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Master equation for collective spontaneous emission with quantized atomic motion
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We derive a Markovian master equation for the internal dynamics of an ensemble of two-level atoms
including all effects related to the quantization of their motion. Our equation provides a unifying picture of
the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their
dissipative and conservative dynamics, and applies equally well to distinguishable and indistinguishable atoms.
We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we
find closed-form formulas for a number of relevant states (Gaussian states, Fock states, and thermal states). In
particular, we show that dipole-dipole interactions and cooperative photon emission can be modulated through
the external state of motion.
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I. INTRODUCTION

Spontaneous emission of light from initially excited atoms
became one of the corner stones of our understanding of the
interaction of light and matter, soon after the introduction
of the “photon.” It was introduced phenomenologically by
Einstein [1] through his famous A-coefficient that gives the
rate of spontaneous deexcitation of an excited atom. Later,
spontaneous emission was understood through the theory of
Wigner and Weisskopf [2] as the result of the perturbation of an
atom through the vacuum fluctuations of the electromagnetic
field surrounding the atom. The infinitely large number of
modes involved in the process leads to effectively irreversible
behavior. Once this mechanism was understood, it became
clear that the rate with which the excitation of an atom in
a given state decays is not a natural constant for this atom,
but can be influenced by its environment. By engineering the
mode structure of the electromagnetic environment of an atom,
in particular through modifying the density of states of the field
modes at the resonance frequency, spontaneous emission can
be enhanced (in the case of an increased density of states), or
reduced (in the opposite case), as first found by Purcell in the
context of nuclear resonance [3]. This important insight is now
routinely used in photonic crystals, where an electromagnetic
band-structure can be designed at will and used for creating
e.g. a band gap around the resonance frequency, resulting in
largely increased lifetime of an excited atom, inverted spin,
exciton, or plasmonic excitation [4–6].

Even earlier, Dicke studied spontaneous emission of several
atoms in close vicinity of each other, and found that in such
a case spontaneous emission becomes a cooperative effect in
which the amplitudes of all atoms emitting simultaneously in-
terfere. Depending on the initial collective internal state of the
atoms, emission can be largely enhanced (superradiance), or
reduced (subradiance) [7]. Superradiance developed to a large
research field in its own right [8–23], culminating recently in
matter-wave superradiance in cold atomic gases [24]. It was
soon realized that dipole-dipole interactions between atoms
can significantly alter these cooperative processes [25–31],
but can also be exploited for a variety of purposes, such as
the (partial) trapping of light [32] or the implementation of
quantum gates using the dipole blockade [33].

In this paper, we reveal yet a third mechanism how
spontaneous emission can be influenced: collective emission
can be largely “quantum programed” by engineering the
external quantum state of motion of the atoms. To this end,
we derive a master equation that fully takes into account the
quantum nature of the atomic motion and, when relevant, the
indistinguishability of atoms. This is essential when the atoms
form a Bose-Einstein condensate or are loaded in an optical
lattice. For example, when two fermionic atoms are placed
in the same potential well and motional state, one in the
internal excited state and the other in the ground state, the
Pauli exclusion principle forbids the main decay channel, and
leads to an increased lifetime of the atomic excited state (see,
e.g. [34]). Moreover, it has been known for a long time that
the coherence of radiation scattering off atoms in a solid (e.g.,
in x-ray or neutron scattering) can be influenced through the
thermal motion of the atoms. This results in the Debye-Waller
factor [35,36] that describes the reduction of visibility of
interference maxima as function of temperature. But while
in a solid one has in general little influence on the state of
motion of the atoms (apart from controlling the temperature of
the lattice), a whole new world has opened up in the physics of
ion traps and cold atoms. There, the external motional state can
now be very well controlled and engineered, to the extent that
quantum gates coupling internal states of the atoms originally
relied heavily on the use of precise states of this external
“quantum bus” [37], even though this requirement could be
relaxed later [38].

Thus the quantum nature of the atomic motion appears to be
an efficient way to influence the internal dynamics of atoms and
its engineering has a wide range of potential applications [39].
However, it turns out that most of the methods used to
describe the internal dynamics of atoms including a quantum
treatment of their motion are either restricted to the Lamb-
Dicke regime [40–46] or do not account for both recoil and
indistinguishability [47–52]. Therefore, it appears worthwhile
to develop a general theory of spontaneous emission of an
ensemble of atoms valid for arbitrary quantum states of motion,
which is the purpose of this paper. The master equation we
derive constitutes a powerful tool to study the combined effects
of the recoil and the indistinguishability of atoms on both their
dissipative and conservative internal dynamics, even beyond
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the Lamb-Dicke regime. The dependence of the dipole-dipole
interactions as well as the lifetime under spontaneous emission
on the motional state of the atoms might be observable in dense
Rydberg gases, which are under intense current experimental
and theoretical investigation [53–56].

The paper is organized as follows. In Sec. II, we present our
model. In Sec. III, we derive a general master equation for the
internal dynamics of atoms valid for arbitrary motional states.
In Sec. IV, we provide general expressions for the dipole-
dipole shifts and decay rates which determine the conservative
and dissipative part of the master equation, and discuss the
effects of the indistinguishability of atoms on these quantities.
In Sec. V, we calculate explicitly the decay rates and the dipole-
dipole shifts for particularly relevant motional states (Gaussian
states, Fock states, and thermal states), both for distinguishable
and indistinguishable atoms.

II. MODEL AND HAMILTONIAN

We consider N identical two-level atoms spontaneously
emitting photons due to their interaction with the free
electromagnetic field initially in vacuum, and treat their
motion quantum mechanically. In the point of view of Power-
Zienau-Wolley (multipolar coupling scheme [57–59]), the
Hamiltonian describing the composite system is

H = HA + HF + HAF , (1)

with HA the Hamiltonian of the atoms, HF the Hamiltonian of
the free field, and HAF the interaction Hamiltonian responsible
for emission or absorption of photons and field-mediated
interactions between atoms.

In Eq. (1), the atomic Hamiltonian HA = H ex
A + H in

A +
H self

A consists of an external, an internal, and a self-interaction
part, respectively given by

H ex
A =

N∑
j=1

( p̂2
j

2M
+ V (r̂j )

)
, (2)

H in
A = �ω0

2

N∑
j=1

σ (j )
z , (3)

H self
A = 1

2ε0

∫
|P̂(r)|2 dr. (4)

The external part H ex
A corresponds to the kinetic and potential

energy of the atoms, with r̂j and p̂j the center-of-mass position
and momentum operators of atom j (j = 1, . . . ,N) of mass M

and V (r) the external potential experienced by the atoms [60].
We include the spin degree of freedom in the internal state and
consider an external potential which does not depend on the
spin. This form of H ex

A is quite general and can account for
a wide range of experimental settings. The internal part H in

A

of the atomic Hamiltonian corresponds to the internal energy
of the atoms, with ω0 the atomic transition frequency and
σ

(j )
z = |ej 〉〈ej | − |gj 〉〈gj | with |gj 〉 (|ej 〉) the lower (upper)

level of atom j of energy −�ω0/2 (�ω0/2). Finally, the
self-interaction part H self

