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We investigate genuinely entangled N -qubit states with no N -partite correlations in the case of symmetric
states. Using a tensor representation for mixed symmetric states, we obtain a simple characterization of the
absence of N -partite correlations. We show that symmetric states with no N -partite correlations cannot exist for
an even number of qubits. We fully identify the set of genuinely entangled symmetric states with no N -partite
correlations in the case of three qubits, and in the case of rank-2 states. We present a general procedure to
construct families for an arbitrary odd number of qubits.

DOI: 10.1103/PhysRevA.96.032322

I. INTRODUCTION

Entanglement is one of the most remarkable aspects of
quantum physics. A pure state is not separable, or entangled,
if it cannot be written as a tensor product of single-party
states, and a mixed entangled state is a state that cannot be
written as a mixture of pure separable states. While the case
of bipartite systems is well understood, the multipartite case
is much more involved, as there are many ways in which a
state can be entangled. A pure multipartite state may be fully
separable, that is, a tensor product of pure states of each party.
In such a case, there are no correlations between subsystems.
A pure multipartite state may also be biseparable, if it can be
written as the tensor product of two pure states under a certain
bipartition of the system. The strongest form of entanglement
in a multipartite state occurs when the state is not biseparable
whatever the bipartition. This leads to the following definition:
a genuinely N -partite entangled pure state is a state which
is entangled (not biseparable) along any bipartition. Similar
hierarchies exist for mixed states. In particular, a genuinely
N -partite entangled mixed state is a state such that in any of
its pure state decompositions, there exists at least one pure
state which is genuinely N -partite entangled [1]. Or, as put
by Bennett et al. [2], by mixing pure states which do not
have genuine N -partite entanglement one cannot obtain mixed
states with genuine N -partite entanglement.

In quantum physics, correlations between subsystems are
central in the question of entanglement. They can lead
to correlations between measurement results violating Bell
inequalities, thereby discarding the possibilities of local hidden
variable theories. In the case of mixed states, the distinction
between classical and quantum correlations is a subtle one (see,
e.g., Refs. [2–4]). While for pure states, correlations imply
entanglement and vice versa, this is not true anymore for mixed
states. It is possible to construct separable mixed states which
possess quantum correlations [3]. Conversely, there exist
genuinely entangled N -qubit states with vanishing N -partite
correlation functions [5]. In Refs. [6,7], genuinely entangled
multiphoton states with vanishing N -partite correlation func-
tions were created experimentally: qubits were encoded in the
polarization of photons. Entanglement in these states cannot
be detected by usual multipartite Bell inequalities involving
only N -partite correlations, which led to the construction of

suitable Bell inequalities able to detect N -partite entanglement
but involving only (N − 1)-partite correlations [8]. In Ref. [7],
a continuous family of genuinely entangled three-qubit states
without three-partite correlations was constructed. Families
of examples were obtained for any odd number of qubits in
Ref. [9], and an analytical construction of genuinely entangled
rank-4 N -qubit states without N -partite correlations for any
even number N � 4 of qubits was presented.

In this paper, we investigate the case of N -qubit symmetric
states and present a general procedure to construct families of
genuinely entangled states with no N -partite correlations. To
this end, we use the recently introduced tensor representation
of spin states [10] that we briefly review in Sec. II. The conse-
quences of the absence of N -partite correlations is expressed in
terms of these tensors in Sec. III. Using entanglement criteria
devised in Sec. IV, we fully identify the set of genuinely
entangled symmetric three-qubit states with no correlations
in Sec. V, and present a general construction procedure for
arbitrary number of qubits in Sec. VI.

II. MIXED SYMMETRIC STATES IN THE TENSOR
REPRESENTATION

Symmetric states of N qubits are pure states which are
invariant under permutation of the qubits, or mixtures of such
pure states. Symmetric states can be expanded in the basis of
Dicke states {|D(k)

N 〉 : 0 � k � N} defined by

∣∣D(k)
N

〉 = 1√(
N

k

) ∑
π

| 0 . . . 0︸ ︷︷ ︸
N−k

1 . . . 1︸ ︷︷ ︸
k

〉, (1)

where the sum runs over all permutations of the qubits. It is
convenient to introduce the projector

PS =
∑

k

∣∣D(k)
N

〉〈
D

(k)
N

∣∣ (2)

onto the symmetric subspace S spanned by Dicke states (1).
The density matrix associated with a symmetric state can be

expressed in the Dicke basis as an (N + 1) × (N + 1) positive
semidefinite matrix of unit trace. A convenient representation
for symmetric states was introduced in Ref. [10]. In this
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representation, any density matrix ρ can be expressed as

ρ = 1

2N
xμ1μ2···μN

Sμ1μ2···μN
, (3)

with implicit summation over indices μi (1 � i � N ), 0 �
μi � 3. Here Sμ1μ2···μN

are (N + 1) × (N + 1) Hermitian
matrices defined, for 0 � k,k′ � N , by their entries

(Sμ1μ2···μN
)kk′ = 〈

D
(k)
N

∣∣σμ1 ⊗ · · · ⊗ σμN

∣∣D(k′)
N

〉
, (4)

where σ1,σ2,σ3 are the three Pauli matrices (with σ0 the 2 × 2
identity matrix). The coordinates xμ1μ2···μN

are real numbers
invariant under permutation of the indices and such that

xμ1μ2···μN
= tr(ρSμ1μ2···μN

). (5)

