
PHYSICAL REVIEW A 92, 052333 (2015)

Anticoherence of spin states with point-group symmetries
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We investigate multiqubit permutation-symmetric states with maximal entropy of entanglement. Such states
can be viewed as particular spin states, namely anticoherent spin states. Using the Majorana representation of
spin states in terms of points on the unit sphere, we analyze the consequences of a point-group symmetry in their
arrangement on the quantum properties of the corresponding state. We focus on the identification of anticoherent
states (for which all reduced density matrices in the symmetric subspace are maximally mixed) associated
with point-group-symmetric sets of points. We provide three different characterizations of anticoherence and
establish a link between point symmetries, anticoherence, and classes of states equivalent through stochastic
local operations with classical communication. We then investigate in detail the case of small numbers of qubits
and construct infinite families of anticoherent states with point-group symmetry of their Majorana points, showing
that anticoherent states do exist to arbitrary order.
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I. INTRODUCTION

Geometrical representations in science have a long history.
They give further insight in many different contexts, ranging
from classical mechanics to graph theory and quantum
information [1]. One such representation is the Bloch sphere
picture for spin- 1

2 states, which has been widely used in the
latter context. Several geometrical generalizations of the Bloch
representation to higher spin systems have been proposed
[2–6]. In his seminal paper [2], Majorana introduced a
particularly convenient way of visualizing pure spin-j states
as a set of 2j points on the Bloch sphere. This representation
has been used in various contexts, such as in the study of
spinor Bose gases [7–9] or entanglement quantification and
classification in multiqubit systems [10–13]. It can be used
to highlight symmetries of spinor wave functions and to
determine the inert states of spin systems, which are stationary
for generic energy functionals [9,14], and also to study the
Berry phase acquired during a cyclic evolution of a spin
system [15].

Spin-j coherent states |n〉 take a very simple form in the
Majorana representation. These states are defined as the pure
states verifying 〈n|J|n〉 = jn for some unit vector n (� is set
to 1), where J = (Jx,Jy,Jz) is the spin angular momentum
operator associated with a spin-j system. In the Majorana
representation, they are depicted by a single point (2j -fold
degenerated) on the Bloch sphere and are, in this sense, highly
directional. For this reason, spin-coherent states are also called
polarized states. By contrast, pure spin-j states |ψj 〉 that depart
the most from coherent states could be defined as the states
which do not display any directional properties. However,
for any finite j , the moments 〈(J · n)k〉 ≡ 〈ψj |(J · n)k|ψj 〉 of
the spin components, from a certain order, depend on n. At
best, one can ask for the absence of directionality in the
moments up to a given order. This motivates the following
definition [16]: A spin-j state |ψj 〉 is said to be anticoherent
to order t (or t-anticoherent) if 〈(J · n)k〉 is independent of the
unit vector n for k = 1, . . . ,t . For example, 1-anticoherence
means that the expectation value of the spin operator J
vanishes.

The problem of identifying anticoherent states can be
tackled from a quantum information perspective. Quantum
information mainly deals with the manipulation of information
stored on a set of two-level quantum systems, or qubits. It is
possible to rephrase the above definition of anticoherence in
the qubit language. The key element is the one-to-one mapping
between the Hilbert space of a single spin-j (of dimension
2j + 1) and the symmetric subspace of the Hilbert space
associated with a system of N qubits (of dimension N + 1)
when N = 2j . In this picture, spin-coherent states are fully
separable, whereas symmetric N -qubit t-anticoherent states
are characterized by the fact that their t-qubit reduced density
matrices correspond to the maximally mixed state [6,17]. As
a consequence, t-anticoherent states are the most entangled
symmetric states, in the sense that for any (k,N − k) bipartition
with k = 1, . . . ,t the entanglement entropy is maximal. Note
that the maximization of the entropy of entanglement over the
whole Hilbert space for all possible bipartitions is not reached
for symmetric states [18] and thus the states that realize this
maximum are not t-anticoherent; however, states maximizing
the entanglement entropy for (1,N − 1) bipartitions can
be symmetric and thus 1-anticoherent. These states, with
maximally mixed one-qubit reductions, have been the subject
of much research [19–26], notably due to their importance
in two-party communication tasks. Similarly, the notion of
nonclassicality of spin states based on the Glauber-Sudarshan
P representation [27,28] has been translated to multiqubit
symmetric states in [29], where it has been shown to imply
entanglement.

The aim of this paper is to investigate anticoherence from a
geometrical point of view, using the Majorana representation.
As previously mentioned, for coherent states, Majorana points
all lie at the same place. By contrast, states whose Majorana
points are spread out as far away as possible on the sphere have
been shown to be highly entangled [10,11,30]. For instance,
it was found that states obtained by considering Majorana
points with a configuration identical to that of electric charges
at equilibrium on a sphere maximize the geometric measure
of entanglement for certain spin values. Such geometric
arrangements are known to display point-group symmetries.
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We can therefore expect that arrangements of Majorana points
with a certain point-group symmetry lead to highly entangled
states. In this paper, we investigate along those lines the
consequences of point-group symmetries on anticoherence
properties of spin states. As we will see, this allows us to
construct states with high order of anticoherence.

The paper is organized as follows. In Sec II, we present
various characterizations of anticoherence, both from a spin
and a multiqubit perspective. In particular, we derive a set
of equalities that the components of a permutation-symmetric
state must satisfy in order to be t-anticoherent. In Sec. III, we
establish the consequences of the symmetries of Majorana
points on the components of the corresponding state and
determine which symmetries lead to anticoherence. In Sec. IV,
we show that any state displaying cyclic symmetry can be
transformed under stochastic local operations and classical
communications (SLOCC) to an anticoherent state, and es-
tablish a link between symmetries, anticoherence and SLOCC
classes. We also identify all anticoherent states with cyclic
symmetry for five qubits. In Sec. V, we present a systematic
method allowing us to find t-anticoherent states and identify
infinite families of anticoherent states with cyclic group
symmetry. In Sec. VI, we prove that there exists anticoherent
states to all orders.

II. DEFINITION AND CHARACTERIZATIONS
OF ANTICOHERENCE

A. Correspondence between spin- j states and multiqubit
symmetric states

In this section we formalize the correspondence between
single spin-j states and multiqubit symmetric states and trans-
pose the definition of anticoherence given in the introduction
to multiqubit symmetric states. We first describe spin-j states,
then N -qubit symmetric states, and finally their one-to-one
mapping.

1. Single spin- j states

Any pure spin-j state |ψj 〉 can be expanded in the
standard angular momentum basis {|j,m〉 : −j � m � j} of
joint eigenstates of J2 and Jz as

|ψj 〉 =
j∑

m=−j

cm |j,m〉, (1)

with cm complex coefficients such that
∑

m |cm|2 = 1. Coher-
ent states are eigenstates of J · n with eigenvalue j , where
n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) is the unit vector pointing
along the direction specified by the angles (θ,ϕ) on the unit
sphere. For spin- 1

2 , their general expression reads

|n〉 = cos

(
θ

2

)∣∣∣∣12 ,
1

2

〉
+ sin

(
θ

2

)
eiϕ

∣∣∣∣12 ,−1

2

〉
. (2)

More generally, a spin-j coherent state |n〉 has expansion

|n〉 =
j∑

m=−j

√
C

j−m

2j

[
cos

(
θ

2

)]j+m[
sin

(
θ

2

)
eiϕ

]j−m

|j,m〉,

(3)
where C

j−m

2j is a binomial coefficient.

The Husimi function of |ψj 〉, defined by

Q(θ,ϕ) = |〈n|ψj 〉|2, (4)

is the probability of finding the spin in the coherent state
pointing along the direction (θ,ϕ) [31].