A corresponds to the self-energy and
contact interaction between atoms, with ε0 the permittivity of
free space and P̂(r) the atomic polarization density, given in

the dipole approximation by [58]

P̂(r) =
N∑

j=1

Dj δ(r − r̂j ), (5)

where Dj = dj σ
(j )
− + d∗

j σ
(j )
+ is the dipole operator for atom j ,

with dipole matrix element dj = 〈gj |Dj |ej 〉, σ
(j )
− = |gj 〉〈ej |,

σ
(j )
+ = |ej 〉〈gj |, and δ is the Dirac delta distribution. We

consider a polarized atomic sample in which all atoms share
the same dipole moment, i.e., dj = d ∀ j . The dipole moment
d can be decomposed in the spherical basis {ε0 ≡ ez,ε± ≡
∓(ex ± iey)/

√
2} with {ex,ey,ez} the Cartesian unit vectors

and the z axis taken as the quantization axis,

d =
∑

q=0,±
dq εq . (6)

For a π transition from the upper to the lower level, the
only nonvanishing component in (6) is d0, whereas for a σ±
transition, the only nonvanishing component is d∓.

In Eq. (1), the free field Hamiltonian HF reads

HF =
∑
kε

�ωk a
†
kεakε, (7)

with ωk = ck, k = |k|, c the speed of light in vacuum, and
akε (a†

kε) the annihilation (creation) operator of a mode of the
radiation field of wave vector k and polarization ε. Note that, in
Eq. (7), we have dropped the zero-point energy of the radiation
field, as it has no influence on the dynamics of the system.

In the dipole approximation (when the typical size of the
atoms is much smaller than the wavelength of the emitted
radiation) and the interaction picture with respect to H0 ≡
H ex

A + H in
A + HF , the interaction Hamiltonian HAF (t) reads

HAF (t) = −
N∑

j=1

Dj (t)·E(r̂j (t),t), (8)

with the electric field operator

E(r,t) = i
∑
kε

Ek (akε εk ei(k·r−ωkt) − H.c.), (9)

where H.c. stands for Hermitian conjugate, Ek =√
�ωk/2ε0L3, L3 is the electromagnetic mode quantization

volume, εk the normalized polarization vector, and

r̂j (t) = eiH ex
A t/� r̂j e−iH ex

A t/�. (10)

Performing the Schmidt decomposition of the dipole interac-
tion Hamiltonian (8), we get [61]

HAF (t) =
N∑

j=1

∑
ω=±ω0

e−iωtAin
j (ω) ⊗ Bj (t), (11)

with the quantum jump operators

Ain
j (±ω0) = σ

(j )
∓ , (12)

and the bath operators

Bj (t) = −d·E(r̂j (t),t) (13)

defined for any atom j = 1, . . . ,N .
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FIG. 1. Decomposition of the global system into bath and system
of interest. The system of interest is the internal part of the atoms
described by the state ρ in

A . The bath corresponds to the atomic
external degrees of freedom, described by the state ρex

A , and the
electromagnetic field degrees of freedom, initially in the vacuum
state |0〉〈0|.

III. GENERAL MASTER EQUATION FOR
THE INTERNAL DYNAMICS

We are interested in the internal dynamics of the atoms only,
since our aim is to quantify the effects of the quantization of the
atomic motion on cooperative spontaneous emission. In this
section, we derive a Markovian master equation for the internal
degrees of freedom from a microscopic approach [61]. The
derivation of a quantum optical master equation is commonly
made for atoms at fixed positions. Here, we go beyond
this approximation by treating the atomic position quantum
mechanically. The atomic internal degrees of freedom specify
our system S, and all other degrees of freedom (atomic external
and electromagnetic field degrees of freedom) specify the bath
B to which S is coupled, as illustrated in Fig. 1. Since the
master equation we obtain takes the usual standard form,
we only present here the key steps of the derivation [62].
The detailed calculations can be found in the Supplemental
Material [63].

A. Microscopic derivation and general form
of the master equation

Our starting point is the Liouville–von Neumann evolution
equation

i�
dρ(t)

dt
= [

H self
A (t) + HAF (t),ρ(t)

]
(14)

for the global density matrix ρ(t) in the interaction picture
with respect to H0. The master equation for the internal atomic
dynamics only is obtained by tracing over the bath degrees of
freedom and by performing the Born-Markov approximation
we justify below.

1. Born-Markov approximation and correlation functions

In the weak coupling regime, the Born approximation (see,
e.g. [61]) assumes the form

ρ(t) ≈ ρ in
A (t) ⊗ ρB, (15)

for the global density matrix. Here ρ in
A (t) = TrB[ρ(t)] is

the reduced density matrix of S (in the interaction picture)
describing the atomic internal dynamics, where TrB[ · ] denotes
the trace over the bath degrees of freedom. The bath is
described by ρB = ρex

A ⊗ ρF , where ρex
A is the motional density

matrix and where ρF = |0〉〈0| is the electromagnetic field
density matrix which we take as the vacuum state [64]. The
Born approximation excludes correlations between external
and internal states. In this approximation, the bath is con-
sidered as stationary during the whole relaxation dynamics
and the influence of the system on the bath is neglected.
Accordingly, we consider in this work that the characteristic
evolution time τM of the atomic motion is much larger
than the relaxation time τR of the system. This condition
is met in a wide range of experimental situations where
atoms are optically or magnetically trapped. For example,
the typical frequency 	M of a harmonic potential produced
with visible light is in the range 1–103 Hz, which leads to
τM ∼ 1/	M � τR ∼ 1/γ0 where γ0 is the single-atom free
spontaneous emission rate, of the order of 109 Hz for optical
transitions (i.e., there are at least six orders of magnitude
separation between τM and τR). Therefore, the atomic motion
is approximately frozen during the emission of photons, so that
r̂j (t) ≈ r̂j (0) = r̂j .

The Markov approximation which eliminates memory
effects is justified as long as the bath correlation time τB

is much smaller than the typical relaxation time τR of the
system. It is well established that the Markov approximation
is an excellent approximation for describing the process
of spontaneous emission of photons from atoms at fixed
positions [65]. We now show that this is also the case when the
bath operators Bj [Eq. (13)] contain in addition the motional
degrees of freedom. The relevant correlation function Cij (t)
that determines the correlation time τB is [61]

Cij (t) = 〈B†
i (t)Bj (0)〉B, (16)

where Bj (t) is given by Eq. (13) and the expectation value is
over the bath degrees of freedom. Explicitly, for r̂j (t) ≈ r̂j ,
the correlation function reads

Cij (t) ≈ 1

L3

∑
kε

Cem
kε (t) Cex

ij (k), (17)

with

Cem
kε (t) = �ωk

2ε0
|εk·d|2 e−iωkt (18)

and the motional correlation function

Cex
ij (k) = 〈eik·r̂ij 〉ex = Trij

[
eik·r̂ij ρex

ij

]
, (19)

where r̂ij = r̂i − r̂j and where the trace is now performed over
the motional degrees of freedom of the atoms i and j with ρex

ij

their external reduced density matrix.
For atoms at fixed classical positions, which is obtained

formally through the substitution r̂i → ri , the motional cor-
relation function (19) reduces to Cex

ij (k) = eik·rij with rij =
ri − rj the vector connecting atoms i and j , so that Eq. (18)
yields the Fourier components of the classical correlation
function for the electromagnetic field. The bath correlation
time τB is smaller than an optical period, and thereby much
smaller than the spontaneous emission time τR and justifies the
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Markov approximation. When the atomic motion is quantized,
the plane waves eik·rij in the Fourier series (17) are replaced
by 〈eik·r̂ij 〉ex to account for the fluctuations and correlations
in the positions of atoms i and j . However, since the electric
field correlations decay on a time scale τB regardless of the
positions, we see that the motion of the atoms does not increase
the bath correlation time, and the Markov approximation
remains therefore justified.

