0 cos(2πx/d) where U0 is the potential am-
plitude. Here m is the particle mass, x and p are position
and momentum, ωi characterizes the unstable fixed point and
the periodic potential has a spatial period d and an ampli-
tude oscillation of frequency ω�. We define a characteristic
momentum p0 = 4

√
mU0 and oscillation frequency ω0 =

2π [2U0/(md2)]1/2, leading to the dimensionless variables

X = 2π
x

d
, P = p

p0
, T = ω�t

2π
(2)

and the frequency ratios

Ri0 = ωi

ω0
, R0� = ω0

ω�

. (3)

Following the standard methods of dynamical systems [13],
we describe the dynamics through the Poincaré section, with
typical phase-space structures shown in Fig. 1. The bottom-left
panel shows the regime where the Kapitza stabilization is
too weak and the point X = P = 0 remains unstable. The
top-left panel shows the regime of Kapitza stabilization with
a stability island around X = P = 0; the island is surrounded
by a chaotic component where the trajectories can escape to
infinity. The bottom-right panel corresponds to a very weak
value of Ri0 and relatively strong driving, with overlapping
resonances leading to the onset of chaos as determined by
the Chirikov criterion [14]. To determine numerically the
stability diagram, we follow trajectories with random initial
conditions for sufficiently long time �T . A trajectory of initial
conditions (X(0),P (0)) = (0,P (0)) is considered unstable if
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FIG. 1. Poincaré sections formed by a few thousand trajectories
with random initial conditions (X(0),P (0)) ∈ [−2ξ : 2ξ ] × [−0.1 :
0.1] (ξ = 1 or π ) propagated during a time span �T = 400 for
the frequency ratios Ri0 = 0.075 and R0� = 0.45 (top left), Ri0 =
0.15 and R0� = 0.2 (bottom left), and Ri0 = 0.02 and R0� = 0.7
(bottom right). (top right) Stability region in the parameter space of
frequency ratios. Color shows the largest initial momentum P max(0)
for which trajectories with initial conditions (X(0),P (0)) = (0,P (0))
remain stable for time T ∈ [0 : 1000]. Crosses mark parameters of
the Poincaré sections; dashed lines show theory (4).

|X(T ) − 0| > π for some T ∈ [0 : 1000]. The top-right panel
shows a density plot of the largest initial momentum P (0)
giving rise to a stable trajectory as a function of Ri0 and
R0�. It highlights the parameter region where the Kapitza
phenomenon stabilizes the unstable fixed point. The specific
shape of this region depends on two main borders, the
lower one determined through Kapitza’s original argument
[1–3], and the upper one through the Chirikov criterion [14],
yielding

R0� > 2
√

2Ri0, R0� < 0.58. (4)

The derivation of the first relation directly follows the approach
of Kapitza pendulum [3]: the effective average potential
created by the oscillating force is Ueff = 〈ṗ2〉/(2mω2

�) =
[π2U0

2/(md2ω2
�)] sin2(2πx/d), which combined with the in-

verted harmonic potential gives for small oscillations the
squared effective frequency ω2

eff = (ω2
0/ω�)2/8 − ω2

i . Thus,
x = 0 is stable if ω2

eff > 0, leading to the first inequality of
Eq. (4). The second inequality follows from the Chirikov
criterion [14]. The nonlinear resonances are located at positions
p± = ±ω�d/2π . The resonant term of the Hamiltonian is re-
duced to a pendulum Hamiltonian Hrs = p2/2m + U0/2 cos θ

with the phase θ = 2πx/d ± ω�t conjugate to p. According to
the standard results for a pendulum [14], the frequency width
of the pendulum separatrix is �ω = 2 ω0, and the frequency
distance between resonances is δω = 2 ω�. The parameter
of Chirikov resonance overlap criterion is S = �ω/δω and
the chaotic transitions between two resonances take place at

K ≈ 2.5 S2 > 1, leading to Eq. (4) (the coefficient 2.5 takes
into account the effect of secondary resonances) [14] (see also
[15]).

These two theoretical borders of Eq. (4) are shown by
straight lines in Fig. 1, which are in a good agreement with
the numerical data, but certain deviations are visible. For the
Kapitza border, we note that it is obtained in the limit of linear
analysis, and the neglected nonlinear terms introduce correc-
tions for finite width of the initial distribution of trajectories and
the finite time of propagation used in the simulations. For the
Chirikov border, we attribute the deviations to the presence of
additional secondary stability islands in the chaotic component
which also play a role for the finite width of the classical
initial distribution and finite-T values. For simplicity, we also
use the Chirikov criterion in the limit of small Ri0 when two
overlapping resonances are not significantly modified by the
inverted oscillator potential.