2. N-qubit symmetric states

Any pure symmetric state |ψS〉 of N qubits can be expressed
as

|ψS〉 =
N∑

k=0

dk

∣∣D(k)
N

〉
, (5)

with dk complex coefficients such that
∑

k |dk|2 = 1 and
{|D(k)

N 〉 : 0 � k � N} the (orthonormal) symmetric Dicke
states defined in the computational basis as

∣∣D(k)
N

〉 = 1√
Ck

N

∑
σ

| 0 . . . 0︸ ︷︷ ︸
N−k

1 . . . 1︸ ︷︷ ︸
k

〉,

where k = 0, . . . ,N is the number of 1’s and the sum runs
over all permutations of the qubits. In the particular case of a
symmetric separable state |�S〉 = |φ〉⊗N , where

|φ〉 = α|0〉 + β|1〉 (6)

is a single-qubit state with α,β ∈ C, the expansion (5) takes
the form

|�S〉 =
N∑

k=0

√
Ck

N αN−kβk
∣∣D(k)

N

〉
. (7)

The probability of finding the pure symmetric state |ψS〉 in
the separable state |�S〉 is given by

Q(α,β) = |〈�S |ψS〉|2. (8)

3. One-to-one mapping

A one-to-one correspondence between Eqs. (1)–(4) and
(5)–(8) can be made by setting k = j − m, N = 2j , α =
cos( θ

2 ), and β = sin( θ
2 ) eiϕ , and allows a formal equivalence

between the standard basis and the Dicke basis,

∣∣D(k)
N

〉 ↔
∣∣∣∣N2 ,

N

2
− k

〉
,

(9)
|j,m〉 ↔ ∣∣D(j−m)

2j

〉
.

The spin-j angular momentum operator J is formally equiva-
lent to the collective spin operator S = (Sx,Sy,Sz) associated
with the N -qubit system. Here we define Sl = 1

2

∑N
i=1 σ

(i)
l (l =

x,y,z) and σ
(i)
l = 1 ⊗ · · · ⊗ 1 ⊗ σl ⊗ 1 ⊗ · · · ⊗ 1, where σl

are the Pauli operators σx = |0〉〈1| + |1〉〈0|, σy = i(|1〉〈0| −
|0〉〈1|), and σz = |0〉〈0| − |1〉〈1| and appear as the ith factor
in the tensor product. More precisely, the matrix elements
〈j,m|J|j,m′〉 and 〈D(k)

N |S|D(k′)
N 〉 are equal for k = j − m,

k′ = j − m′, and N = 2j . Spin-coherent states coincide with
symmetric separable states, |n〉 ↔ |�S〉, in the sense that the
spin-j coherent state given by Eq. (3) can be seen as the 2j -fold
tensor product of the spin- 1

2 coherent state (2).

052333-2



ANTICOHERENCE OF SPIN STATES WITH POINT-GROUP . . . PHYSICAL REVIEW A 92, 052333 (2015)

B. General conditions of anticoherence

A t-anticoherent pure spin-j state |ψj 〉 is defined by the
fact that 〈(J · n)k〉 is independent of the unit vector n for
k = 1, . . . ,t . A criterion for anticoherence has been given by
Bannai and Tagami [32] for any j in terms of correlators
of Jx, Jy , and Jz and their powers. In particular, it was
found as a corollary that a state is 1-anticoherent if and only
if 〈Jx〉 = 〈Jy〉 = 〈Jz〉 = 0. It is 2-anticoherent if and only
if it is 1-anticoherent and fulfills the additional conditions
〈J 2

x 〉 = 〈J 2
y 〉 = 〈J 2

z 〉 and 〈JkJl〉 = 0 for k,l ∈ {x,y,z} and
k 	= l, meaning that both the expectation value and the variance
of the spin components are equal in all directions. For larger
order of anticoherence t , these conditions quickly become
cumbersome.

This definition of anticoherence can be naturally translated
to the multiqubit setting. The mapping of the previous subsec-
tion leads to the following definition: A multiqubit symmetric
state |ψS〉 is t-anticoherent if 〈(S · n)k〉 is independent of n for
k = 1, . . . ,t .

A simple characterization has been given in [6,17]. Let ρt be
the (t + 1) × (t + 1) reduced density matrix of ρ = |ψS〉〈ψS |
obtained by tracing over N − t qubits and expressed in
the Dicke basis {|D(k)

t 〉 : k = 0, . . . ,t} spanning the t-qubit
symmetric subspace. Note that since symmetric states are by
definition invariant under permutation of the qubits, the t-qubit
reduced states do not depend on the choice of the t qubits. A
state is t-anticoherent if and only if ρt is proportional to the
identity matrix, namely

ρt = 1t+1

t + 1
, (10)

where 1t+1 is the (t + 1) × (t + 1) identity matrix. This
implies that t-anticoherent states maximize the entanglement
entropy S = −tr(ρt log ρt ) among symmetric states for any
bipartition (t,N − t) of the N qubits.

In this section we derive three different characterizations
of anticoherence to any order t . The first one is in terms
of expectation values of convenient combinations of spin
operators, the second is in terms of Dicke coefficients of a
state, and the third is based on the multipolar expansion of the
Husimi function associated with a state.

1. In terms of expectation value of spin operators

Let A(q) be the real numbers defined by

A(q) = 1

N + 1

N∑
k=0

(
N

2
− k

)q

(11)

for integers q. For q = 2, we have A(2) = 1
12N (N + 2) and

for q = 4, A(4) = 1
20 [3N (N + 2) − 4]A(2). Note that for all

odd q, A(q) = 0. We now show that a symmetric state |ψS〉 is
t-anticoherent if and only if expectation values of the operators
Sr

+S
q
z with S+ = Sx + iSy verify

〈ψS |Sr
+Sq

z |ψS〉 ≡ 〈Sr
+Sq

z

〉 = A(q) δr0 (12)

for r = 0, . . . ,t and q = 0, . . . ,t − r , with δr0 the Kronecker
symbol. This set of equalities is much more compact than
similar conditions found in [32]. They are equivalent to the fact
that the t-qubit reduced density matrix ρt is maximally mixed

for t-anticoherent states: Eq. (12) expresses equality of the
diagonal entries of ρt (r = 0) and vanishing of all off-diagonal
entries (r 	= 0).

To show this, we write each entry of the reduced density
matrix ρt as [17]

(ρt )�,�+r =
t−r∑
q=0

C
(r)
�q

〈
Sr

+Sq
z

〉
, (13)

where C(r) for r = 0, . . . ,t are invertible square matrices of
dimension t + 1 − r , which do not depend on the state |ψS〉.
Equation (13) follows from three facts: (i) Any operator which
is a linear combination of |D(k+r)

N 〉〈D(k)
N | for k = 0, . . . ,N − r

can be expressed as a linear combination of the operators Sr
+S

q
z

with q = 0, . . . ,N − r (see Appendix B of [17]); (ii) any entry
(ρt )�,�+r can be expressed as the expectation value (ρt )�,�+r =
〈ψS |Ô�,�+r |ψS〉 of an operator Ô�,�+r which is a linear com-
bination of the operators |D(k+r)

N 〉〈D(k)
N | for k = 0, . . . ,N − r

(see Appendix C of [17]); and (iii) the decomposition of Ô�,�+r

into operators Sr
+S

q
z , which, according to point (i), involves

powers of spin operators such that q � N − r , in fact, only
involves terms with q � t − r . Since C(r) is invertible, it
follows from Eq. (13) that the vanishing of 〈Sr

+S
q
z 〉 for all

q = 0, . . . t − r is equivalent to the vanishing of (ρt )�,�+r .
Thus, Eq. (12) for r 	= 0 is equivalent to the fact that ρt is
diagonal.

According to Eq. (13) for r = 0, diagonal entries of ρt are
all equal to 1/(t + 1) if and only if the vector of components
〈Sq

z 〉 (with q = 0, . . . ,t) is given by the constant vector
[C(0)]−1 (1, . . . ,1)T /(t + 1). It remains to show that this vector
is equal to the vector [A(0), . . . ,A(t)]. We do this by evaluating
〈ψA

S |(S · n)q |ψA
S 〉 for an arbitrary anticoherent state |ψA

S 〉.
For any state |ψS〉, one has 〈ψS |S · n)q |ψS〉 = tr[ρUnS

q
z U

†
n] =

tr[U †
nρUnS

q
z ], where Un = u⊗N

n , with un = exp(−iθ n · σ/2)
the rotation operator of angle θ around the n axis. For a
t-anticoherent state |ψA

S 〉 with density matrix ρA, the latter
expression does not depend on the unit vector n for q =
0, . . . ,t , and thus we can replace it with its average over all n,
so that

〈
ψA

S

∣∣(S · n)q
∣∣ψA

S

〉 = 1

4π

∫
tr
[
U

†
n′ρ

AUn′Sq
z

]
dn′. (14)

Using the completeness relation for coherent states, it is
easy to show that for any density matrix ρ, we have
〈D(k)

N | ∫ U
†
nρUndn|D(k′)

N 〉 = 4π δkk′/(N + 1) [1]. Thus, for
any unit vector n and any t-anticoherent state |ψA

S 〉 (t � q),
we have

〈
ψA

S

∣∣(S · n)q
∣∣ψA

S

〉 = tr
[
S

q
z

]
N + 1

= A(q), (15)

which completes the proof.