2. Standard form of the master equation

Under the Born-Markov approximation justified above
and the usual rotating wave approximation [66], we get the
following standard form of the master equation for the reduced
density matrix ρ in

A (t) describing the internal atomic dynamics
only:

dρ in
A (t)

dt
= − i

�

[
H	 + 〈

H self
A

〉
ex,ρ

in
A (t)

] + D
(
ρ in

A (t)
)
, (20)

with the level-shift Hamiltonian

H	 =
N∑

i,j=1

�	ij σ
(i)
+ σ

(j )
− (21)

in terms of level shifts

	ij = Im[�ij (ω0) + �ij (−ω0)], (22)

and the dissipator

D(·) =
N∑

i,j=1

γij

(
σ

(j )
− · σ

(i)
+ − 1

2
{σ (i)

+ σ
(j )
− ,·}

)
(23)

in terms of decay rates

γij = 2 Re[�ij (ω0)]. (24)

The spectral correlation tensor �ij which determines the level
shifts and the decay rates is defined as

�ij (ω) = 1

�2

∫ ∞

0
eiωt Cij (t) dt, (25)

where Cij (t) is the correlation function given by Eq. (17). Note
that in Eq. (20), 〈H self

A 〉ex stands for the expectation value of
H self

A over the atomic external degrees of freedom and does not
depend anymore on time because of the approximation r̂j (t) ≈
r̂j . Figure 2 summarizes all the approximations performed in
the derivation of the master equation (20) in terms of the
relevant characteristic time scales.

Equations (21) and (23) describe respectively the conser-
vative and dissipative dynamics of the atomic internal state
caused by the interaction with the electromagnetic field. The
level shifts 	ij and the decay rates γij are obtained from the
imaginary and real parts of the spectral correlation tensor �ij

[Eq. (25)]. In the following, we analyze more precisely the
structure of these coefficients entering the master equation.

B. Dissipative part

An explicit expression for the decay rates γij [Eq. (24)]
can be obtained by performing the time integration in Eq. (25)
together with Eq. (17) for the bath correlation function, thereby

FIG. 2. Characteristic time scales corresponding to the evolution
of the external dynamics (τM ), the internal dynamics (τR ∼ 1/γ0 with
γ0 the free spontaneous emission rate), the isolated system dynamics
(τS ∼ 1/ω0 with ω0 the atomic transition frequency), and the bath
(τB < τS).

yielding

γij = 1

L3

∑
kε

γ em
kε Cex

ij (k), (26)

with

γ em
kε = πωk

�ε0
|εk·d|2 δ(ωk − ω0) (27)

the Fourier components of the decay rates for classical atomic
positions. Equation (26) shows that the Fourier components
of the decay rates are affected by the quantization of the
atomic motion through weighting by the motional correlation
function (19). In the limit of a continuum of modes, the sum
over the wave vectors can be replaced by an integral [we
use the standard spherical coordinates (k,θ,ϕ) with d	 =
sin θ dθ dϕ],

1

L3

∑
k

→
∫

dk
(2π )3

≡ 1

(2π )3c3

∫ +∞

0
ω2 dω

∫
d	, (28)

and Eq. (26) yields, after performing the ω-integration,

γij =
∫ ∑

ε

γ em
k0ε

Cex
ij (k0)

d	

(2π )2
, (29)

with k0 = k0 (cos ϕ sin θ, sin ϕ sin θ, cos θ ), k0 = ω0/c,

γ em
k0ε

= 3πγ0

2
|εk0·ed|2, (30)

with ed = d/d, d = |d|, and γ0 the single-atom spontaneous
emission rate

γ0 = ω3
0d

2

3π�ε0c3
. (31)

For classical atomic positions, Cex
ij (k) = eik·rij and Eq. (29)

reduces to the classical form of the decay rates for atoms
separated by a distance rij = |rij |, γij = γ cl(rij ) with [67,68]

γ cl(rij ) = 3γ0

2

[
pij

sin ξij

ξij

+ qij

(
cos ξij

ξ 2
ij

− sin ξij

ξ 3
ij

)]
, (32)

with ξij = k0rij . For a π transition, the angular factors pij and
qij are given by

pij = sin2 αij , qij = (1 − 3 cos2 αij ), (33)
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and for a σ± transition by

pij = 1
2 (1 + cos2 αij ), qij = 1

2 (3 cos2 αij − 1), (34)

with αij = arccos(rij ·ez/rij ) the angle between the quan-
tization axis and the vector connecting atoms i and j .
Equation (29) can also be written as γij = F−1

0 [Fk[γ cl]Cex
ij (k)]

which can be seen to be the convolution product (γ cl � fij )(0)
with fij (r) = F−1

r [Cex
ij (k)] [69]. Therefore, the decay rates

takes the alternative form

γij =
∫
R3

γ cl(r)F−1
r

[
Cex

ij (k)
]
dr (35)

in terms of their classical expression (32) and the inverse
Fourier transform of the motional correlation function (19).

Two important features follow from Eq. (29) [or equiva-
lently from Eq. (35)]. First, the diagonal decay rates γii are
seen to coincide with those obtained in the classical case
because Cex

ii (k) = 1 for any motional state and wave vector k.
Hence the dissipative internal dynamics of a single atom is not
affected by its motional state when the electromagnetic field is
initially in vacuum. Second, Eq. (29) shows that as soon as the
quantum nature of the atomic motion becomes appreciable,
we have the additional possibility of influencing the decay
rates through engineering the motional state of the atoms. The
motional correlation functionCex

ij (k0) can be seen from Eq. (29)
to play a similar role as mode-dependent modifications of the
coupling constants, and can thus be expected to lead to similar
effects as Purcell’s enhancement or reduction of spontaneous
emission [34].

It readily follows from Eq. (35) that γij = γji and |γij | �
γ0. Indeed, the classical expression (32) satisfies |γ cl(r)| �
γ cl(0) = γ0 ∀ r, which implies

|γij | � γ0

∣∣∣∣
∫
R3

F−1
r

[
Cex

ij (k)
]
dr

∣∣∣∣ = γ0

∣∣Cex
ij (0)

∣∣ = γ0 (36)

since Cex
ij (0) = Tr(ρex

ij ) = 1 for any i,j due to normalization.