Note that, since ρ is a symmetric state, we denote by
the same symbol its 2N × 2N representing matrix in the
computational basis and its (N + 1) × (N + 1) representing
matrix in the Dicke basis. In particular we have ρ = PSρPS ,
with PS the projector (2). As a consequence, using (4)
and (5), we have tr(ρσμ1 ⊗ · · · ⊗ σμN

) = tr(ρPSσμ1 ⊗ · · · ⊗
σμN

PS ) = tr(ρSμ1μ2···μN
) = xμ1μ2···μN

. Therefore, these coor-
dinates have a physical interpretation in terms of correlators,
as

xμ1μ2···μN
= 〈

σμ1 ⊗ · · · ⊗ σμN

〉
ρ
. (6)

Since S0···0 is the identity matrix, we have in particular x0···0 =
trρ = 1. Properties of the Pauli matrices imply moreover that
for any μi ,

3∑
a=1

xμ1···μN−2aa = xμ1···μN−200. (7)

This is due to the fact that for N = 2, we have the identity∑3
a=1 PSσa ⊗ σaPS = PSσ0 ⊗ σ0PS . Since the xμ1μ2···μN

are
invariant under permutation of indices, the position of the two
indices a in (7) does not matter. As has been shown in Ref. [10],
this representation allows easily to express the k-qubit reduced
density matrix ρk obtained by tracing out N − k qubits just by
replacing the last N − k indices of xμ1μ2···μN

by zero. The
expansion (3) for ρk thus reads

ρk = 1

2k
xμ1μ2···μk0···0Sμ1μ2···μk

. (8)

Note that, because of symmetry of ρ, the choice of qubits traced
out does not matter. For instance for five qubits, tracing out
qubits 2 and 4 gives xμ10μ20μ3 = xμ1μ2μ300, and the coordinates
of the reduced density matrix would be given by xμ1μ2μ3 ,
whichever pair of qubits is traced out. For single qubit states,
Sμ = σμ, and the representation (3) reduces to the usual
Bloch representation. In the Bloch representation, a single
qubit state ρ can be expressed (with implicit summation over
μ = 0, . . . ,3) as

ρ = 1
2nμσμ, (9)

where n is the 4-vector given by n = (n0,n1,n2,n3) with
n0 = 1. The Bloch vector associated with the state is n =
(n1,n2,n3) = tr(ρσ ), where σ = (σ1,σ2,σ3). In the case of pure
states, the Bloch vector n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) is
of unit length and we denote by |n〉 the corresponding qubit
state. A fully separable pure symmetric state |n〉 ≡ |n〉⊗N is

the tensor product of N copies of a pure qubit state |n〉. It can
be expanded in the Dicke basis as

|n〉 =
N∑

k=0

√(
N

k

)[
sin

θ

2

]k[
cos

θ

2
e−iϕ

]N−k∣∣D(k)
N

〉
, (10)

and in the representation (3) it can be written as [10]

|n〉〈n| = 1

2N
nμ1nμ2 · · · nμN

Sμ1μ2···μN
. (11)

Fully separable states are central in the context of entanglement
of symmetric states. Indeed, let ρ be an N -qubit symmetric
state that is separable along some bipartition of the qubits. Then
ρ is a convex combination of pure symmetric states separable
along the same bipartition (see, e.g., Ref. [11], Sec. C). But
any pure symmetric state separable along some bipartition is
separable along any bipartition and thus fully separable [12].
Therefore, in the subspace of symmetric states, separable states
coincide with the convex hull of the projectors |n〉〈n|. In other
words, symmetric states are either genuinely entangled or fully
separable.

III. SYMMETRIC STATES WITH NO N-PARTITE
CORRELATIONS

A. Characterization in terms of tensor coefficients

Symmetric states with no N -partite correlations are defined
in Ref. [7] as states ρ such that 〈σa1 ⊗ · · · ⊗ σaN

〉ρ = 0 for any
ai with 1 � ai � 3 (in the present paper Latin indices range
from 1 to 3 while Greek indices range from 0 to 3). Because
of (6), this condition can be expressed in terms of coordinates
xμ1μ2···μN

as

xa1a2···aN
= 0, ∀ai = 1,2,3. (12)

For symmetric states, because of the relation (7), the absence
of N -partite correlations has the immediate consequence that
all (N − 2k)-partite correlations, k = 0, . . . ,�N/2	, vanish. If
N is odd, it can be expressed as the hierarchy of conditions

xa1a2a3···aN
= 0 ∀ai = 1,2,3, 1 � i � N

xa1a2···aN−200 = 0 ∀ai = 1,2,3, 1 � i � N − 2
...

...
xa100···0 = 0 ∀a1 = 1,2,3.

(13)

If N is even, it leads to x0···0 = 0, which contradicts the fact
that x0···0 = trρ = 1. Thus no symmetric states with no N -
partite correlations can exist for an even number of qubits.
Similarly, if N is odd, no symmetric states with no (N − 1)-
partite correlations can exist. This generalises to all symmetric
states the results found in Ref. [13] that all correlations between
an odd number of subsystems vanish (and thus admit a local
hidden-variable model) in an even mixture of Dicke states for
any odd number of qubits.