2. In terms of Dicke coefficients

The conditions for anticoherence of a state in terms of its
Dicke coefficients dk [see Eq. (5)] are obtained by expressing
Eqs. (12) in the Dicke basis. This gives the “diagonal”
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conditions (r = 0)

N∑
k=0

(
N

2
− k

)q

|dk|2 = A(q) (16)

for q = 0, . . . ,t and the “off-diagonal” conditions

N−r∑
k=0

B(k,r)

(
N

2
− k

)q

d∗
k dk+r = 0 (17)

for r = 1, . . . ,t and q = 0, . . . ,t − r , where

B(k,r) = 〈D(k+r)
N

∣∣Sr
+
∣∣D(k)

N

〉
= ir

√
(k + 1)(k − N )(r − 1)k+2(r − 1)k+N+1,

with (x)n = x(x + 1) · · · (x + n − 1) the Pochhammer
symbol.

For instance, Eqs. (16) and (17) yield, for 1-anticoherence,
the conditions

N∑
k=0

(N − 2k) |dk|2 = 0, (18)

N−1∑
k=0

√
(N − k)(k + 1) d∗

k dk+1 = 0, (19)

which were first derived in [17]. For 2-anticoherence, in
addition to Eqs. (18) and (19), the following conditions must
be fulfilled:

N∑
k=0

(
N

2
− k

)2

|dk|2 = N

12
(N + 2), (20)

N−1∑
k=0

(
N

2
− k

)√
(N − k)(k + 1) d∗

k dk+1 = 0, (21)

N−2∑
k=0

√
(N − k)(N − k − 1)(k + 1)(k + 2) d∗

k dk+2 = 0. (22)

More generally, conditions of anticoherence to order t are
obtained by adding to those of order t − 1 a set of t + 1
equations, one given by (16) with q = t and the t other
equations given by (17) with q + r = t . So the total number
of (real) equations for t-anticoherence is (t + 1)2 − 1, as
expected from condition (10).

3. Based on Q and P functions

This characterization of anticoherence provides a more
direct physical insight. The density matrix ρ of a spin-j state
can always be expanded into state multipole operators T m

�

[31] as

ρ =
N∑

�=0

�∑
m=−�

c�mT m
� . (23)

It can be further described in terms of its Husimi function
Q(θ,ϕ) = 〈n|ρ|n〉, or in terms of its Glauber-Sudarshan P

function defined by

ρ =
∫

P (θ,ϕ)|n〉〈n|dn. (24)

Both Q and P functions can be expanded over spherical
harmonics Ym

� (θ,ϕ) with coefficients Q�m and P�m propor-
tional to c�m, see, e.g., [31]. As shown in [6], a state is
t-anticoherent if and only c�m vanishes for all �,m with
0 < � � t and −� � m � �. From the proportionality of
expansion coefficients of Q and P with c�m, we deduce that for
a t-anticoherent state all spherical multipole moments Q�m and
P�m of order � with 0 < � � t of the Husimi and P functions
vanish. As the Husimi function is the probability of finding the
state in a coherent state with a specific direction, and as the
spherical harmonics Ym

� (θ,ϕ) are more and more oscillating as
� increases, directionality of a t-anticoherent state is less and
less pronounced as t increases because the Husimi function is
more and more uniform on the sphere.

III. POINT GROUPS FOR MAJORANA POINTS

A. Majorana representation

A particularly convenient way of visualizing pure spin-
j states or N -qubit symmetric states is the Majorana or
stellar representation [2]. Any pure symmetric state |ψS〉
can be represented by a set of N = 2j points with angles
{(θi,ϕi),i = 1, . . . ,N} on the Bloch sphere. These N points
are associated with N pure single-qubit states |φ1〉, . . . ,|φN 〉,
where |φi〉 = cos ( θi

2 )|0〉 + eiϕi sin ( θi

2 )|1〉, such that

|ψS〉 = N
∑

σ

|φσ (1) . . . φσ (N)〉, (25)

where the sum runs over all permutations σ ∈ SN (the
permutation group of N elements) and N is a normalization
constant. Let nS and N − nN be, respectively, the first and the
last indices of nonvanishing Dicke coefficients dk for a state of
the form (5). The Majorana representation [2] of such a state
is obtained by finding the roots of the polynomial

P (z) =
N−nN∑
k=nS

(−1)k
√

Ck
N dkz

k. (26)

This polynomial can be put in the form

P (z) = (−1)N−nN

√
C

nN

N dN−nN
znS

N−nN −nS∏
k=1

(z − zk), (27)

where zk are the nonzero roots of P (z). Applying the (inverse)
stereographic projection from the complex plane onto the
Bloch sphere to the zeros of P (z) through the relation zm =
cot(θm/2)e−iϕm yields N − nS − nN points (θm,ϕm), and nS

points at the South pole of the Bloch sphere (corresponding to
the roots located at z = 0). Adding nN points at the North pole
of the Bloch sphere yields the Majorana representation of |ψS〉
as N points on the sphere, called Majorana points. For instance,
for a Dicke state |D(k)

N 〉, the Majorana representation is given
by N − k points at the North pole and k points at the South
pole of the Bloch sphere. For a spin-coherent (or symmetric
separable N -qubit) state |n〉 [see Eq. (3)], the Majorana points
are N points located at (θ,ϕ).

One of the advantages of the Majorana representation
is its behavior under local unitary transformations (LUs).
Symmetric LUs are transformations of the form U⊗N , where
U is a unitary operator acting on a single qubit. It corresponds,

052333-4



ANTICOHERENCE OF SPIN STATES WITH POINT-GROUP . . . PHYSICAL REVIEW A 92, 052333 (2015)

FIG. 1. (Color online) Husimi function of the 12-qubit 5-
anticoherent state |ψS〉 =

√
7

5 |D(1)
12 〉 +

√
11
5 |D(6)

12 〉 −
√

7
5 |D(11)

12 〉. The
Majorana points, depicted by white points on the sphere, display
an icosahedral symmetry. The color code is chosen so as to highlight
the contour lines of the Husimi function.

up to a global phase, to a rigid rotation of the Bloch sphere, and
thus of the Majorana points, thereby preserving the symmetries
of their arrangement.

B. Majorana points for anticoherent states

From its definition, anticoherence of a state |ψS〉 is
preserved by symmetric LU. In particular, this means that it is
only a feature of the relative arrangement of Majorana points.
We expect Majorana points of an anticoherent state to be spread
out over the sphere as evenly as possible. Indeed, anticoherent
states should be as different as possible from any directional
(polarized) state and thus have a Majorana representation as
distinct as possible from N points located at the same place.

As shown in Sec. II B 3, anticoherence is related to the
vanishing of multipole moments of lower order and thus to the
uniformity of the Husimi function over the sphere. A natural
way of constructing states with vanishing multipole moments
is to consider Majorana points arranged symmetrically on the
sphere, as the zeros of the Husimi function are diametrically
opposite to the Majorana points on the Bloch sphere. For
example, 12 points taken at the vertices of an icosahedron
yield a 12-qubit state which is 5-anticoherent. Its Husimi
function is depicted in Fig. 1. In the next section, we consider
arrangements of points with symmetries belonging to the seven
infinite point-group families. Note that anticoherent states with
symmetries corresponding to the exceptional point groups can
also be constructed, as the example just mentioned shows.