C. Conservative part

An explicit expression for the level shifts 	ij [Eq. (22)] can
be obtained along the same lines as for the decay rates, and
reads

	ij = 1

L3

∑
kε

	em
kε Cex

ij (k), (37)

with

	em
kε = − 1

�ε0
P

(
ω2

k

ω2
k − ω2

0

)
|εk·d|2, (38)

where P stands for the Cauchy principal value [70]. In the limit
of a continuum of modes, Eq. (37) becomes

	ij = P
∫ ∑

ε

	em
kε Cex

ij (k)
dk

(2π )3
, (39)

with

	em
kε = −3πγ0

k3
0

k2

k2 − k2
0

|εk·d|2. (40)

As for the decay rates, the plane waves eik·rij in the Fourier
series for the level shifts 	ij are replaced by the motional

correlation function (19) taking into account the quantization
of the atomic motion. The diagonal coefficients 	ii related
to the Lamb shifts are not affected by the quantization of
the motion since Cex

ii (k) = 1; they are all equal and can
be discarded by means of a renormalization of the atomic
transition frequency ω0. The off-diagonal shifts 	ij (i �= j )
contain divergent contact terms, that are already present
without quantization of the atomic motion, i.e., with classical
atomic positions. However, these terms are exactly canceled by
other divergent terms appearing in the Hamiltonian H self

A [68].
This cancellation still holds when the atomic motion is
quantized, as we proceed to show. By keeping only the energy
conserving terms (RWA) in Eq. (4), the expectation value
〈H self

A 〉ex appearing in Eq. (20) becomes

〈
H self

A

〉
ex =

N∑
i �=j

�	self
ij σ

(i)
+ σ

(j )
− +

N∑
i=1

�	self
ii 1(i), (41)

with 1(i) the internal identity operator for atom i and

	self
ij = 3πγ0

k3
0

∫
Cex

ij (k)
dk

(2π )3
, (42)

	self
ii = 3πγ0

2k3
0

∫
dk

(2π )3
. (43)

Since the divergent level shift 	self
ii in Eq. (41) is proportional

to the identity, it can be absorbed by means of a redefinition
of the zero energy, so that 〈H self

A 〉ex reduces to

〈
H self

A

〉
ex =

N∑
i �=j

�	self
ij σ

(i)
+ σ

(j )
− . (44)

We now split the level shifts 	ij [Eq. (39)] into [68]

	ij = �ij − 	self
ij , (45)

where 	self
ij is given by Eq. (42) and �ij is the dipole-dipole

shift given by

�ij = P
∫ ∑

ε

�em
kε Cex

ij (k)
dk

(2π )3
, (46)

with

�em
kε = 3πγ0

k3
0

[
1 − k2

k2 − k2
0

|εk·ed|2
]
. (47)

The Hamiltonian (21) entering the master equation can then
be decomposed as

H	 =
N∑

i �=j

�	ij σ
(i)
+ σ

(j )
− ≡ H� − 〈

H self
A

〉
ex, (48)

with the dipole-dipole Hamiltonian

H� =
N∑

i �=j

��ij σ
(i)
+ σ

(j )
− , (49)

so that Eq. (20) eventually reads

dρ in
A (t)

dt
= − i

�

[
H�,ρ in

A (t)
] + D

(
ρ in

A (t)
)
. (50)
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Hence H self
A does not contribute to the dynamics, and H� is the

proper form of the Hamiltonian to describe the conservative
dynamics of the atomic system. It accounts for second-order
photon exchanges between pairs of atoms in different internal
energy eigenstates [72].

For classical atomic positions, Cex
ij (k) = eik·rij and Eq. (46)

reduces to the retarded interaction energy (divided by �)
between two parallel dipoles located at fixed positions ri and
rj , i.e., �ij = �cl(rij ) with [67,68]

�cl(rij ) = 3γ0

4

[
− pij

cos ξij

ξij

+ qij

(
sin ξij

ξ 2
ij

+ cos ξij

ξ 3
ij

)]
,

(51)

ξij = k0rij and where pij and qij are given by Eq. (33) for
a π transition, and by Eq. (34) for a σ± transition. The sum
over the polarizations of the Fourier components (47) is thus
equal to the Fourier transform of the retarded dipole-dipole
interaction energy (divided by �), �cl(r). Equation (46) is the
generalization of the dipole-dipole shifts (51) to account for
quantum fluctuations and correlations in the atomic motion.
Similar to the decay rates, the dipole-dipole shifts can be
written as

�ij =
∫
R3

�cl(r)F−1
r

[
Cex

ij (k)
]
dr. (52)

As an example, let us consider again the case of two atoms
at classical positions ri and rj . We then have Cex

ij (k) = eik·rij

and Eq. (52) reduces to �ij = �cl(rij ), as expected. However,
in most cases, Eq. (52) yields an infinite result because the
1/r3 divergence of �cl(r) at r = 0 is not integrable in R3 and
because F−1

r [Cex
ij (k)] does in general not vanish at the origin.

In order to treat dipole-dipole interactions, one must introduce
a minimal distance, i.e., a cutoff, in the integral (52). A natural
cutoff would be of the order of the size of an atom, so as to
remain compatible with the dipole approximation made in the
derivation of the master equation. The effect of the cutoff will
be discussed in detail in the following sections.

IV. GENERAL EXPRESSIONS OF DECAY RATES
AND DIPOLE-DIPOLE SHIFTS

The master equation (50) is completely determined in
terms of the motional correlation function (19) through the
expressions of the decay rates γij , given by Eq. (35) and
appearing in the dissipator (23), and the dipole-dipole shifts
�ij , given by Eq. (52) and appearing in the dipole-dipole
Hamiltonian (49). All the effects related to recoil, quantum
fluctuations of motion and indistinguishability are included
in the motional correlation function Cex

ij (k). In this section,
we provide general expressions for Cex

ij (k), γij , and �ij both
for distinguishable and indistinguishable atoms for arbitrary
motional states.

A. Distinguishable atoms

When N distinguishable atoms are in the motional separa-
ble state |φ1�

. . . φN�
〉 with a probability p� � 0 (

∑
� p� = 1),

the global motional state is the statistical mixture

ρ
ex,sep
A =

L∑
�=1

p� |φ1�
. . . φN�

〉〈φ1�
. . . φN�

|. (53)

The single-atom motional states |φj�
〉 (j = 1, . . . ,N ; � =

1, . . . ,L) are normalized but are not necessarily orthogonal.
The two-atom reduced density matrix ρex

ij is obtained by tracing
over the motional degrees of freedom of all atoms but i and j ,
and reads

ρ
ex,sep
ij =

L∑
�=1

p� |φi�φj�
〉〈φi�φj�

|. (54)

The motional correlation function (19) is thus given, for
distinguishable atoms [in the mixture (53)], by

C ex,sep
ij (k) =

L∑
�=1

p� Ii�i� (k)Ij�j�
(−k) (55)

with the overlap integral

Iαβ(k) =
∫
R3

eik·r φα(r) φ∗
β(r) dr

=
∫
R3

Fk′−k[φα]Fk′[φ∗
β] dk′ (56)

defined for any pair of indices αβ. The overlap integral (56) is
equal to the overlap in momentum space between the state φβ

and the state φα shifted by the momentum �k of a photon of
wave vector k. The inverse Fourier transform of (55) can be
written

F−1
r

[
Cex

ij (k)
] =

L∑
�=1

p�

∫
R3

|φi�(r
′)|2 |φj�

(r + r′)|2 dr′. (57)

On inserting Eq. (57) into Eqs. (35) and (52), we obtain explicit
expressions for the decay rates and the dipole-dipole shifts in
terms of single-atom motional states

γ
sep
ij =

L∑
�=1

p�

∫∫
R3×R3

γ cl(r − r′) |φi(r)|2 |φj (r′)|2 dr dr′,

(58)

�
sep
ij =

L∑
�=1

p�

∫∫
R3×R3

�cl(r − r′) |φi(r)|2 |φj (r′)|2 dr dr′.