Note that because of Eq. (8), the hierarchy of conditions
(13) implies that all k-qubit reduced states obtained from
ρ by tracing out an even number of qubits are also states
with no N -partite correlations. Moreover, the last condition
in (13) can be rephrased as 〈σ 〉ρ1 = 0. Such states with
vanishing expectation value of the spin have been called
1-anticoherent states, by contrast with coherent states which
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maximize this expectation value. They are characterized by
the fact that their one-qubit reduced density matrix is always
the maximally mixed state [10,14]. Thus, all symmetric states
with no N -partite correlations are 1-anticoherent.

As we mentioned, only symmetric states with an odd
number N = 2M + 1 of qubits can be such that their N -partite
correlations are zero. In what follows, we will restrict ourselves
to this odd case, and we denote by SNCN the set of symmetric
N -qubit states with no N -partite correlations.

B. Antistates

Antistates were defined in Ref. [7] to construct examples
of genuinely entangled states with no N -partite correlations.
In this subsection we introduce these states, and we will use
them in the next subsection to characterize elements of SNCN .

Let N = σ3σ1K be the one-qubit universal-not operator,
with K the complex conjugation operator. This operator is
antilinear and antiunitary, and it also satisfies N2 = −1. For
any pure state |ψ〉, its antistate |ψ̄〉 is defined by applying the
universal-not operator on each qubit, namely |ψ̄〉 = N⊗N |ψ〉.
The antistate |ψ̄〉 is orthogonal to |ψ〉. This can be checked
with the explicit form of |ψ̄〉 provided in Ref. [7]; here we
give a neat proof for symmetric states, using the symmetric
formalism previously introduced in Sec. II. Let |ψ〉 be a
symmetric N -qubit state. Using representation (3), it can be
written as |ψ〉〈ψ | = 2−Nx

ψ
μ1μ2···μN

Sμ1μ2···μN
. Then we have

〈ψ |ψ̄〉 = tr(|ψ〉〈ψ |N⊗N ) = 1

2N
xψ

μ1μ2···μN

N∏
i=1

tr(Nσμi
). (14)

The second equality is obtained using Eq. (4) and the fact that
the symmetric operator N⊗N commutes with the projector (2)
onto the symmetric subspace S. Since tr(N) = 0 and Nσj +
σjN = 0 for all j , we have that tr(Nσμ) = 0 for all μ, which
completes the proof.

The antistates introduced previously exhibit an elegant
geometric interpretation in the Majorana representation. This
representation allows to visualize a pure symmetric state of
N qubits as a set of N points on the unit sphere. For one
qubit, this coincides with the usual Bloch representation. For
several qubits, each qubit is associated to its Bloch point and
symmetry allows to put all of them on the same sphere. In
this picture, fully separable symmetric states correspond to N

degenerate points. The points of the Majorana representation
of the antistate |ψ̄〉 are diametrically opposite to those of the
initial state |ψ〉. This is the generalization of the one-qubit
case discussed in Ref. [15].

C. Spectral properties of ρ ∈ SNCN

Let ρ ∈ SNCN and let |ψ〉 be a normalized eigenstate of ρ

with eigenvalue λ. The operator N has the remarkable property
that its N -fold tensor product commutes with ρ. Indeed, thanks
to the anticommutation property Nσj + σjN = 0 for all j , we
have

N⊗NSμ1μ2···μN
= (−1)c(μ1,...,μN )Sμ1μ2···μN

N⊗N, (15)

where c(μ1, . . . ,μN ) is the number of nonzero indices μi .
Using Eq. (4) together with the fact that N⊗N commutes
with PS and expressing ρ in the representation (3) as ρ =

2−Nxμ1μ2···μN
Sμ1μ2···μN

, only coefficients with an even number
of nonzero indices appear in the expansion because of the
property (13). Using (15), we get N⊗Nρ = ρN⊗N .

As a consequence, ρ|ψ̄〉 = ρN⊗N |ψ〉 = N⊗Nρ|ψ〉 =
λ∗N⊗N |ψ〉 = λ|ψ̄〉. Thus |ψ̄〉 is also an eigenstate of ρ with
eigenvalue λ which is orthogonal to |ψ〉. If ρ has an other
eigenstate |φ〉 with same eigenvalue λ (|φ〉 can be taken
normalized and orthogonal to |ψ〉 and |ψ̄〉 without loss of
generality), the antistate |φ̄〉 will also be orthogonal to |ψ〉 and
|ψ̄〉 because N is antiunitary. Repeating this procedure, we
can find an orthonormal basis of the eigenspace of ρ for the
eigenvalue λ containing pairs of states and antistates. Using
this construction on all its eigenspaces, ρ can be written as

ρ =
M∑
i=0

λi(|ψi〉〈ψi | + |ψ̄i〉〈ψ̄i |), (16)

where |ψi〉 and |ψ̄i〉 are eigenstates of ρ with eigenvalue λi , and∑
i λi = 1/2. Equation (16) implies that the eigenvalues of a

state ρ ∈ SNCN have an even degeneracy. As a consequence,
the purity of ρ has a lower upper bound than the usual bound
trρ2 � 1, specifically

trρ2 � 1
2 . (17)

Indeed, the largest purity is reached when all λi but one are
zero. The double degeneracy and the normalization of the
state imply that there are two nonzero eigenvalues, which are
both equal to 1/2, leading to a maximal purity trρ2 = 1/2.
Since any state of the form (16) is a state with no N -partite
correlations (as was already shown in Ref. [7]), this form
provides a characterization of elements of SNCN .