III. QUANTUM EVOLUTION WITH GROSS-PITAEVSKII
EQUATION

We now turn to the quantum case, and set U0 = s EL/2
where s is a dimensionless parameter characterizing the lattice
depth and EL = 2π2h̄2/(md2) is a lattice characteristic energy
[16]. When the dimensionless position and momentum are
turned into operators, X̂ = X and P̂ = (h̄eff/i)∂X, the canon-
ical commutation relation [x̂,p̂] = ih̄ leads to an effective
Planck’s constant h̄eff = 1/(2

√
s).

In this work, we use the one-dimensional (1D) GPE to
study the dynamics of a BEC with N atoms subjected to
the driving potential V0(x) cos(ω�t). This equation is valid
in the weakly interacting regime. More quantitatively, this
regime is obtained from an anisotropic three-dimensional
(3D) confinement tightly confined in the radial direction,
i.e., when the confinement energy, h̄ω⊥, greatly exceeds the
mean-field interaction energy. As a result, at sufficiently low
temperature the radial motion is frozen and therefore governed
by the ground-state wave function of the radial harmonic
oscillator. The strength of the interaction in the GPE equation
is then renormalized by averaging the 3D interaction over
the radial density profile: g = 2h̄2as/m�2

⊥, where as is the
3D scattering length and �⊥ = (h̄/mω⊥)1/2 the harmonic-
oscillator length associated with the radial harmonic confine-
ment. In 1D, the criterion of the weakly interacting regime
reads γ = mg/h̄2n � 1 where n is the 1D atomic density
[17,18]. In the weakly interacting regime, the BEC wave
function (normalized according to

∫ |ψ |2dx = ∫ |�|2dX = 1
where � ≡ √

d/2π ψ) is thus governed by the nonlinear
equation

i

4π
∂T � = R0�

(
−h̄eff∂

2
X + cos (2πT ) cos X

8h̄eff
+ ḡ|�|2

2

)
�

(5)

where ḡ = 2πNg1D/(h̄ω0d) = 4πNω⊥as/(ω0d) [19].
By expanding the nonlinear potential for a Gaussian wave

packet |ψ(x)|2 = exp[−x2/(2σ 2)]/(σ
√

2π ) of rms width σ

around its maximum, we obtain an effective inverted harmonic
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FIG. 2. Left panels show the probability density |�(X,T )|2 vs
position X at T = 0 (single Gaussian wave packet of rms width
σ̃ = 200−1/4 ≈ 0.27, dashed curve delimiting gray shaded area),
T = 1 (green solid curve with triangles), T = 2 (blue solid curve with
circles), T = 3 (red solid curve with squares) for R0� = 0.6 and Q =
1. Right panels show PS(T ) = ∫ +π/2

−π/2 |�(X,T )|2dX. Top row shows
without driving (s = 0) and with ḡ/Q = 0.4. Middle row shows with
driving given by Ri0,eff ≈ 0.16 at s = 200 and ḡ/Q = 0.008. Bottom
row shows with driving corresponding to Ri0,eff ≈ 1.09 at s = 200
and ḡ/Q = 0.4 (left cross in Fig. 6).

potential with rescaled frequency

Ri0,eff ≡ ωi,eff

ω0
= 23/4π−1/4

√
h̄eff ḡ

σ̃ 3
, (6)

where σ̃ = 2πσ/d. From the expression for Ueff , it follows
that all points at X = mπ with integer m become stable for
Ri0,eff < R0�/2

√
2.

In our simulations, we use the Strang-Marchuk operator-
splitting method [20] to approximate the evolution operator
corresponding to Eq. (5). We take Ns = 216 basis states
for the wave function, a range of X values corresponding
to Qtot = 64 periods of the driven optical lattice [which
leads to a numerical grid with δX = (2πQtot)/Ns ≈ 0.006
and δP = h̄eff/Qtot ≈ 5.5 × 10−4 for s = 200], and a time
step δT ∈ [0.0002 : 0.001]. If Q denotes the total number
of initially populated potential wells of the static potential
−V0(X), then the effects of interactions in our simulations
only depend on the ratio ḡ/Q since the nonlinear potential
is given by ḡ|�|2. In the case of one localized packet (Q =
1), the initial state is the ground state (without atom-atom
interactions) of the potential well centered atX = 0 of the static
potential −V0(X), which for large enough s corresponds to a
Gaussian wave packet |�(X)|2 = exp[−X2/(2σ̃ 2)]/(σ̃