(59)

B. Indistinguishable atoms

For indistinguishable atoms in a statistical mixture ρA, each
wave function of the mixture has to be either symmetric or
antisymmetric under exchange of particles, depending on the
quantum statistics of the atoms (bosonic or fermionic). Due
to the Born approximation, the mixture contains a single term
and the initial state has to be of the form ρA(0) = ρ in

A ⊗ ρex
A .

For clarity, we shall consider pure product initial states, and
restrict ourselves to states that are both individually either
symmetric (+) or antisymmetric (−). The symmetrization (an-
tisymmetrization) of the separable motional state |φ1 . . . φN 〉
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leads to the N -atom symmetric (antisymmetric) state

∣∣�ex,±
A

〉 =
√

nφ1 ! · · · nφN
!

N !

∑
π

sπ
± |φπ(1) · · · φπ(N)〉, (60)

where nφj
is the number of atoms occupying the single-atom

motional state |φj 〉, the sum runs over all permutations π of
the indices {1, . . . ,N}, and the symbol sπ

± is defined as

sπ
± =

{
1 if+,

sign(π ) if−,
(61)

where sign(π ) is the signature of the permutation π . The two-
atom reduced density matrix, obtained by taking the partial
trace of ρ

ex,±
A = |�ex,±

A 〉〈�ex,±
A | over all atoms but i and j , has

the form

ρ
ex,±
ij =

∑
π,π ′

λ
ππ ′,±
ij |φπ(i)φπ(j )〉〈φπ ′(i)φπ ′(j )|, (62)

with

λ
ππ ′,±
ij =

sπ
± sπ ′

±
N∏
n=1

n �=i,j

〈φπ ′(n)|φπ(n)〉

∑
π̃ ,π̃ ′

sπ̃
± sπ̃ ′

±
N∏

n=1

〈φπ̃ ′(n)|φπ̃(n)〉
. (63)

Inserting Eq. (62) into (19) eventually leads to the motional
correlation function

C ex,±
ij (k) =

∑
π,π ′

λ
ππ ′,±
ij Iπ(i)π ′(i)(k) Iπ(j )π ′(j )(−k). (64)

An important result is that C ex,±
ij , and thus γij and �ij

[see Eqs. (29) and (52)], do not depend on i and j for
indistinguishable atoms, regardless of the average distance
between atoms. This fact has far reaching consequences on
how the atomic system radiates, especially in the regime in
which cooperative processes are enhanced, when atoms are
located within a volume smaller than λ3

0. For distinguishable
atoms, cooperative emission (superradiance or subradiance)
is strongly altered by the dephasing of the atomic dipoles
as a consequence of dipole-dipole interactions, whereas for
indistinguishable atoms no such dephasing occurs.

The reduced density matrix (62) leads to decay rates
and dipole-dipole shifts in terms of the following exchange
integrals

γij =
∑
π,π ′

λ
ππ ′,±
ij

∫∫
R3×R3

γ cl(r − r′) φπ(i)(r)φ∗
π ′(i)(r)

×φπ(j )(r′)φ∗
π ′(j )(r

′) dr dr′, (65)

�ij =
∑
π,π ′

λ
ππ ′,±
ij

∫∫
R3×R3

�cl(r − r′) φπ(i)(r)φ∗
π ′(i)(r)

×φπ(j )(r′)φ∗
π ′(j )(r

′) dr dr′. (66)

A particularly relevant situation in the context of cold-atom
physics is when all atoms occupy the same motional state |φ0〉
and thus form a Bose-Einstein condensate, i.e., when the global
motional state ρex

A = (|φ0〉〈φ0|)⊗N is symmetric and separable.

The corresponding correlation function is given by Eq. (55)
for L = 1 and can be simplified into

Cex,+
ij (k) = I00(k) I00(−k) = |Fk[|φ0(r)|2]|2. (67)

The decay rates (65) and dipole-dipole shifts (66) read in this
case

γij =
∫∫

R3×R3
γ cl(r − r′) |φ0(r)|2 |φ0(r′)|2 dr dr′, (68)

�ij =
∫∫

R3×R3
�cl(r − r′) |φ0(r)|2 |φ0(r′)|2 dr dr′. (69)

V. DECAY RATES AND DIPOLE-DIPOLE SHIFTS
FOR PARTICULAR MOTIONAL STATES

In this section, we determine explicit expressions for the
decay rates γij and the dipole-dipole shifts �ij for different
motional states of particular interest. We also discuss the
effects of quantum statistics by considering both cases of
distinguishable and indistinguishable atoms. For calculation
purposes, it is convenient to work in the coordinate system
Ox ′y ′z′ as depicted in Fig. 3 with the z′ axis along the
vector r′

ij ≡ rij connecting the atoms i and j , so that k′
0·r′

ij =
k0rij cos θ ′. This coordinate system results from a clockwise
rotation of Oxyz by an angle αij around the y axis.

A. Gaussian states

Gaussian wave packets are of particular importance because
they describe a broad class of states, such as the ground state
of atoms trapped in harmonic potential, realized, e.g., in a
noninteracting Bose-Einstein condensate at zero temperature,
but also nonclassical states such as squeezed vibrational states
of ions in harmonic trap [73]. We consider N single-atom

zz

x y = y

x

ϕ

z

αij

αij

θ

rij

k

O

FIG. 3. Coordinate system Oxyz where the z direction corre-
sponds to the quantization axis. The dipole moment for a π transition
is dπ = d0 ez with d0 ∈ R, and for a σ± transition is dσ± = d∓ ε∓ with
d∓ ∈ C. The vector rij connecting the atoms i and j lies in the plane
y = 0 and forms an angle αij with the z axis. The primed coordinate
system Ox ′y ′z′, equipped with spherical coordinates (k′,θ ′,ϕ′), is
chosen so that r′

ij ≡ rij lies along the z′ axis in order to facilitate the
calculation of the correlation functions.
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Gaussian wave packets

φj (r′) ≡ 〈r′|φj 〉 =
∏

u=x ′,y ′,z′

√
1√

2πσu

e−(u−uj )2/4σ 2
u (70)

for j = 1, . . . ,N . The wave packets are centered around
arbitrary positions r′

j = (x ′
j ,y

′
j ,z

′
j ) with widths σx ′ , σy ′ , and

σz′ corresponding to the standard deviations along the three
spatial directions, taken equal for all atoms. These states can
be seen as the ground states of 3D-harmonically trapped atoms,
with r′

j the position of the center of the trap, 	u = �/2Mσ 2
u

its frequency along the u direction (u = x ′,y ′,z′), and M the
atomic mass. Plugging Eq. (70) into (56), we get for the overlap
integral between any two Gaussian states |φi〉 and |φj 〉

Iij (k) =
∏

u=x ′,y ′,z′
e−ku[kuσ

2
u −i(ui+uj )]/2 e−(ui−uj )2/8σ 2

u . (71)

For simplicity, we now consider σx ′ → 0 and σy ′ → 0, so
that the atomic motion is only quantized along the z′ direction,
hence along r′

ij = (0,0,z′
ij ). This is the most interesting case of

quantization along only one direction as it allows for the spatial
overlap of atomic wave packets. This choice of coordinate
system can always be made for N = 2 atoms, and the results
that we obtain can be transposed to more than two atoms as
long as the atoms are aligned along the z′ direction. From
now on, we denote by �0 ≡ σz′ the standard deviation of the
Gaussian wave packet along this direction.