IV. ENTANGLEMENT CRITERIA

A. A sufficient entanglement criterion

A sufficient criterion for genuine entanglement was ob-
tained in Ref. [16]. Following this approach we now derive
a sufficient criterion for genuine entanglement of symmetric
states. Let S2 denote the unit sphere in R3, and |n〉 be the fully
separable state (10) associated with n ∈ S2. If ρ is a symmetric
state such that

∀ n ∈ S2, 〈n|ρ|n〉 < trρ2, (18)

then ρ is genuinely entangled.
Indeed, suppose ρ is not genuinely entangled. Then it is

fully separable and therefore can be written as a mixture of
fully separable pure states |n(i)〉, namely,

ρ =
∑

i

pi |n(i)〉〈n(i)|, (19)

with 0 < pi � 1 and
∑

i pi = 1. With these notations, we have

trρ2 =
∑

i

pi〈n(i)|ρ|n(i)〉 � max
i

〈n(i)|ρ|n(i)〉, (20)

since pi are positive and sum up to 1. The state |n(i)〉 achieving
the maximum in (20) violates Eq. (18), hence the result.

In the case where ρ is of rank 2, this condition is in fact
necessary and sufficient, as will be shown in Sec. VI A.
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B. A necessary and sufficient criterion in the three-qubit case

As we ruled out even values of N , the simplest nontrivial
case is N = 3. As we show below, the set of three-qubit
genuinely entangled symmetric states with no three-partite
correlations can be fully characterized. For ρ ∈ SNC3, Eq. (3)
reduces to

ρ = 1

8
14 + 3

8

3∑
a,b=1

AabSab0, (21)

with 14 the 4 × 4 identity matrix, Sab0 the matrices defined in
Eq. (4) and explicitly given by

Sab0 = JaJb + JbJa

3
− δab

2
14, (22)

with Ja the 4 × 4 angular momentum matrices, and A the 3 ×
3 real symmetric matrix (xab0)1�a,b�3. Equation (7) implies
trA = 1. The possible values of Aab are further constrained by
the fact that ρ has to be a positive semidefinite matrix. The
characteristic polynomial of ρ can be put under the form

det(z1 − ρ) =
(

z2 − 1

2
z + 3b

16

)2

, (23)

with b = (1 − trA2)/2. This readily implies that the eigenval-
ues of ρ are nonnegative if and only if b � 0, that is, trA2 � 1.

For a state ρ acting on a Hilbert space H1 ⊗ H2 with H1

isomorphic to C2 and H2 isomorphic to C3, a necessary and
sufficient condition of separability is the celebrated Peres-
Horodecki criterion [17]. This criterion states that the partial
transpose of ρ is positive semidefinite if and only if ρ is
separable. Since any fully symmetric three-qubit state can be
expressed in the canonical basis of C2 ⊗ C3, we can apply
this criterion to ρ ∈ SNC3 (see, e.g., Ref. [18]). Here we will
denote by ρPT the partial transpose performed on the first
qubit (since we are dealing with symmetric states, the qubit on
which the partial transpose is performed does not matter). In
Ref. [11] it was shown that ρPT is positive semidefinite if and
only if an Hermitian 8 × 8 matrix T given in terms of xμ1μ2μ3

is positive semidefinite (the explicit expression for T can be
found at Eq. (44) of Ref. [11]). From this explicit form and
using the relations (13), it can be checked that the characteristic
polynomial of T can be expressed as det(z18 − T ) = z2q(z)2

with

q(z) = z3 − 2z2 + 3
(trA)2 − trA2

2
z

− 2
(trA)3 − 3(trA)2trA2 + 2trA3

3
. (24)

The matrix T is positive semidefinite if and only if all roots of
q(z) are nonnegative. Moreover, the characteristic polynomial
of A is det(z13 − A) and reads

z3 − z2 + (trA)2 − trA2

2
z

− (trA)3 − 3(trA)2trA2 + 2trA3

6
.

(25)

From Eqs. (24) and (25), it appears that the roots of q(z) are
all nonnegative if and only if the roots of A are all nonnegative

(this follows from Descartes’ rule of signs). Thus, ρPT is posi-
tive semidefinite if and only if A is positive semidefinite. This
provides a necessary and sufficient separability criterion in
terms of the matrix A, namely A � 0. Using (6), we can see A

as the two-partite correlation matrix A = (〈σab〉)1�a,b�3, with
σab = σa ⊗ σb ⊗ 12 and 〈σab〉ρ = tr(ρ σab). The necessary and
sufficient separability criterion can then be reformulated, for
any ρ ∈ SNC3, as

ρ separable ⇔

⎛
⎜⎝〈σ11〉ρ 〈σ12〉ρ 〈σ13〉ρ

〈σ21〉ρ 〈σ22〉ρ 〈σ23〉ρ
〈σ31〉ρ 〈σ32〉ρ 〈σ33〉ρ

⎞
⎟⎠ � 0. (26)

Let us now consider the two-qubit reduced density matrix
ρ2 of ρ ∈ SNC3. According to Eq. (8), the tensor coordinates
of ρ2 are the xμ1μ20. From Ref. [11], the partial transpose
ρPT