As a consequence of these geometrical features, one may
expect the barycenter of the Majorana points to coincide with
the center of the Bloch sphere. In fact, this is not the case
[17]. The distance from the barycenter to the center (which
can serve to define an entanglement measure [33]) can be
surprisingly large, as we show in the following example. States
of the form |ψS〉 = N (

√
N − 2|D((N−1)/2)

N 〉 + |D(N−1)
N 〉) for

odd N > 3 have a Majorana representation corresponding to
(N − 1)/2 points at the south pole, 1 point at the north pole
and (N − 1)/2 points arranged in a regular polygon parallel to
the equatorial plane (a similar family can be found for even N ).
They are 1-anticoherent, as can be checked from Eqs. (18) and
(19); however, for large N , the barycenter of their Majorana
points goes in norm to 1/5.

C. Point-group-symmetric states

Point groups are discrete subgroups of O(3). There are
seven infinite families of axial groups indexed by an integer

n and seven exceptional point groups. The seven infinite
point-group families are generated by rotations and reflections.
We can always bring by LU any point configuration with axial
rotation symmetry to a configuration where the symmetry
axis is the z axis. We denote by rn the rotation with axis
Oz and angle 2π/n. Similarly, we can always bring a point
configuration with reflection symmetry with respect to a plane
containing the z axis to a configuration where this plane is the
plane Oxz containing both the x and the z axes. We denote by
σv the reflection with respect to this “vertical” plane and by
σh the reflection with respect to the “horizontal” plane Oxy.
Additional symmetry planes, traditionally denoted by σd , are
obtained by rotating σv by an angle π/n around Oz.

The most fundamental family is that of cyclic groups Cn.
The group Cn is generated by the rotation rn; i.e., its elements
are the rk

n with 0 � k � n − 1. The other groups can be
described as follows (see, e.g., [34]): Cnh, generated by rn

and σh; Cnv , generated by rn and σv for odd n and by rn, σv ,
and σd for even n; S2n, generated by the product r2nσh; Dn,
dihedral group, generated by rn and by a rotation of angle π

around the x axis which can be expressed as the product σhσv;
Dnh, generated by Dn and σh; Dnd , generated by Dn and S2n,
or equivalently, by r2nσh and σv .

A given symmetry of the Majorana points of the state (5)
reflects on its Dicke coefficients dk ∈ C. We first determine the
consequences of a symmetry on the roots zk of the polynomial
(27). We recall that the mapping between the complex plane
and the Bloch sphere is chosen as z = cot(θ/2)e−iϕ . If the
Majorana representation of a state is invariant under a symme-
try, then the product znS

∏N−nN −nS

k=1 (z − zk) in (27) must be left
unchanged, and thus the polynomial (26) remains unchanged
up to a multiplicative constant. This induces relations between
the Dicke coefficients.

A rotation rn transforms z into z exp(−2iπ/n). Points at
the poles are not affected by a rotation rn. If a configuration of
points is invariant under rn, then

N−nN −nS∏
k=1

(z − zk) =
N−nN −nS∏

k=1

(z − zke
−2iπ/n)

= e− 2iπ
n

(N−nN −nS )
N−nN −nS∏

k=1

(
ze

2iπ
n − zk

)
.

(28)

From Eq. (27) we then get

P (z) = e− 2iπ
n

(N−nN )P
(
ze

2iπ
n

)
. (29)

Using the expansion Eq. (26) and identifying the coefficients
in the polynomials on both sides of Eq. (29) we get that for all
k with nS � k � N − nN

dk = e− 2iπ
n

(N−nN −k)dk, (30)

unless k = N − nN + qn. In particular, for all k, we have
that dk = 0 unless k = nN + qn with q ∈ N. Because of the
symmetry, N − nN − nS has to be a multiple of n, so that the
latter condition is equivalent to k = nS (mod n).

A similar approach can be followed for all other symmetry
operations (see the Appendix). The results are summarized in
Table I.
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TABLE I. Constraints on the Dicke coefficients of a state |ψS〉
invariant under a certain symmetry operation on its Majorana points.

Symmetry operation Constraints on Dicke coefficients

rn dk = 0 ∀ k 	= nS(mod n)

σh nN = nS, and ∃ ξ ∈ R :
dN−k = eiξ d∗

k ∀ k

σv dk ∈ R ∀ k

σd dk = ±|dk|e ikπ
2n ∀ k

σhσv dN−k = dk ∀ k, or
dN−k = −dk ∀ k

sn nN = nS, and ∃ ξ ∈ R :
dk = 0 ∀ k 	= nS(mod n)

dN−k = (−1)qeiξ d∗
k otherwise

D. Canonical form of point-group-symmetric states

From the results of Table I, we obtain a canonical form
for the Dicke coefficients of a state whose Majorana points
display a certain symmetry. That is, all states with point-group-
symmetric Majorana point arrangements can be brought to one
of the forms (31)–(40), depending on the symmetry.

1. Cyclic groups

A state with Cn symmetry is characterized by an arrange-
ment of Majorana points invariant under rn. From Table I, we
obtain for the vector of Dicke coefficients (d0,d1, . . . ,dN ) the
canonical form

dCn
= (0nS

,dnS
,0n−1,dnS+n,0n−1,dnS+2n, . . . ,0nN

)
, (31)

where 0m stands for a string of m zeros. The consequences
of this symmetry are particularly interesting. Indeed, due to
the particular form of the Dicke coefficients in Eq. (31), the
t-qubit reduced density matrix is a diagonal matrix for t < n

since all off-diagonal conditions (17) are satisfied. As all the
symmetry groups described in Sec. III C have Cn as a subgroup,
t-anticoherence with t < n for point-group-symmetric states
only requires the additional diagonal conditions (16) for
q = 0, . . . ,t .

For a state with Cnh symmetry, the arrangement of points
is additionally invariant under σh. The form (31) together with
the condition of invariance under σh in Table I leads to the
canonical form

dCnh
= (0nS

,dnS
,0n−1,dnS+n,0n−1,dnS+2n, . . .

. . . ,0n−1,d
∗
nS+ne

iξ ,0n−1,d
∗
nS

eiξ ,0nS

)
, (32)

with ξ ∈ R. For n � 2, states of the form (32) satisfy Eqs. (18)
and (19) and are thus all 1-anticoherent.

For a state with Cnv symmetry, the conditions of invariance
under σv given in Table I and the form (31) lead to the canonical
form

dCnv
= (0nS

,dnS
,0n−1,dnS+n,

0n−1,dnS+2n, . . . ,0nN

)
, dk ∈ R. (33)

2. Rotation-reflection group

As Cn is a subgroup of S2n, any state with Majorana points
displaying S2n symmetry is of the form (31). The more general
condition is that of invariance under sn, which can be expressed
as nS = nN , N = 2nS + mn with m even (for odd m, there is
no way to achieve S2n symmetry); see Table I. The canonical
form is thus

dS2n
= (0nS

,dnS
,0n−1,dnS+n,0n−1,dnS+2n, . . .

. . . ,0n−1, − d∗
nS+ne

iξ ,0n−1,d
∗
nS

eiξ ,0nS

)
, (34)

with ξ ∈ R. For n � 2, states of the form (34) satisfy Eqs. (18)
and (19) and are thus all 1-anticoherent.

3. Dihedral groups

Because Cn is a subgroup of Dn, the Dicke coefficients of
a configuration with symmetry group Dn are of the form (31),
with the additional invariance under σhσv given in Table I.
These conditions give the canonical forms

dDn
= (0nS

,dnS
,0n−1,dnS+n,0n−1,dnS+2n, . . .

. . . ,dnS+2n,0n−1,dnS+n,0n−1,dnS
,0nS

)
(35)

or

dDn
= (0nS

,dnS
,0n−1,dnS+n,0n−1,dnS+2n, . . .

. . . , − dnS+2n,0n−1, − dnS+n,0n−1, − dnS
,0nS

)
. (36)

For n � 2, states of the form (36) satisfy Eqs. (18) and (19)
and are thus all 1-anticoherent.

The Dnh symmetry additionally imposes invariance under
σh given in Table I, which leads to the canonical forms

dDnh
= (0nS

,dnS
,0n−1,dnS+n,0n−1,dnS+2n, . . .