1. Distinguishable atoms

For two distinguishable atoms i and j in the states |φi〉
and |φj 〉, respectively, Eq. (71) yields for the correlation
function (55)

Cex,sep
ij (k′) = Iii(k′) Ijj (−k′)

= e−(k′�0 cos θ ′)2
eik′rij cos θ ′

. (72)

In the limit of tight confinement, �0 → 0, atoms are well
localized and the correlation function reduces to its classical
expression eik′·r′

ij . For any other value of �0, the decay rates (29)
resulting from the correlation function (72) are obtained from
the angular integral

γ
sep
ij = 3γ0

8π

∫ ∑
ε′

|ε′
k′

0
·e′

d′ |2e−(k0�0 cos θ ′)2
eik0rij cos θ ′

d	′, (73)

with d	′ = sin θ ′dθ ′dϕ′ and where the sum over the polariza-
tions yields a factor

∑
ε′ |ε′

k′
0
·e′

d′ |2 = 1 − μij with

μij = (cos ϕ′ sin αij sin θ ′ + cos αij cos θ ′)2 (74)

for a π transition and

μij = (cos θ ′ sin αij − cos αij cos ϕ′ sin θ ′)2 − sin2 θ ′ sin2 ϕ′

2
(75)

for a σ± transition. The integral can be evaluated analytically
and provides us with the closed formula

γ
sep
ij (rij ,�0) = 3γ0

16η5
0

(√
π

6
e
− ξ2

ij

4η2
0
[
16η4

0 − qij

(
4η4

0 + 3ξ 2
ij − 6η2

0

)]
Re

{
erf

(
η0 + iξij

2η0

)}
− qijη0e

−η2
0
[
2η2

0 cos ξij − ξij sin ξij

])
,

(76)

where erf(z) = 2√
π

∫ z

0 e−t2
dt is the error function, qij is the

angular factor given by Eq. (33) for a π transition and by
Eq. (34) for a σ± transition, and

ξij = k0rij = 2π
rij

λ0
, η0 = k0�0 = 2π

�0

λ0
. (77)

The parameter ξij quantifies the significance of atomic
cooperative processes. The Lamb-Dicke parameter η0 is a
measure of the recoil experienced by an atom after emission
(or absorption) of a photon of wavelength λ0. Finally, the ratio
η0/ξij = �0/rij is a quantifier of the overlap between atomic
wave packets (see Fig. 4). Equation (76) is remarkable in that it
is valid for any values of both ξij and η0. It provides an accurate
description of the combined effects of indeterminacy in atomic
positions and recoil on the dissipative dynamics of atoms for
any possible realizations of the three characteristic lengths
rij , �0 and λ0. In particular, it allows for a full description
of recoil effects beyond the Lamb-Dicke regime, i.e., when
η0 � 1. Table I summarizes several regimes that our theory
covers as defined through the comparison of the adimensional
parameters ξij and η0.

Let us consider two important limiting cases : (I) when the
distance between any two atoms is much larger than λ0 (ξij �
1: no cooperative effects in the case of classical positions),

and (II) when the distance between any two atoms is much
smaller than λ0 (ξij � 1: superradiant regime). In the regime
I, Eq. (76) reduces to

γ
sep
ij

�
ξij �1

3γ0

2
pij

sin ξij

ξij

e−η2
0 , (78)

with pij the angular factor given by Eq. (33) for a π transition
and by Eq. (34) for a σ± transition. This result differs by a
factor e−η2

0 from the classical result that is obtained for atoms at

ξij

η0

k0z

FIG. 4. Schematic view of two atoms separated by a distance rij

and whose positions are described by Gaussian wave packets of width
�0. The dipole moments and dipole radiation patterns are illustrated
in red and correspond to a π transition with αij = π/2.
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TABLE I. Regimes and relevant phenomena related to the
different ranges of the adimensional parameters ξij = k0rij and
η0 = k0�0. Recoil effects result from photon emission processes
and are significant when η0 � 1. Cooperative effects reflect the fact
that the atoms do not behave as independent emitters when ξij � 1
(provided η0 is not too large; see Fig. 6). Indistinguishability becomes
significant as soon as the wave packets overlap (i.e., when ξij � η0).

Regime Relevant phenomena

1 � η0 � ξij Recoil effects
η0 � ξij � 1 Cooperative effects
1 � ξij � η0 Indistinguishability, recoil effects
ξij � 1 � η0 Cooperative effects, recoil effects,

indistinguishability
ξij � η0 � 1 Cooperative effects, indistinguishability

fixed positions [i.e., the radiative term of Eq. (32)]. This factor
arises from the quantization of the atomic motion and can be
interpreted as a reduction of phase coherence in the cooperative
emission due to the uncertainty in the atomic positions. It is
reminiscent of the Debye-Waller factor exp (−kBT k2

0/3M	2)
typical for neutron scattering, where the position of the atoms
is smeared out due to their thermal motion [35] (here T is
the temperature, kB the Boltzmann constant, M the atomic
mass, 	 the atomic oscillation frequency, and k0 the neutron
wave number). In the opposite regime (ξij � 1) and for any
Lamb-Dicke parameter η0, Eq. (76) reduces to

γ
sep
ij

�
ξij �1

γ0

[
√

π erf(η0)
(8 − 2qij )η2

0 + 3qij

16η3
0

− 3qij e−η2
0

8η2
0

]
.