2 is positive semidefinite if and only if the 4 × 4 matrix
(xμ1μ20)0�μ1,μ2�3 is positive semidefinite. This latter matrix is
block-diagonal, with upper left 1 × 1 block being the identity
and the bottom right 3 × 3 block given by matrix A. Therefore
positivity of (xμ1μ20)0�μ1,μ2�3 is equivalent to positivity of A.
These equivalences together with the result (26) show that for
any ρ ∈ SNC3,

ρ separable ⇔ ρ2 separable. (27)

In physical terms, this means that one cannot end up in a separa-
ble state by tracing out one qubit from an entangled three-qubit
symmetric state with no three-partite correlations. Therefore,
the entanglement in such states has some robustness.

C. Other sufficient entanglement criteria

The above criterion for three-qubit states also provides
us with a sufficient entanglement criterion in the general
N -qubit case. Indeed, if ρ ∈ SNCN is separable, then its
three-qubit reduced density matrix ρ3 is separable. Using
(26) and (8), we get a sufficient entanglement condition
for ρ: if the 3 × 3 matrix A = (〈σab〉ρ)1�a,b�3, with σab =
σa ⊗ σb ⊗ 12 ⊗ · · · ⊗ 12, is not positive semidefinite, then ρ is
genuinely entangled. This is reminiscent of the entanglement
criteria obtained for pure states in [19] based on two-point
correlations.

It is in fact possible to obtain many more sufficient
entanglement criteria from the PPT criteria applied to ρ or
to its k-qubit reduced density matrices. As shown in Ref. [11],
the partial transpose matrices, and their positivity, can be
expressed in terms of the xμ1···μN

in a simple way. As we saw
above, the partial transpose ρPT

2 can be related with the 4 × 4
matrix (xμ1μ20)0�μ1,μ2�3 and positivity of ρPT

2 is equivalent to
the right-hand side of (26). Similarly, positivity of the partial
transpose ρPT

4 is equivalent to positivity of the 16 × 16 matrix
indexed by the 16 pairs (μ1,μ2) and (μ3,μ4) and whose entries
are the xμ1μ2μ3μ40. All criteria that can be obtained in the same
way lead to sufficient conditions of genuine entanglement in
terms of correlators. However, these criteria lead to conditions
that involve polynomials of high degree in xμ1···μN

(the simple
criterion A � 0 yields a polynomial of degree 3 in the xab0).
In contrast, the criterion (18) is of degree 2, and thus easier to
deal with. In Sec. VI our construction will be based on criterion
(18).
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FIG. 1. Three-qubit symmetric states in the space of eigenvalues
αi of A. The orange plane (triangle down) corresponds to the condition
trA = ∑

i αi = 1. Points inside the dashed blue circle defined by
trA2 = ∑

i α
2
i = 1 correspond to physical states ρ � 0. Points inside

the green triangle up, defined by αi � 0, correspond to separable
states. Points outside the green triangle up and inside the dashed blue
circle correspond to genuinely entangled states. Points lying between
the dashed circle and the solid red trilobe defined by maxi αi = ∑

i α
2
i

correspond to genuinely entangled states detected by the sufficient
criterion (18).

V. APPLICATION TO THREE-QUBIT STATES

Although we obtained a necessary and sufficient condition
for three qubits in Sec. IV, it is instructive to apply our
general approach based on criterion (18) to this simple case.
Condition (13) implies that for a state ρ in the representation
(3) one has xabc = 0 and xa00 = 0 for a,b,c = 1,2,3. The only
nonzero coordinates xμ1μ2μ3 are the xab0 for 1 � a,b � 3,
and x000 = 1, leading to the representation (21). We label
by αi the eigenvalues of A. One easily calculates 〈n|ρ|n〉 =
(1 + 3 nT An)/8 and trρ2 = (1 + 3 trA2)/8, so that condition
(18) becomes

∀ n ∈ S2, nT An < trA2. (28)

In terms of the eigenvalues of A, this condition can be
reexpressed as

max
i

αi <
∑

i

α2
i . (29)

As discussed above, since ρ has to be a semidefinite positive
matrix, A must be such that trA2 � 1. Taking into account
the fact that trA = 1, the αi must fulfill the two additional
constraints ∑

i

α2
i � 1 and

∑
i

αi = 1. (30)

Among the set of triplets (α1,α2,α3) ∈ R3 fulfilling the
conditions (30), one can easily find those verifying condition
(29). They are depicted in Fig. 1. Equation (30) imposes that
they are restricted to the plane

∑
i αi = 1 and to the interior of

the sphere
∑

i α
2
i � 1 (see Fig. 1). The equality α1 = ∑

i α
2
i

is the equation of a sphere of radius 1/2 and center (1/2,0,0),

whose intersection with the plane is a circle. A similar analysis
for α2 and α3 implies that the solutions to (29) lie strictly
outside the three solid red circles of Fig. 1. Finally, the triplets
of solutions of (29) and (30) lie in the region between the
dashed blue circle and the solid red trilobe in Fig. 1. These
points correspond to the genuinely entangled states detected
by the sufficient criterion (18).