. . . ,dnS+2n,0n−1,dnS+n,0n−1,dnS
,0nS

)
, dk ∈ R,

(37)

or

dDnh
= (0nS

,dnS
,0n−1,dnS+n,0n−1,dnS+2n, . . . ,

− dnS+2n,0n−1, − dnS+n,0n−1, − dnS
,0nS

)
, dk ∈ R.

(38)

The 5-anticoherent states that will be given in Eq. (51) are
examples of states displaying Dnh symmetry.

The Dnd symmetry imposes the form (34) together with the
invariance under σd given in Table I, which implies the general
condition that the dk be real and dN−k = (−1)qdk for indices
k = nS + qn, that is, the forms

dDnd
= (0nS

,dnS
,0n−1,dnS+n,0n−1,dnS+2n, . . . ,dnS+2n,

0n−1, − dnS+n,0n−1,dnS
,0nS

)
, dk ∈ R, (39)

or

dDnd
= (0nS

,dnS
,0n−1,dnS+n,0n−1,dnS+2n, . . . ,

− dnS+2n,0n−1,dnS+n,0n−1, − dnS
,0nS

)
, dk ∈ R.

(40)

The 7-anticoherent state presented in Fig. 5 is an example of a
state displaying D7d symmetry.
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To summarize, Cn-symmetric states, all have a diagonal t-
qubit reduced density matrix for t < n, but are not necessarily
1-anticoherent, whereas Cnh-, S2n-, and Dn-symmetric states
are always a least 1-anticoherent. This includes states with
Majorana points invariant under inversion (which transforms
a point into its symmetric with respect to the center of the
sphere), which corresponds to the symmetry group S2.

IV. ANTICOHERENT STATES IN SLOCC CLASSES

Local unitaries are a special case of more general transfor-
mations used in the context of quantum information theory,
namely stochastic local operation with classical communi-
cation (SLOCC). By definition, two states |�〉 and |�〉 are
equivalent under SLOCC if there exists a local protocol with
classical communication which transforms one state into the
other with a finite probability of success. Mathematically, this
corresponds to the requirement that these two states can be
related by an invertible local operation (ILO) A1 ⊗ · · · ⊗ AN

with Ak invertible operators [35]. This defines an equivalence
relation which partitions the Hilbert space into different
SLOCC classes. For symmetric states, the Ak can be chosen
equal [36], so that two symmetric states |�S〉 and |�S〉 belong
to the same SLOCC class if and only if there exists an invertible
operator A acting on a single qubit such that |�S〉 = A⊗N |�S〉.
Each SLOCC class contains, at most, one state (up to LU) with
a maximally mixed one-qubit reduced density matrix [37].
Thus, each SLOCC class contains, at most, one anticoherent
state. The unicity (up to LU) of 1-anticoherent states within
their SLOCC class makes them natural representatives of
SLOCC classes [21]. As a corollary, it follows that two
anticoherent states which are not LU-equivalent necessarily
belong to different SLOCC classes. Moreover, the union of
SLOCC classes containing a 1-anticoherent state is dense in
Hilbert space [21].

The various SLOCC classes of symmetric states can be
gathered into families denoted by Dm1,m2,...,md

[38], which are
defined by their diversity degree d (the number of distinct
Majorana points on the Bloch sphere), and by their degen-
eracy configuration m1,m2, . . . ,md (the degeneracy of each
Majorana points). For instance, the family D1,1,...,1 contains
SLOCC classes with states such that all Majorana points are
nondegenerate and the family DN contains a single SLOCC
class (that of separable symmetric states). All families with a
diversity degree d � 3 contain a single SLOCC class, since any
set of three distinct points can be transformed into any other
set of three distinct points by SLOCC transformation [11,38].

A. Cn symmetry, 1-anticoherence, and SLOCC classes

We now provide a way of finding, given a Cn-symmetric
state, its SLOCC-equivalent 1-anticoherent state (when it
exists). Our result provides a clear link between symmetry
and entanglement classes. We show that any SLOCC class
belonging to a family Dm1,m2,...,md

with all mk < N/2 and
containing states with Cn symmetry possesses a 1-anticoherent
state of Cn symmetry. Moreover, any SLOCC class belonging
to a family with at least one mk � N/2 (k = 1, . . . ,d) does not
contain any anticoherent state, except for the family DN/2,N/2,
for which |D(N/2)

N 〉 is 1-anticoherent (but not 2-anticoherent)

[17]. This statement has the following corollary: If a SLOCC
class contains a 1-anticoherent state which does not display Cn

symmetry, then the class does not contain any state displaying
Cn symmetry (as anticoherent states are unique up to LU within
their SLOCC class). Note that the possibility of a connection
between symmetry and types of entanglement has been pointed
out in [12].

A state displaying Cn symmetry can always be brought by
LU to the canonical form (31). This state can be converted
via a diagonal ILO A⊗N with A = diag(y,1) to a SLOCC-
equivalent state

d̃Cn
=N

(
0nS

,dnS
,0n−1,dnS+n y

n
2 , 0n−1,dnS+2n yn, . . . ,0nN

)
(41)

with the same Cn symmetry (throughout this work, N will
denote a normalization constant). The state (41) can at least
be made 1-anticoherent. It suffices to take y equal to the only
strictly positive root of the polynomial

N∑
k=0

(N − 2k)|dk|2 yk. (42)

The existence and unicity of the root follows from Descartes’
rule of signs: If the degeneracy of Majorana points is smaller
than N/2, we are ensured that at least one dk and one dk+N/2

for k = 0, . . . ,N/2 are nonzero, so that there is exactly one
change of sign in the coefficients of the polynomial (42).

Thus, from any Cn-symmetric state belonging to a
family Dm1,m2,...,md

with all mk < N/2, our procedure al-
lows us to construct the SLOCC-equivalent Cn-symmetric
1-anticoherent state. This is particularly useful since 1-
anticoherence is a requirement for t-anticoherence. Moreover,
it provides a practical way of determining whether two states
displaying cyclic symmetries in their Majorana points (with
degeneracies mk < N/2) belong to the same SLOCC class. It
suffices to determine the point arrangements of their SLOCC-
equivalent anticoherent states (41) and check whether they are
identical up to rigid rotation of the sphere.

B. Illustrations

1. Case N � 4

All anticoherent states of up to N = 4 qubits have been
identified in [17]. Remarkably, they all display Cn symmetry,
and coincide with anticoherent states found using the method
presented in the preceding section. For 2 and 3 qubits, the only
1-anticoherent states (up to LU) are the C2-symmetric Bell
state dC2 = 1√

2
(1,0,1) and the C3-symmetric GHZ state dC3 =

1√
2
(1,0,0,1). The case of four qubits is more interesting as there

is an infinite number of SLOCC-inequivalent 1-anticoherent
states of the form dC2 = N (1,0,τ,0,1), with τ ∈ C [17]. Their
Majorana representation displays a dihedral D2 symmetry. Our
method allows us to recover these states starting from the
general form (31) of a four-qubit C2-symmetric state, dC2 =
N (1,0,μ,0,ν) with ν > 0 [39], and then using the SLOCC-
equivalent state (41), with y = 1/

√
ν the only positive root of

the polynomial (42).
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FIG. 2. (Color online) Majorana representation of five-qubit 1-anticoherent states displaying Cn symmetry. The small and large points on
the spheres correspond to nondegenerate and twice-degenerate Majorana points, respectively. The corresponding states are those given in the
main text (see Sec. IV B 2).

2. Case N = 5

We consider here exhaustively the case of five-qubit states
with any possible Cn symmetry. As discussed in Sec. IV A,
classes belonging to families characterized by points with
multiplicity m � N/2 do not contain any anticoherent states.
On the other hand, all other classes belonging to the three
families D1,1,1,1,1, D2,1,1,1, and D2,2,1 and containing Cn-
symmetric states have exactly one (up to LU) anticoherent
state. We now consider all SLOCC classes containing a
Cn-symmetric state for some order n and explicitly construct
the related 1-anticoherent state. It can be checked that none of
these states is 2-anticoherent.