(79)

In particular, in the Lamb-Dicke regime (η0 � 1), the decay
rates decrease with η0 as

γ
sep
ij

�
η0�1

γ0

(
1 − 5 + qij

15
η2

0

)
, (80)

while, for large values of η0, we have

γ
sep
ij

�
η0�1

γ0

√
π (4 − qij )

8η0
. (81)

We now turn to the calculations of the dipole-dipole shifts.
Equation (57) yields for the inverse Fourier transform of (72)

F−1
r′

[
Cex,sep

ij (k′)
] = e−(z′+z′

ij )2/4�2
0

2
√

π �0
δ(x ′)δ(y ′), (82)

so that Eq. (52) yields

�
sep
ij (rij ,�0) =

∫ +∞

−∞
e−(z′+z′

ij )2/4�2
0 �cl(0,0,z′)

dz′

2
√

π �0
, (83)

with �cl given by Eq. (51). Equation (83) depends paramet-
rically on the vector r′

ij = (0,0,z′
ij ) connecting the center of

the two Gaussian wave packets. The integral diverges unless
a cutoff ε is introduced in order to remove the small values
of z′ around z′ = 0. Therefore, we introduce the regularized

403020100

0.2

0.1

0

−0.1

−0.2

ξij

Δsep
ij

γ0

FIG. 5. Regularized dipole-dipole shifts �
sep
ij as a function of

ξij = k0rij for atoms in Gaussian states (70) with a Lamb-Dicke
parameter η0 = 1 and different cutoffs (solid lines from left to right):
k0ε = 10−1 (blue curve), k0ε = 10−2 (green curve), k0ε = 10−3

(orange curve), and k0ε = 10−4 (dark red curve). The red dashed
curve corresponds to the classical dipole-dipole shift �cl given by
Eq. (51). The plots shown are for a π transition with αij = π/2.

dipole-dipole shifts

�
sep
ij (rij ,�0,ε) =

[∫ −ε

−∞
+

∫ +∞

ε

]
e−(z′+z′

ij )2/4�2
0

×�cl(0,0,z′)
dz′

2
√

π �0
. (84)

In Fig. 5, we show the result of a numerical integration of (84)
as a function of ξij for different cutoffs ε. For ξij � 10, all
curves are seen to collapse to a single curve displaying similar
oscillations as the classical dipole-dipole shift but with a
reduced amplitude (depending on the Lamb-Dicke parameter).
The chosen cutoffs have no influence in this parameter range.
For ξij � 10, the curves corresponding to different cutoffs
start to differ. The ones with smaller values of ε diverge
more rapidly as ξij decreases. However, the cutoff cannot be
arbitrary small since atoms are not pointlike particles but have
a finite spatial extent of the order of the Bohr radius a0. For
frequencies in the optical domain, this leads to the condition
k0ε > k0 a0 ∼ 10−3.

2. Indistinguishable atoms

The motional correlation function for indistinguishable
atoms in single-atom Gaussian states [see Eq. (70)] is obtained
by inserting (71) into (64). The decay rates (29) and dipole-
dipole shifts (52) for indistinguishable atoms are thus given
by

γ ±
ij ({rij },�0) =

∑
π,π ′

wππ ′,± γ
sep
ij

(
r̄ππ ′
ij ,�0

)
, (85)

�±
ij ({rij },�0) =

∑
π,π ′

wππ ′,± �
sep
ij

(
r̄ππ ′
ij ,�0

)
, (86)
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FIG. 6. Off-diagonal decay rates (top) and regularized dipole-dipole shifts (bottom) for the configuration illustrated in Fig. 4 as a function
of ξij = k0rij and η0 = k0�0 for (a) distinguishable atoms [Eq. (76) and (84)] and (b), (c) indistinguishable atoms [Eq. (85) and (86) for N = 2].
The plots shown are for a π transition with αij = π/2 and a cutoff k0ε = 0.01. The black solid curves at the front of each plot (for η0 = 0)
are the classical decay rate (32) and dipole-dipole shift (51). The black solid curves on the left of each plot of the decay rates (for ξij = 0)
correspond, in the cases (a) and (b), to Eq. (79).

with

wππ ′,± =
sπ
± sπ ′

±
N∏

n=1

e
−

z′2
π(n)π ′ (n)

8�2
0

∑
π̃ ,π̃ ′

sπ̃
± sπ̃ ′

±
N∏

n=1

e
−

z′2
π̃ (n)π̃ ′ (n)

8�2
0

, (87)

where γ
sep
ij and �

sep
ij are given by Eqs. (76) and (84),

respectively, and

r̄ππ ′
ij = 1

2
(rπ(i)π(j ) + rπ ′(i)π ′(j )). (88)

Equations (85) and (86) now depend on all rij , but are equal
for all i and j as a consequence of indistinguishability, as
discussed in the previous section.

Figure 6 displays the decay rates and regularized dipole-
dipole shifts as a function of ξij and η0, both for (a) distin-
guishable and (b),(c) indistinguishable atoms (corresponding
to symmetric and antisymmetric wave functions, respectively).
The decay rates γ

sep
ij and γ ±

ij are those given in Eqs. (76)
and (85), while the dipole-dipole shifts �

sep
ij and �±

ij are
those given in Eqs. (84) and (86). In the Lamb-Dicke regime
(η0 � 1), the quantum fluctuations of the atomic positions
are small and the decay rates and dipole-dipole shifts only
slightly depart from their classical values, Eqs. (32) and (51).
Beyond the Lamb-Dicke regime (η0 � 1), the decay rates and
dipole-dipole shifts still display oscillations as a function of
ξij but with a reduced amplitude. This reduction in amplitude
is more and more pronounced as η0 increases. Physically,

this can be understood as the result of an average over the
atomic positions at the scale of the atomic wave packets of the
corresponding oscillating classical quantities [see Eqs. (35)
and (52)]. For small interatomic distances in comparison to
the wave packets extension (ξij � η0), the symmetry of the
wave function has major effects on how fast the amplitude
decreases with η0. It is seen to decrease much faster for the
antisymmetric wave function than for the symmetric one [see
(b) and (c) in the middle panel]. Symmetric and separable
wave functions yield very close results because their two-atom
reduced density matrices ρ+

ij and ρ
sep
ij are very close. In

particular, when ξij → 0, we have ρ+
ij → ρ

sep
ij and γ +

ij → γ
sep
ij

with γ
sep
ij given by Eq. (79). On the contrary, the two-atom

reduced density matrix ρ−
ij differs significantly because of

the Pauli exclusion principle. When the overlap between
atomic wave packets becomes negligible (ξij � η0), the decay
rates and the dipole-dipole shifts are approximately equal for
the symmetric, antisymmetric, and separable wave functions,
showing that atoms can be treated as distinguishable particles
in this regime.

B. Harmonic oscillator eigenstates

We now consider as single-atom motional states the vibra-
tional states of harmonically trapped atoms centered around
the positions r′

j (j = 1, . . . ,N), hereafter referred as Fock
states. We denote them by |φ(n,r′

j )〉 where n = 0,1, . . . stands
for the number of vibrational excitations. Gaussian states are a
particular case (n = 0) of this more general class of states. As
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previously, atoms are taken to be aligned along the z′ direction
and their motion is quantized only along this direction.

In the position representation, the single-atom motional
Fock states |φ(n,r′

j )〉 with typical size �0 along z′ are given
by

φ(n,r′
j )(r′) = e−(z′−z′

j )2/4�2
0

(2nn!)
1
2
(
2π�2

0

) 1
4

Hn

(
z′ − z′

j√
2�0

)
δ(x ′

j )δ(y ′
j ), (89)

where Hn(z′) is the Hermite polynomial of order n. The overlap
integral (56) between two Fock states at the same position r′
reads [74]

I(ni ,r′)(nj ,r′)(k′) = eik′·r′
e−k′2

z′ �
2
0/2

×
√

n<!

(n< + �n)!
(ik′

z′�0)�n L�n
n<

(
k′2
z′ �

2
0

)
,

(90)

where Lα
n are the generalized Laguerre polynomials of degree

n, �n = |ni − nj | and n< = min{ni,nj }.