For ρ ∈ SNC3, the criterion (26) gives us a necessary and
sufficient entanglement criterion in terms of the matrix A

defined above. Thus ρ is separable if and and only if all αi are
nonnegative. In Fig. 1 the corresponding region is the green
triangle up and its interior. Hence ρ is genuinely entangled
if and only if its associated point lies outside the triangle but
inside the dashed blue circle. Points outside the triangle but
inside the trilobe are associated with genuinely entangled states
not detected by criterion (18).

VI. CONSTRUCTION OF FAMILIES

A. Rank-2 density matrices

1. A necessary and sufficient entanglement criterion

Let ρ ∈ SNCN be of rank 2; it has two nonzero eigenvalues,
which have to be equal according to the results of Sec. III B.
Since trρ = 1, both eigenvalues are equal to 1/2, so that there
exists a pure state |ψ〉 such that

ρ = 1
2 |ψ〉〈ψ | + 1

2 |ψ̄〉〈ψ̄ |. (31)

Any fully separable pure symmetric state |n〉 can be decom-
posed as

|n〉 = 〈ψ |n〉|ψ〉 + 〈ψ̄ |n〉|ψ̄〉 + |φ〉, (32)

where |φ〉 is orthogonal to both |ψ〉 and |ψ̄〉 (we recall that
the latter two states are orthogonal). The overlap 〈n|ρ|n〉 then
reads

〈n|ρ|n〉 = 1
2 |〈ψ |n〉|2 + 1

2 |〈ψ̄ |n〉|2 = 1
2 (1 − 〈φ|φ〉). (33)

Since for the state ρ given by Eq. (31), one has trρ2 = 1/2,
Eq. (33) yields

〈n|ρ|n〉 � 1
2 = trρ2. (34)

Thus, inequality or equality is always achieved in (18). In fact,
Eq. (18) is a necessary and sufficient condition for genuine
entanglement in the case of rank-2 density matrices. Indeed,
suppose Eq. (18) is violated for some |n〉. Then from Eq. (34)
one must have 〈n|ρ|n〉 = trρ2 = 1/2 which using (33) implies
that |φ〉 = 0, so that |n〉 lies in the subspace spanned by |ψ〉 and
|ψ̄〉, which is the eigenspace of ρ associated with eigenvalue
1/2. In particular one must have the decomposition

ρ = 1
2 |n〉〈n| + 1

2 |n̄〉〈n̄|. (35)

Therefore, ρ is a mixture of two fully separable states, thus ρ

is separable. Hence, if ρ is genuinely entangled, then Eq. (18)
must hold. Thus, a rank-2 state ρ ∈ SNCN is genuinely
entangled if and only if

∀ n ∈ S2, 〈n|ρ|n〉 < 1
2 . (36)

It is separable if and only if there exists |n〉 such that 〈n|ρ|n〉 =
trρ2 = 1/2, which is equivalent to (35).
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2. A necessary separability criterion

Let ρ be a rank-2 symmetric state of the form (31), thus
with no N -partite correlations. Expressing (31) in terms of the
coordinates xρ

μ1μ2···μN
of ρ and the coordinates x

ψ
μ1μ2···μN

of
|ψ〉〈ψ | in the expansion (3), we get

xρ
μ1μ2···μN

= 1 + (−1)c(μ1,...,μN )

2
xψ

μ1μ2···μN
, (37)

where c(μ1, . . . ,μN ) is the number of nonzero indices μi .
According to the previous subsection, it is separable if and only
if it can be written as in (35). In terms of tensor coordinates, it
is equivalent to

xρ
μ1μ2···μN

= 1 + (−1)c(μ1,...,μN )

2
nμ1 · · · nμN

. (38)

This implies that for an even number of nonzero indices, we
have xρ

μ1···μn
= nμ1 · · · nμN

= x
ψ
μ1μ2···μN

. In particular, if all but
two indices are zero, we have x

ρ

ab0···0 = nanb, so that the ma-
trix A = (xρ

ab0···0)1�a,b�3 = (xψ

ab0···0)1�a,b�3 = (〈σab〉ρ)1�a,b�3

is of rank one, where σab = σa ⊗ σb ⊗ 12 ⊗ · · · ⊗ 12.
We therefore get the following necessary condition for

separability of rank-2 states,

ρ separable ⇒ rank A = 1. (39)

3. Explicit examples

The above considerations allow us to construct families
of genuinely entangled states of SNCN . Indeed, for any
state |ψ〉, the mixed state ρ = (|ψ〉〈ψ | + |ψ̄〉〈ψ̄ |)/2 has no
N -partite correlations. Choosing |ψ〉 in such a way that
A = (xψ

ab0···0)1�a,b�3 is not of rank one warrants that ρ is also
genuinely entangled.