C2 symmetry. If the C2-symmetric state belongs to the
family D1,1,1,1,1, all points are nondegenerate, which implies,
in particular, that exactly one point must lie at a pole in order
to fulfill the symmetry requirement. If we choose this point to
lie at the north pole, Eq. (31) reduces to

dC2 = N (1,0,μ,0,ν,0), (43)

where μ > 0 and ν ∈ C [39]. From Eq. (41) the 1-anticoherent
state which is SLOCC-equivalent to (43) is of the form

dC2 = N (1,0,μ y,0,ν y2,0), (44)

with

y = 1√
6|ν|

√
μ2 +

√
μ4 + 60|ν|2 (45)

the only positive root of the polynomial (42). The Majorana
representation of this state is shown in Fig. 2 for μ = 2 and
ν = 10 i.

The most general state with symmetry C2 in the family
D2,1,1,1 takes (up to LU) the form d = N (0,0,1,0,μ,0) with
μ � 0, as the degenerate point is necessarily at a pole, which
can be chosen as the south pole. As follows from Eq. (41)
with y = 1/(

√
3μ) the positive root of Eq. (42), it can be

brought to the 1-anticoherent state dC2 = (0,0,
√

3,0,1,0)/2,
whose Majorana representation is shown in Fig. 2. Thus, states
with C2 symmetry in the family D2,1,1,1 all belong to the same
SLOCC class.

The family D2,2,1 contains states which have five Majorana
points, two of which are doubly degenerate, leaving only three
distinct points. Therefore, there is only one SLOCC class in
the family D2,2,1 (see Sec. IV), which contains (up to LU)
a 1-anticoherent state displaying C2 symmetry, namely dC2 =
N (1,0,μ,0,ν,0), with μ =

√
2

15 (1 + 2
√

19) and ν = 1
15 (

√
5 +

2
√

95). Indeed, it is easy to check that this state is of the form
(31) and verifies Eqs. (18) and (19) (see Fig. 2).

C3 symmetry. For the family D2,2,1, there is no way to sat-
isfy the C3 symmetry. Any C3-symmetric state belonging to the
family D1,1,1,1,1 has to be of the form dC3 = N (0,1,0,0,μ,0),
with one point at the north pole and one point at the south
pole. Using Eq. (41), the SLOCC-equivalent 1-anticoherent
state is given by dC3 = 1√

2
(0,1,0,0,1,0), actually displaying

D3h symmetry by virtue of Eq. (37) (see Fig. 2).
Similarly, one can show that C3-symmetric states belonging

to the family D2,1,1,1 are SLOCC equivalent to the 1-
anticoherent state dC3 = 1√

6
(1,0,0,

√
5,0,0) (see Fig. 2).

C4 symmetry. The only family with states having C4

symmetry is D1,1,1,1,1 and their most general canonical
form reads dC4 = N (1,0,0,0,μ,0), which can be brought by
SLOCC to the 1-anticoherent state dC4 = 1√

8
(
√

3,0,0,0,
√

5,0)
(see Fig. 2).

C5 symmetry. The only family with states having C5

symmetry is D1,1,1,1,1 and their most general canonical
form reads dC5 = N (1,0,0,0,0,μ), which can be brought by
SLOCC to the 1-anticoherent state dC5 = 1√

2
(1,0,0,0,0,1),

actually displaying D5h symmetry as follows from Eq. (37)
(see Fig. 2).

3. Example for N = 6

The case of six qubits can be treated in the same way as the
five-qubit case. As for N = 5, families with fourfold or higher
degeneracy of Majorana points do not contain any anticoherent
state. Family D3,3 contains a single SLOCC class, in which
|D(3)

6 〉 is the only (up to LU) 1-anticoherent state. All other
classes containing a Cn-symmetric state, belonging to the four
families D1,1,1,1,1,1, D2,1,1,1,1, D2,2,1,1, and D2,2,2, each contain
a unique (up to LU) 1-anticoherent state. Moreover, for N = 6,
it is possible to find higher-order anticoherent states, as we now
show as an example.

C3 symmetry. We consider a state of the form dC3 =
N (1,0,0,μ,0,0,ν) which is SLOCC-equivalent to the 1-
anticoherent state dC3 = N (1,0,0,μ y3/2,0,0,ν y3), with y =
1/|ν|1/3. For the state to be 2-anticoherent, it must additionally

verify Eq. (20), i.e., μ =
√

5
2 |ν|, which leads to

dC3 = 1
3 (

√
2,0,0,

√
5,0,0,

√
2 eiϕν ). (46)

The only parameter left is ϕν , resulting in a one-parameter
family of SLOCC-inequivalent 2-anticoherent states
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(the SLOCC-inequivalence is a consequence of the
LU-inequivalence which can be checked from the relative
positions of the Majorana points). Among these states, the
one with ϕν = π is the only 3-anticoherent state [it verifies
the additional off-diagonal conditions (17) for t = 3]. It
corresponds to an octahedral arrangement of Majorana points.

C4 symmetry. A C4-symmetric state of six qubits can
be constructed by putting one Majorana point at the north
pole and another at the south pole. The Dicke coefficients
are then of the form dC4 = N (0,1,0,0,0,μ,0), with μ > 0.
This state is SLOCC equivalent to the 1-anticoherent state
dC4 = 1√

2
(0,1,0,0,0,1,0) [obtained by using y = 1/

√
μ the

positive root of Eq. (42)]. This state is 3-anticoherent, as can
be easily checked through Eqs. (16) and (17). It corresponds to
an octahedral arrangement of Majorana points and is thus LU
equivalent to state (46), with ϕν = π . Note that this state has
both C3 and C4 symmetry and coincides with both the most
quantum spin-3 state [40] and the most entangled six-qubit
symmetric state with respect to the geometric measure of
entanglement [10].

V. INFINITE FAMILIES OF HIGHER-ORDER
ANTICOHERENT STATES WITH Cn SYMMETRY

A natural question is to ask whether there exist t-
anticoherent states for arbitrary number of qubits N and order
t . For larger numbers of qubits, it becomes difficult to find
analytical solutions to Eqs. (16) and (17). It is, however,
possible to construct infinite families of anticoherent states.
An example was already given in Sec. III A. Another family
of 1-anticoherent states was proposed in [17] and reads

1√
2N − 2

(√
N − 2

∣∣D(0)
N

〉+ √
N
∣∣D(N−1)

N

〉)
. (47)

A family of 2-anticoherent states was proposed in [16] for even
N with N � 6,√

N + 2

6N

(∣∣D(0)
N

〉+ 2

√
N − 1

N + 2

∣∣D(N/2)
N

〉+ ∣∣D(N)
N

〉)
. (48)

The states (48) are, in fact, 3-anticoherent for N � 8, as can
be checked from Eq. (16), given that Eq. (12) for r 	= 0 is
automatically satisfied because of the CN/2 symmetry.

We now present a systematic method which allows us, for
a given order t of anticoherence, to find N -qubit anticoherent
states displaying Cn symmetry with n > t when they exist.
As shown in Sec. III D, Cn symmetry ensures that the off-
diagonal equations (17) are satisfied for t < n. The remaining

set of diagonal equations (16) can be reformulated as a linear
system of equations in the variables |dk|2 with an additional
positivity constraint on the solutions. Such a system can be
solved analytically using linear programming.

More specifically, for an N -qubit state with Cn symmetry,
the (normalized) vector of Dicke coefficients takes the form
(31). Equation (16) becomes

r∑
k=0

(
N

2
− k n − nS

)q

|dnS+k n|2 = A(q), (49)

where r = (N − nS − nN )/n is the number of free Dicke
coefficients, nS and nN are the number of points at the south
and north poles, respectively, and A(q) is given by Eq. (11).
By setting xk ≡ |dnS+k n|2 and uk = N

2 − k n − nS , the set of
equations becomes⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1
u0 u1 · · · ur−1 ur

u2
0 u2

1 u2
r−1 u2

r

...
...

. . .
...

...

ut−1
0 ut−1

1 · · · ut−1
r−1 ut−1

r

ut
0 ut

1 · · · ut
r−1 ut

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

...
xr−1

xr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(0)
A(1)
A(2)

...
A(t−1)
A(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(50)
with xk � 0. This system of t + 1 equations and r + 1
unknowns can be solved with linear programming, which
guarantees to either find an analytic expression of a feasible
solution or prove that there is no solution.