√
2π )

of rms width σ̃ = 1/s1/4 and zero average momentum. For
such initial states, we have Ri0,eff = (2/π )1/4s1/8√ḡ. We also
consider as initial state a chain of wave packets periodically
repeated in potential wells (Q = Qtot), which we describe
as the ground state (with atom-atom interactions) of GPE
for the static potential −V0(X). Such states can be easily
prepared experimentally by switching a static optical lattice
with a formation of BEC in each potential minimum. For
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FIG. 3. Full width at half maximum (FWHM) of |�(X,T )|2 as a
function of time T for an initial Gaussian wave packet of rms width
σ̃ = 200−1/4 ≈ 0.27 for R0� = 0.6 and ḡ/Q = 0.4 (with Q = 1). Red
dashed curve is without driving; green thick solid curve is without
driving but with static potential −V0(X) at s = 200; blue solid curve
is with driving corresponding to Ri0,eff ≈ 1.09 at s = 200.

such an initial state one should replace ḡ by ḡ/Qtot in
Eq. (6).

IV. KAPITZA STABILIZATION OF QUANTUM STATES

The time evolution of a single wave packet and its full
width at half maximum (FWHM) are shown in Figs. 2 and 3,
respectively. Without the oscillating potential, the wave packet
spreads over the whole lattice, leading to a monotonic drop
of the probability inside the initial potential well, PS(T ) =∫ +π/2
−π/2 |�(X,T )|2dX, and a linear increase of the FWHM with

time. In contrast, in the presence of the oscillating potential, the
Kapitza stabilization leads to conservation of a large part of the
probability in the initial well. The larger the interaction strength
ḡ, the better the stabilization. Interestingly enough, quantum
stabilization exists inside the classical stability domain (see
middle panels), but also at Ri0,eff ≈ 1.09, significantly above
the classical stability border Ri0,eff = 0.21 from Eq. (4). We
attribute this quantum enhancement of Kapitza stabilization to
the presence of oscillations in the width of the wave packet
(see Fig. 3), which we discuss below.

Another possible initial state is given by a chain of BEC
wave packets corresponding to the ground state of the GPE
at each potential minimum of the lattice. This state is ob-
tained numerically by the standard method of imaginary time
propagation of GPE. The time evolution is shown in Fig. 4.
Without the oscillating potential, the periodic peak structure
becomes less pronounced, decreasing with time. Thus the
probability escapes from the vicinity of the unstable fixed
points as measured by PP (T ) = ∫

{X:V0(X)>0} |�(X,T )|2dX,
which oscillates in time between 0 and 1. In contrast, in the
presence of the oscillating potential, the probability remains in
the vicinity of the unstable fixed points, even if the parameter
Ri0,eff ≈ 0.85 is significantly beyond the classical stability
border of Eq. (4).
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FIG. 4. Left panels show probability density |�(X,T )|2 vs posi-
tion X at T = 0 (periodic ground-state wave function of GPE with
static potential −V0(X), dashed curve delimiting the gray shaded area,
here σ̃ ≈ 0.40), T = 1 (green solid curve with triangles), T = 2 (blue
solid curve with circles), T = 3 (red solid curve with squares) for
R0� = 0.6 and ḡ/Q = 0.4 with Q = 64. Right panels show PP (T ) =∫

{X:V0(X)>0} |�(X,T )|2dX. Top row shows without driving (s = 0).
Bottom row shows with driving given by Ri0,eff ≈ 0.85 and s = 200.

FIG. 5. Density plot of probability density as a function of
position X and time T for R0� = 0.6, ḡ/Q = 0.6, and s = 200. Top
panel shows that the initial state is a single Gaussian wave packet
of rms width σ̃ = 200−1/4 ≈ 0.27 centered on X = 0 (Q = 1), with
Ri0,eff ≈ 1.34 (see right cross in Fig. 6). Bottom panel shows that the
initial state is the periodic ground-state wave function of GPE with
static potential −V0(X) (Q = 64) and Ri0,eff ≈ 1.03.