This construction can be achieved for instance for |ψ〉 =
(|D(r)

N 〉 + |D(N−r)
N 〉)/√2, which is a superposition of two Dicke

states defined in (1). Such states have already been studied
in [9]. Here they provide a simple illustration of the rank-2
entanglement criterion derived in Sec. VI A 1. The coefficients
of the matrix Aψ are x

ψ

ab0···0 = 〈ψ |σab|ψ〉, so that

x
ψ

ab0···0 = 1
2

(〈
D

(r)
N

∣∣σab

∣∣D(r)
N

〉 + 〈
D

(N−r)
N

∣∣σab

∣∣D(N−r)
N

〉
+ 〈

D
(r)
N

∣∣σab

∣∣D(N−r)
N

〉 + 〈
D

(N−r)
N

∣∣σab

∣∣D(r)
N

〉)
. (40)

The last two terms of Eq. (40) can be shown to vanish for
odd N through an argument on the parity of the number of
excitations [9]. In order to apply σab on the Dicke states, we
decompose them as

∣∣D(r)
N

〉 =
√√√√(

N−2
r

)(
N

r

) |00〉∣∣D(r)
N−2

〉 +
√√√√(

N−2
r−2

)
(
N

r

) |11〉∣∣D(r−2)
N−2

〉

+
√√√√(

N−2
r−1

)
(
N

r

) (|01〉 + |10〉)∣∣D(r−1)
N−2

〉
. (41)

Equation (40) then reduces to

x
ψ

ab0···0 = 2r(N − r)

N (N − 1)
(δa,1δb,1 + δa,2δb,2)

+ (N − 2r)2 − N

N (N − 1)
δa,3δb,3. (42)

The rank of Aψ is then equal to one if r = 0 or N , to two
if r = (N − √

N )/2, and to three otherwise. Thus, any mixed
state defined by (31) with |ψ〉 = (|D(r)

N 〉 + |D(N−r)
N 〉)/√2 and

1 � r � N − 1 is a genuinely entangled state of SNCN .

B. Arbitrary rank

1. General construction

The above construction can be generalized to any even
rank (as shown in Sec. III C, any genuinely entangled N -qubit
state with no N -partite correlation has its eigenvalues always
twice degenerate, so that no odd-rank example can exist). From
the decomposition (16) of any state in SNCN , the sufficient
genuine entanglement criterion (18) can be expressed as

∀ n ∈ S2,

M∑
i=0

λi(|〈ψi |n〉|2 + |〈ψ̄i |n〉|2) < 2
M∑
i=0

λ2
i , (43)

with |n〉 a pure symmetric fully separable state. This criterion
can be rewritten as

∀n ∈ S2,

M∑
i=0

[λi − ci(n)]2 >

M∑
i=0

ci(n)2, (44)

where ci(n) = (|〈ψi |n〉|2 + |〈ψ̄i |n〉|2)/4. Thus, if for all n,
the vector (λ0, . . . ,λM ) is outside the sphere S(n) centered
at C(n) = (c0(n), . . . ,cM (n)) and going through the origin,
then the state (16) is genuinely entangled.

Let us explain how to construct arbitrary-rank examples. It
suffices that one of the |ψi〉 in (16), for example, |ψi0〉, be such

that A = (x
ψi0
ab0···0)1�a,b�3 is of rank two or three, so that ρi0 =

(|ψi0〉〈ψi0 | + |ψ̄i0〉〈ψ̄i0 |)/2 is genuinely entangled according
to Eq. (39). Then, the vector E = (0, . . . ,0,1/2,0, . . . ,0) ∈
RM , where the nonzero component is the i0th, is outside all
spheres S(n) since Eq. (44) reduces in this case to ci0 (n) <

1/4, which according to Eq. (36) is equivalent to the fact
that ρi0 is genuinely entangled. Thus, for any fixed n, the
distance d(E,S(n)) between E and the sphere S(n) is such that
d(E,S(n)) > 0. Since n is parametrized by spherical angles
θ and ϕ which vary in the compact set [0,π ] × [0,2π ], the
minimum of d(E,S(n)) over all n is reached for some n0, so
that infn d(E,S(n)) = d(E,S(n0)) > 0. Therefore, there are
vectors (λ0, . . . ,λM ) in the vicinity of E such that λi � 0,∑M

i=0 λi = 1/2 and the genuine entanglement criterion (44)
is fulfilled. This shows that once |ψi0〉 has been chosen as
explained above, any choice of |ψi〉 with i �= i0 allows to
construct a state of arbitrary rank of the form (16) which for
some values of the weights λi is guaranteed to be a genuinely
entangled state of SNCN .
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2. Explicit examples

As an illustration, we consider the case where |ψi〉 in (16)
are chosen as

|ψi〉 = 1√
2

(∣∣D(i)
N

〉 + ∣∣D(N−i)
N

〉)
, 0 � i � M. (45)

According to Eq. (42), any choice i0 �= 0 yields a rank-2
state ρi0 = (|ψi0〉〈ψi0 | + |ψ̄i0〉〈ψ̄i0 |)/2 which is genuinely en-
tangled. In the vicinity of each E = (0, . . . ,0,1/2,0, . . . ,0) ∈
RM , there exist values of λi giving arbitrary rank genuinely
entangled states.