For fixed order of anticoherence t = 1, . . . ,20, we applied
this method systematically for each N = 1, . . . ,500, with all
possible numbers of points nS and nN at the poles, and for
all values of n such that t + 1 � n � N and r = (N − nS −
nN )/n be an integer. For a fixed order of anticoherence t ,
we found that a positive solution to Eq. (50) exists only for N

larger than a certain value Nt . Examples of states with N = Nt

are represented in Fig. 3 for t = 2, . . . ,7 through their Husimi
function, showing that it becomes more and more uniform as
t increases.

Figure 4 displays all pairs (t,N ) for which t-anticoherent
states of N qubits with Cn symmetry, n > t , are found to exist.
As mentioned, no t-anticoherent states are found whenever N

is smaller than the threshold value Nt . As the figure indicates,
the value of Nt goes as t2; this is to be expected since an
N -qubit state has N + 1 complex Dicke coefficients, which
have to satisfy (t + 1)2 − 1 conditions for t-anticoherence.
Above this minimal value Nt , t-anticoherent states can be
found for almost all values of N . We stress that the bound

FIG. 3. (Color online) Husimi function of Cn-symmetric states corresponding to the smallest possible number Nt of qubits for order of
anticoherence t = 2, . . . ,7, with n > t . From left to right: 2-anticoherent state of 4 qubits (tetrahedron, C3 symmetry), 3-anticoherent state
of 6 qubits (octahedron, C4 symmetry), 4-anticoherent state of 12 qubits (C5 symmetry), 5-anticoherent state of 24 qubits (C6 symmetry),
6-anticoherent state of 42 qubits (C7 symmetry), 7-anticoherent state of 75 qubits (C8 symmetry).
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FIG. 4. (Color online) Each bar corresponds to a couple (t,N )
for which a Cn-symmetric N -qubit t-anticoherent state with t < n

exists. In particular, the minimum number of qubits Nt for which
such a state exists is given by the position of the first bar on each line.
This value Nt is well fitted by Nt = t(at + b), with a = 1.52 and
b = −3.93 (dashed line). Color (grayness) represents the number
r = (N − nS − nN )/n of free Dicke coefficients (all others being
zero) on which the linear optimisation is realized.

Nt is for states with Cn symmetry such that n > t , ensuring
that Eqs. (12) for r 	= 0 are trivially satisfied. These equations
may, however, be satisfied in a nontrivial way when n � t .
For instance, for t = 7 we found a 42-qubit state with D7d

symmetry, displayed in Fig. 5.
This approach enables us to identify infinite families of

t-anticoherent states for higher values of t . For instance, a
solution to (50) for t = 5 and N = 4(m + 1) with integer m �
5 is given by the Dm+1,h-symmetric states

dDm+1,h
= N (d0,0m,dN/4,0m,dN/2,0m,d3N/4,0m,dN ), (51)

with

d0 = dN =
√

(2 + N )(4 + N )(7N − 4),

dN/4 = d3N/4 = 4
√

2
√

(N − 2)(N − 1)(N + 2),

dN/2 = 2
√

3
√

(N − 1)(N2 + 16).
(52)

We identified similar families for higher values of t .

FIG. 5. (Color online) Husimi function of the 42-qubit
7-anticoherent state |ψS〉=(

√
7062|D(0)

42 〉+√
29315|D(7)

42 〉+3
√

451
|D(14)

42 〉 + √
36777|D(21)

42 〉−3
√

451|D(28)
42 〉+√

29315|D(35)
42 〉−√

7062
|D(42)

42 〉)/343. This state displays D7d symmetry; hence, n = t = 7.

VI. ANTICOHERENCE AT ALL ORDERS

It is, in fact, possible, using the approach presented
in this paper, to prove the existence of t-anticoherent
states for arbitrary t . As we show here, one can con-
struct t-anticoherent states with at most t + 1 nonzero
components. Let us consider a quantum state whose Dicke
coefficients are zero for k 	= ki,0 � i � t . We set xi =
|dki

|2, so that the vector of Dicke coefficients takes the
form (0, . . . ,0,x0,0, . . . ,0,x1,0, . . . ,0,xt ,0, . . . ,0). The off-
diagonal equations (17) are fulfilled as soon as there are
t or more zeros between each xi . Defining the functions
gq(u) = ( 1

2 − u)q , we can rewrite Eq. (16) as

t∑
i=0

xi gq

(
ki

N

)
= 1

N + 1

N∑
k=0

gq

(
k

N

)
. (53)

We want to find values of ki and xi > 0 such that (53) holds,
that is, sample points ki and positive weights xi such that
the sum on the right-hand side, which runs from k = 0 to N ,
can be evaluated by calculating the function gq at only t + 1
points. As the right-hand side of Eq. (53) is a Riemann sum,
which converges to the integral of gq over [0,1] at large N , the
problem almost appears like a quadrature problem.

The well-known Gauss-Legendre integration method [41]
states that the integral of an arbitrary function g which is
continuous over [−1,1] can be approximated by evaluating g at
a finite number of points with a certain weight. The quadrature
at order t reads

t∑
i=0

wi g(ui) ≈
∫ 1

−1
g(u)du, (54)

where the ui , 0 � i � t , are the t + 1 roots of the Legendre
polynomial Pt+1(u), and weights are given by

wi = 2

(t + 1)P ′
t+1(ui)Pt (ui)

. (55)

The Gauss-Legendre quadrature has the property that the
approximation (54) becomes an exact equality when g is a
polynomial of degree � 2t + 1. For functions defined over
[0,1] and for polynomials gq defined above, which are of
degree less than t , the quadrature can be expressed, after a
simple change of variables, as

t∑
i=0

wi

2
gq

(
1 + ui

2

)
=
∫ 1

0
gq(u)du. (56)

As the weights (55) are such that
∑t

i=0 wi = 2, the weights
wi/2 in (56) sum up to 1. The right-hand side of Eq. (56) is
exactly the N → ∞ limit of the right-hand side of Eq. (53).
Thus, choosing ki/N as close as possible to the roots (1 +
ui)/2 should make it possible to solve (53).

To prove this, let us rewrite the system of equations (53)
in matrix form. In order to make the N -dependance clear we
denote X(N) = (x0, . . . ,xt ), B(N) = [A(0), . . . ,A(t)]/Nq , and
define the matrix

M
(N)
qi = gq

(
ki

N

)
, 0 � q,i � t. (57)
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Positions ki are chosen as

ki = �N (1 + ui)/2�, 0 � i � t, (58)

with �·� the floor function. Equation (53) reduces
to M (N)X(N) = B(N). Similarly, we can set X(∞) =
(w0/2, . . . ,wt/2),

B(∞) =
(∫ 1

0
g0(u)du, . . . ,

∫ 1

0
gt (u)du

)
, (59)

and

M
(∞)
qi = gq

(
1 + ui

2

)
=
(

− ui

2

)q

, 0 � q,i � t, (60)

so that Eq. (56) for q = 0, . . . ,t can be reexpressed in
matrix form as M (∞)X(∞) = B(∞). The matrix M (∞) is
invertible since it is the Vandermonde matrix of the −ui/2,
which are all distinct, and thus X(∞) = (M (∞))−1B(∞). Since
ki/N → (1 + ui)/2 for N → ∞, we have M (N) → M (∞),
and thus for sufficiently large N , the matrix M (N) is also
invertible (note that the size t + 1 of the matrix is fixed
independently of N ). Thus, for ki given by (58) the system
(53) has a unique solution given by X(N) = (M (N))−1B(N). In
order to solve the diagonal equations (16), it suffices to show
that this solution is such that xi > 0. However, for N → ∞
we have X(N) = (M (N))−1B(N) → (M (∞))−1B(∞) = X(∞), or
equivalently, component by component, xi → wi/2. Since the
weights (55) of the Gauss-Legendre quadrature are all strictly
positive, then for sufficiently large N all xi will be positive.