FIG. 6. Top-left panel shows classical stability map as in
Fig. 1. Top-right and bottom panels show density plot of PS =
1

10

∫ 3Tsp+10
3Tsp

PS(T )dT , with PS(T ) = ∫ +π/2
−π/2 |�(X,T )|2dX and where

Tsp is a characteristic spreading time of the initial wave packet in
the absence of driving (s = 0) determined by P s=0

S (Tsp) = 0.75, as a
function of the frequency ratio R0� and the effective frequency ratio
Ri0,eff of Eq. (6) (multiplied by a scaling coefficient α = 0.2) for
s = 200 (top right), s = 100 (bottom left), and s = 50 (bottom right).
Initial state is a single Gaussian wave packet of rms width σ̃ = 1/s1/4

centered around X = 0 (Q = 1). The two crosses correspond to
parameters ḡ/Q = 0.4 (left cross) and ḡ/Q = 0.6 (right cross) for
R0� = 0.6.

The origin of the quantum enhancement of the Kapitza
stabilization seen in Figs. 2 and 4 can be understood from
the typical evolution of the wave function shown in Fig. 5.
Indeed, the width σ̃ of the wave packet oscillates in time
by a factor f ≈ 2 (see Fig. 3), which renormalizes σ̃ . Since
Ri0,eff ∝ σ̃−3/2, this gives a reduction factor f −3/2 of the
values of Ri0,eff in Fig. 2 from Ri0,eff = 1.09 to Ri0,eff =
0.39, significantly closer to the theoretical classical border
of Eq. (4) at Ri0,eff = 0.21. Moreover, the time oscillation of
|�(X,T )|2 creates a supplementary oscillating potential which
can generate an additional Kapitza stabilization.

The region of quantum Kapitza stabilization in this GPE
system is shown in Fig. 6, which displays the time-averaged
probability to stay in the vicinity of the unstable fixed point
X = 0 as a function ofRi0,eff andR0� together with the classical
stability diagram of Fig. 1. In the regime of small effective
Planck’s constant corresponding to large s values, a large
stability region is visible, with a shape similar to the classical
stability domain. In Fig. 6, the values of Ri0,eff are rescaled
by a multiplicative factor α = 0.2 corresponding to the fact
that quantum stabilization exists at Ri0,eff values significantly
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larger than in the classical case, given by Eq. (4). We attribute
the presence of this factor to the quantum fluctuations as
discussed above. For decreasing values of s, the quantum
stability region becomes less pronounced. We explain this
by the fact that the effective h̄ becomes comparable to the
phase-space area of the classical Kapitza stability island (see
Fig. 1, top-left panel). In this case, quantum tunneling from
the island becomes important and leads to the destruction of
the Kapitza phenomenon.

We note that in the absence of interaction, quantum tun-
neling will always induce a decay of probability inside the
stability island induced by Kapitza stabilization. However,
this tunneling can be affected in a nontrivial way by the
nonlinearities. Indeed, nonlinearities can produce solitonic
solutions which remain stable for all times. Therefore, a
rigorous answer to this interesting question requires a careful
mathematical analysis. All time-stable solutions may appear
when the stability region has very large depth and sufficiently
large width.

V. PROPOSED EXPERIMENTAL REALIZATION

The experimental implementation can be carried out by
loading adiabatically a BEC into a deep static horizontal 1D
optical lattice (s ∼ 50) realized with far-off-resonant lasers.
As a result, we obtain a chain of small BEC at the bottom
of the potential wells. To place them at the top of the
potential hills of the lattice, we have to shift suddenly by
half the spatial period the optical lattice as in Ref. [16]. The
amplitude of the lattice shall be subsequently modulated to
ensure the Kapitza stabilization. In practice, the control of
the lattice parameters (phase, amplitude) can be performed
by using phase-locked synthesizers that imprint their signals
on light through acousto-optic modulators (AOMs) placed

on each lattice beam before they interfere to produce the
lattice. The range of interaction strengths that we propose is
readily achievable with a standard rubidium-87 BEC placed
in an optical lattice made of two counterpropagating lasers
at 1064 nm. With ω⊥ ≈ 2π × 200 Hz and a lattice spacing
d ≈ 532 nm, ḡ ≈ 0.002N/

√
s, we have ḡ ≈ 14 for N = 105

and a depth s = 200, and ḡ/Q � 35 for a BEC of typical size
20 μm. Interestingly, the enhancement of interactions through
Feshbach resonances is not necessary to observe the dynamical
stabilization phenomenon. We note that Kapitza stabilization
of cold atoms in optical lattices starts to attract the interest of
experimental groups [21].

VI. CONCLUSION

We have shown that the Kapitza phenomenon can stabilize
a BEC with repulsive interaction by means of an oscillating
force with zero average. This represents an application of
the Kapitza effect in the context of nonlinear quantum fields.
Our theoretical proposal can be experimentally realized with
current cold atom technology. Besides its fundamental interest,
it should provide new tools for the long-time manipulation of
BECs.
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