In order to give an explicit region in parameter space
where the constructed states are genuinely entangled, we use
the explicit form of the |ψi〉. Since the antistate of a Dicke
state is |D̄(k)

N 〉 = (−1)N−k|D(N−k)
N 〉, it comes that |ψi〉〈ψi | +

|ψ̄i〉〈ψ̄i | = |D(i)
N 〉〈D(i)

N | + |D(N−i)
N 〉〈D(N−i)

N |, which yields

〈n|ρ|n〉 =
M∑
i=0

λi

(∣∣〈D(i)
N

∣∣n〉∣∣2 + ∣∣〈D(N−i)
N

∣∣n〉∣∣2)
. (46)

Using the expansion (10), we get

〈n|ρ|n〉 =
M∑
i=0

λiui(θ ), (47)

with ui(θ ) defined as(
N

i

)[
sin θ

2

]2i (1 − cos θ )N−2i + (1 + cos θ )N−2i

2N−2i
. (48)

One therefore has the upper bound

〈n|ρ|n〉 �
M∑
i=0

λi max
θ

ui(θ ). (49)

Taking λi such that
∑

i λi maxθ ui(θ ) < 2
∑

i λ
2
i ensures that

the state ρ is genuinely entangled. This inequality gives
a constraint on the weight of ρi0 in the mixture ρ given
by Eq. (16), which cannot be too small. For arbitrary
N , one can find a less stringent analytical bound. Since
the function fk(x) = [(1 − cos x)k + (1 + cos x)k]/2k takes
values between 0 and 1, we have ui(θ ) �

(
N

i

)
2−2i so that any

state with λi such that

M∑
i=0

(
N

i

)
λi

22i
< 2

M∑
i=0

λ2
i , (50)

λi � 0 and
∑M

i=0 λi = 1/2 is genuinely entangled. As pre-
viously, if the vector (λ0, . . . ,λM ) is outside the sphere S

centered at C = (c0, . . . ,cM ) with ci = (
N

i

)
2−(2i+1) and going

through the origin, then the state (16) with |ψi〉 given by (45)
is genuinely entangled. The intersection of the outside of the
sphere with the region λi � 0 and the plane

∑M
i=0 λi = 1/2

is nonempty. Indeed, the point E = (0, . . . ,0,1/2) ∈ RM lies
strictly outside the sphere if and only if cM < 1/4, which is the
case since

(2M+1
M

)
< 4M for all M � 1. The distance d from E

to the sphere constrained by the condition
∑M

i=0 λi = 1/2 can
be obtained by introducing Lagrange multipliers. All λi with
λi � 0,

∑M
i=0 λi = 1/2 and at a distance less than d from E

give genuinely entangled states.
For N = 3, the point on the sphere S and the plane

λ0 + λ1 = 1/2 which is closest to E = (0,1/2) is (λ0,λ1) =
(1/16,7/16). Thus all states with λ1 > 7/16 are genuinely
entangled. In fact, in this case, we have the necessary and
sufficient condition of Sec. IV B which reads A � 0. Using
Eq. (42), this is equivalent to λ0 � λ1/3 � 0. Thus the state is
genuinely entangled if and only if λ1 > 3/8. In Fig. 2(a) the
region outside the red solid curve corresponds to genuinely

(a) (b)

FIG. 2. Three-qubit (a) and five-qubit (b) symmetric states in the space of eigenvalues of ρ. The orange line λ0 + λ1 = 1/2 for N = 3, and
the large orange triangle down for N = 5 correspond to the condition trρ = 2

∑
i λi = 1. Points where all λi � 0 correspond to physical states

ρ � 0 and are depicted by the thick green line 0 � λ0 � 1/2 for N = 3, the green triangle up for N = 5. In (a) and (b), the equality in (50)
is the dashed blue curve and the numerically solved criterion (18) is the solid red curve. In (a), the dotted straight line is the analytical result
λ1 = 3λ0. In (b), only the intersection with the normalization plane is depicted.
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entangled states detected by the criterion (18), while states
outside the blue dashed circle correspond to those detected
by the analytical bound (50). The red solid curve intersects
the line λ0 + λ1 = 1/2 at λ1 = 3/8, which coincides with our
necessary and sufficient condition.

For higher N , the bound (50) allows us to obtain closed
analytical expressions for a region of admissible values of λi .
A visualization of the case N = 5 can be found in Fig. 2(b),
where states outside the red curve are obtained numerically
from the criterion (18), and states outside the blue dashed
circle correspond to the analytical bound (50).

VII. CONCLUSIONS

In this paper, we have investigated genuinely entangled
states in the set SNCN of N -qubit symmetric states with
no N -partite correlations. The tensor representation [10] has
allowed us to give a simple characterization of these states.
From this characterization, it easily follows that no such
states exist for an even number of qubits. We have shown
that for any ρ ∈ SNCN with N odd, all eigenspaces of ρ are
even-dimensional, and that the general form of the state is

given by (16). This form generalizes the mixture of a state with
its antistate investigated in Ref. [7]. The parametrization (21)
has allowed us to find a simple necessary separability condition
for ρ ∈ SNCN , namely, A � 0 with A = (〈σab〉ρ)1�a,b�3 and
σab = σa ⊗ σb ⊗ 12 ⊗ · · · ⊗ 12.

In the case of three qubits, we have shown that A � 0 is in
fact a necessary and sufficient condition for a state in SNC3

to be separable. Interestingly, this leads to the equivalence
between separability of ρ ∈ SNC3 and separability of its
two-qubit reduced density matrix. This implies that the
entanglement in states ρ ∈ SNC3 cannot be entirely destroyed
upon the loss of one qubit.

In the case of rank-2 states ρ ∈ SNCN , we have obtained a
necessary and sufficient condition for separability in terms of
the same matrix A as rankA = 1. This condition has allowed
us to generalize the construction to families of arbitrary rank,
by considering mixtures in the vicinity of rank-2 genuinely
entangled ρ ∈ SNCN .
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