The off-diagonal equations (17) are fulfilled as soon as
there are t or more zeros between each xi . Since t , and thus the
positions of the zeros of Pt+1(u), are fixed, then for sufficiently
large N , indices defined by (58) will be such that mini |ki+1 −
ki | � t + 1. Thus, a t-anticoherent state exists for any t .

Note that Gauss-Legendre quadrature with t + 1 points
is exact for any polynomial of degree less than or equal to
2t + 1. Thus, the solution we construct is, in fact, (2t + 1)-
anticoherent. This means that we do not need to impose
t + 1 positions: Only half of them would suffice. We can
thus look for a solution with Dnh symmetry, i.e., such that
the ki verify ki = kt−i and xi = xt−i . Since the equations for
odd q are automatically fulfilled, there remains a set of (for t

even) t/2 + 1 equations and t/2 + 1 variables x0, . . . ,xt/2. The
systems then corresponds to a quadrature to order t/2, which
is exact for polynomials up to degree t + 1. It is thus possible
to obtain Dnh-symmetric t-anticoherent states for any t .

The proof above only states the existence of some
N sufficiently large such that a t-anticoherent state ex-
ists. We were able to find solutions using N = t(t +
1)(t + 2)/6 up to t = 120. More specifically, using lin-
ear programming, we looked for solutions of the form
(0, . . . ,0,x0,0, . . . ,0,x1,0, . . . ,0,xt ,0, . . . ,0) with xi = xt−i

and ki = kt−i , taking ki as in (58) for 0 � i � t/2. We checked
that for t � 30 the conditions mini |ki+1 − ki | � t + 1 [and
thus the off-diagonal equations (17)] are always fulfilled; for
even t up to t = 120, linear programming found an analytical
solution satisfying all diagonal equations for q = 0, . . . ,t .

VII. CONCLUSION

In this paper, the problem of identifying t-anticoherent
states of a spin-j system (or equivalently 2j -qubit
permutation-symmetric states with maximally mixed t-qubit
reductions in the symmetric subspace) has been tackled from
a geometric point of view. We have provided three different
characterizations of t-anticoherence. A first one is given in
terms of a finite number of expectation values of spin operators
and is independent of any basis, a second one in terms of Dicke
coefficients taking the form of a set of t(t + 2) real equations,
and a third one in terms of spherical multipole moments of the
Husimi and Glauber-Sudarshan functions. Using the Majorana
representation of a spin-j state in terms of points on the sphere,
we analyzed the consequence of a point-group symmetry of
the Majorana points on the coefficients of the quantum state,
for the seven infinite families of point-group symmetries. Our
results are summarized in Table I. A consequence is that
states with Cnh, S2n, or Dn symmetry are always at least
1-anticoherent, in contrast to Cn-symmetric states which are
not necessarily 1-anticoherent. However, we were able to
show that any SLOCC class containing Cn-symmetric states
does contain a Cn-symmetric anticoherent state (provided the
maximal degeneracy of its Majorana points is not too high).
Because a SLOCC class contains, at most, one anticoherent
state (up to LU), our results provide a clear link between
symmetry and SLOCC classes. This approach allowed us
to identify all anticoherent states with Cn symmetry for
N = 5 qubits and to construct families of Cn-symmetric states
with higher order of anticoherence. We discussed a method
based on linear programming allowing us to obtain N -qubit
Cn-symmetric t-anticoherent states with t < n, when they
exist. Finally, we constructed explicitly t-anticoherent states
with arbitrary order t , proving that such states exist at all order.
Note that our results about anticoherence of spin states are of
interest in the context of quantum information as the states we
identified are maximally entanglement symmetric states with
respect to the entanglement entropy.
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APPENDIX: CONSEQUENCES OF SYMMETRIES
OF THE SET OF MAJORANA POINTS

ON THE DICKE COEFFICIENTS

Reflection σh

The reflection σh transforms z into 1/z∗ and exchanges
the north and south poles, so that a configuration of points
invariant under σh must be such that nN = nS and

N−nN −nS∏
k=1

(z − zk) =
N−2nN∏

k=1

(
z − 1

z∗
k

)
. (A1)

We have
N−2nN∏

k=1

(
z − 1

z∗
k

)
= (−z)N−2nN∏N−2nN

k=1 z∗
k

N−2nN∏
k=1

(
1

z
− z∗

k

)
. (A2)
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The coefficient of the lowest-order term in z in Eqs. (26) and
(27) yields (for nS = nN ) the identity

N−2nN∏
k=1

zk = dnN

dN−nN

, (A3)

so that Eq. (A1) can be rewritten as

(−1)N

d∗
nN

zNP ∗
(

1

z

)
= 1

dN−nN

P (z) (A4)

(here P ∗ is the polynomial whose coefficients are the complex
conjugates of those of P ). Identifying the coefficients of
zk in the expansion yields that for all k with nN � k �
N − nN

dN−k = dnN

d∗
N−nN

d∗
k . (A5)

In particular, taking k = nN yields |dN−nN
|2 = |dnN

|2. If we
let dN−nN

/d∗
nN

= exp(iξ ), then dN−k = eiξ d∗
k . The condition

of invariance under σh is thus that nN = nS and that there
exists ξ ∈ R such that dN−k = eiξ d∗

k ∀ k.

a. Reflection σv

The reflection σv transforms z into z∗. A configuration of
points invariant under σv must be such that

N−nN −nS∏
k=1

(z − zk) =
N−nN −nS∏

k=1

(z − z∗
k). (A6)

Following the same lines as above, this yields the condition

1

d∗
N−nN

P ∗(z) = 1

dN−nN

P (z), (A7)

which by identification of the coefficients gives that there
exists ξ ∈ R such that for all k with nS � k � N − nN one has
d∗

k = exp(iξ )dk . In particular, this implies (iterating twice the
condition) that ξ = 0 or π , independently of k. One can further
remove the overall sign of the dk , leading to the conditions
given in Table I.

b. Reflection σd

The reflection σd transforms z into z∗ exp(−iπ/n). Equa-
tion (29) becomes

P (z) = e− iπ
n

(N−nN ) dN−nN

d∗
N−nN

P ∗(ze iπ
n

)
(A8)

so that

dk = e− iπ
n

(N−nN −k) dN−nN

d∗
N−nN

d∗
k (A9)

for all k with nS � k � N − nN . If we let e− iπ
n

(N−nN )dN−nN
/

d∗
N−nN

= eiξ , then Eq. (A9) yields

dk = eiξ e
ikπ
n d∗

k . (A10)

This imposes for the phase θk of dk that θk = ξ/2 + kπ/n +
qkπ for some integer qk . Removing the overall constant phase,
the dk can be taken as

dk = ±|dk|e ikπ
2n . (A11)

c. Rotation σhσv

This is a rotation of π around the x axis. It transforms z

into 1/z. Invariance under σhσv implies that nN = nS and

N−nN −nS∏
k=1

(z − zk) =
N−2nN∏

k=1

(
z − 1

zk

)
. (A12)

Following the same steps as for σh, we get the condition

dN−k = dnN

dN−nN

dk (A13)

for all k with nN � k � N − nN . Taking this expression at k =
nN we have d2

nN
= d2

N−nN
, so that dnN

/dN−nN
= ±1, leading

to the conditions given in Table I.

d. Transformation sn = r2nσh

Such an operation transforms z into 1
z∗ exp (−iπ/n). A

configuration of points invariant under sn must be such that
nN = nS and

N−nN −nS∏
k=1

(z − zk) =
N−nN −nS∏

k=1

(
z − 1

z∗
k

e−iπ/n

)
. (A14)

The identity that corresponds to this case can be derived as
above and gives, for all k, nN � k � N − nN ,

dN−k = dnN

d∗
N−nN

d∗
k eiπ(N−k−nN )/n. (A15)

Applying this condition to k = nN , we get that N − 2nN = 0
mod n. Iterating twice condition (A15) we get that dk = 0
unless k = nN mod n, which is the condition of invariance
under rn. This is to be expected as one has precisely s2

n = rn.
If k = nN + qn for some integer n, and if we let dN−nN

/d∗
nN

=
exp(iξ ), then (A15) becomes dN−k = (−1)q exp(iξ )d∗

k .
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