1. Distinguishable atoms

When atom i is in the state |φ(ni ,r′
i )〉 and atom j in the state

|φ(nj ,r′
j )〉, according to Eq. (90), the correlation function (55)

reads

Cex,sep
ij (k′) = I(ni ,r′

i )(ni ,r′
i )(k

′) I(nj ,r′
j )(nj ,r′

j )(−k′)

= eik′·r′
ij e−k′2

z′ �
2
0 L0

ni

(
k′2
z′ �

2
0

)
L0

nj

(
k′2
z′ �

2
0

)
. (91)

The decay rates of distinguishable atoms with Fock states
at arbitrary positions can be obtained by inserting Eq. (91)
into Eq. (29) and performing the angular integration. Simple
analytical expressions can be obtained in the limit ξij → 0
(superradiant regime). To this end, we first express the product
of Laguerre polynomials as a linear combination of these same
polynomials,

L0
ni

(x)L0
nj

(x) =
ni+nj∑

�=|ni−nj |
cni ,nj ,� L0

�(x), (92)

with

cni ,nj ,� =
(

−1

2

)p ∑
n

22n(ni+nj−n)!

(ni−n)!(nj − n)!(2n − p)!(p − n)!
,

(93)

where p = ni + nj − � and the sum over n runs over all inte-
gers such that the arguments of the factorials are positive [75].
By plugging Cex,sep

ij (k′
0) with eik′

0·r′
ij ≈ 1 into Eq. (29) and

performing the integration over all directions, we get

γ
sep
ij (ni,nj ,�0) �

ξij �1

γ0

4

ni+nj∑
�=|ni−nj |

cni ,nj ,�

[
qij 2F2

(
3

2
,� + 1; 1,

5

2
; −η2

0

)
+ (4 − qij ) 2F2

(
1

2
,� + 1; 1,

3

2
; −η2

0

)]
, (94)

with qij given by Eq. (33) for π transition and by Eq. (34) for
σ± transition and pFq(a; b; z) the generalized hypergeometric
series [76,77]. The decay rates (94) for atoms in the same
Fock state are shown in Fig. 7 as a function of the Lamb-
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0.0016

η0

1086420
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0.8
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0.4
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0

η0

γsep
ij

γ0

FIG. 7. Decay rates in the superradiant regime in units of γ0 as
a function of the Lamb-Dicke parameter η0 when atoms i and j are
initially in the same motional Fock state |φ(n,0)〉 centered around the
origin with (from right to left) n = 0 (ground state, red curve), n = 1
(green curve), and n = 10 (blue curve). Inset: same figure in log-log
scale showing the power-law decrease of γ

sep
ij as 1/η0. The plots

shown are for a π transition with αij = π/2.

Dicke parameter for a π transition with αij = π/2 and for
different excitation numbers n = ni = nj . At fixed Lamb-
Dicke parameter, the decay rates are smaller as the excitation
number increases. For large Lamb-Dicke parameters, they
decrease like a power law, as can be seen from the inset.
Some oscillations are present for excitation numbers n > 0,
which we attribute to oscillations (in momentum space) of the
motional wave packets.

2. Indistinguishable atoms

For indistinguishable atoms in Fock states, the correlation
function is given by Eq. (64). The decay rates can be
evaluated for arbitrary positions and Lamb-Dicke parameter
by inserting (64) into (29). In the limit ξij → 0 and for different
excitation numbers, the vibrational states are orthogonal and
the decay rates can be obtained from

γ ±
ij ({ni},�0) �

ξij �1

1

N !

∑
π,π ′

sπ
± sπ ′

± σ
π,π ′
ij

×
∫ ∑

ε

γ em
k0ε

Iπ(i)π ′(i)(k0) Iπ(j )π ′(j )(−k0)
d	

(2π )2
, (95)

with γ em
k0ε

and Iαβ (k0) given by Eqs. (30) and (90) and

σ
π,π ′
ij =

N∏
n=1

n �=i,j

δπ(n)π ′(n), (96)
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where δπ(n)π ′(n) is the Kronecker symbol. For equal excitation
numbers, the symmetric motional state ρ+

ij becomes separable
in this regime and the symmetric decay rates γ +

ij tend to γ
sep
ij

given by Eq. (94).

C. Thermal states in a harmonic trap

We now consider as motional state the thermal state of
atoms trapped in a harmonic potential of frequency 	z′ =
�/2M�2

0 along the z′ direction. In this case, all atoms occupy
the same motional mixed state [78]

ρ(n̄,0′) =
+∞∑
n=0

n̄n

(1 + n̄)n+1
|φ(n,0′)〉〈φ(n,0′)| (97)

where n̄ = 1/(e�	z′ /kBT − 1) is the mean phonon number at
temperature T . The overlap

I(n̄,0′)(n̄,0′)(k′) = 〈
eik′

z′ ẑ
′
j

〉 = Tr
(
eik′

z′ ẑ
′
j ρ(n̄,0′)

)
(98)

can be evaluated analytically by writing the position operator
as ẑ′

j = �0(bj + b
†
j ) with bj and b

†
j the annihilation and

creation operators of a motional excitation for atom j . Upon
using the identity 〈 exp[�0(b†j + bj )]〉 = exp[�2

0〈(b†j + bj )2〉],
where the expectation value is taken in a thermal state [79],
we get

I(n̄,0′)(n̄,0′)(k′) = e−k′2
z′ �

2
0(2n̄+1)/2. (99)

The corresponding correlation function (55) reads

Cex,sep
ij (k′) = e−k′2

z′ �
2
0(2n̄+1), (100)

and is of the same form as for Gaussian states centered
around the origin [see Eq. (72)], now with a width �̃0 =
�0

√
2n̄ + 1 which depends on the temperature through n̄. As

a consequence, the decay rates and the dipole-dipole shifts

for atoms in the same thermal state are given by Eqs. (76)
and (84) with η0 replaced by η̃0 = η0

√
2n̄ + 1. The increase in

Lamb-Dicke parameter from η0 to η̃0 comes from the Debye-
Waller factor e−k2

0 〈ẑ′2
j 〉 where 〈ẑ′2

j 〉 = �2
0(2n̄ + 1) is the mean

square displacement of atom j .

VI. CONCLUSIONS

In this work, we derived a general master equation for the
internal dynamics of atoms coupled to the electromagnetic
field in vacuum, taking into account the quantization of their
motion. Our master equation provides an accurate description
of recoil effects, even beyond the Lamb-Dicke regime, and
applies equally well to distinguishable and indistinguishable
atoms. We obtained general expressions for the dipole-dipole
shifts and the decay rates, which determine the conservative
and dissipative atomic internal dynamics, in terms of their
classical expressions and the motional correlation function
defined for arbitrary motional states. We showed that the
motional state allows one to engineer the dipole-dipole shifts
and the decay rates, and can lead to a large modification
compared to the classical value. In particular, we obtained
analytical expressions for the decay rates for Gaussian states,
harmonic oscillator eigenstates, and thermal states, that are
relevant in cold atom experiments. In a forthcoming work, we
will present a detailed study of the general solutions of our
master equation.
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