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The quantum theory of the cold-atom micromaser including the effects of gravity is considered. We show
that gravity does not break the special properties of the induced emission probability for the micromaser in the
cold atom regime and rather new effects are predicted. In particular, we show that the cavity acts in the gravity
field as an additional repulsive and attractive potential, resulting in quasibound states of the atomic motion.
This feature gives rise to fine resonances in the induced emission probability that are not restricted to any
particular cavity mode function, in contrast to the usual cold-atom micromaser. It is also shown that the atom
is able to emit a photon inside the cavity, though classically it does not reach the interaction region. Predictions
about the photon number statistics when the cavity is pumped by a flux of excited atoms are finally given.
Unusual highly nonclassical “dragon” distributions are still predicted in the vertical geometry.
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I. INTRODUCTION

The coupling of atomic motion and radiation fields is a
central topic in quantum optics. In this last decade, the mi-
crowave amplification via z-motion-induced emission of ra-
diation, referred to as the mazer action �1–4�, has opened a
new chapter of micromaser physics. In this process, cold
atoms are sent unidirectionally through a microwave high-Q
cavity �Fig. 1� and a new type of induced emission inside the
cavity occurs when quantum effects of the atomic motion
dominate. A summary of the studies devoted to this subject
may be found in �5�. In all these previous papers, gravity
effects on the quantized atomic motion are not considered.
However, it has often been argued that the achievement of
the cold atom micromaser regime would be a formidable
experimental task as the atoms in this regime move so slowly
that they start exactly to be extremely sensitive to earth grav-
ity and are expected to fall down before entering or leaving
the cavity region, breaking the unidirectionality of the atomic
trajectories. Gravity action on particles of small velocities is
currently observed in matter wave experiments �6�. Recently,
Nesvizhevsky et al. �7,8� identified the lowest stationary
quantum state of neutrons in the earth’s gravitational field by
measuring the neutron transmission between a horizontal
mirror on the bottom and an absorber or scatterer on top.

A possible way to circumvent the gravity problem for the
mazer action �avoiding working in a reduced gravity envi-
ronment� so as to preserve the unidirectionality of the atomic
trajectories is to consider a vertical geometry where the at-
oms are sent vertically in the direction of the cavity, similarly
to cavity QED experiments reported in �9–16�. This paper is
devoted to establish the quantum theory of the mazer action
in this context, taking into account gravity effects on the
vertical quantized atomic motion. We show that gravity does
not break the special properties of the induced emission
probability in the cold atom regime and we predict rather
new effects related to this geometry. The connected problem

of atoms interacting with travelling waves in the gravitation
field was treated recently �17,18�.

The paper is organized as follows. In Sec. II, the Hamil-
tonian modeling the vertical micromaser is presented. The
wave functions of the system are described. The properties of
the induced emission probability are then presented in Sec.
III. The connection with the classical hot atom regime is
discussed. The photon statistics of the vertical micromaser
pumped by a flux of vertical launched atoms is described in
Sec. IV. A brief summary of our results is finally given in
Sec. V.

II. MODEL

A. The Hamiltonian

We consider a two-level atom moving in the gravity field
along the vertical z direction on the way to a cavity which we
define to be located in the range 0�z�L �see Fig. 2�. No
transverse motion is considered. The atom is coupled reso-
nantly to a single mode � of the quantized field present in
the cavity. The atomic center-of-mass motion is described
quantum mechanically and the usual rotating-wave approxi-
mation is made. In the interaction picture, the Hamiltonian
reads

H =
p2

2m
+ mGz + �gu�z��a†� + a�†� , �1�

where p is the atomic center-of-mass momentum along the z
axis, m is the atomic mass, G is the acceleration due to grav-
ity, �= �b��a� ��a� and �b� are, respectively, the upper and
lower levels of the two-level atom�, a and a† are, respec-
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tively, the annihilation and creation operators of the cavity
radiation field, g is the atom-field coupling strength, and u�z�
is the cavity field mode function. We denote in the following
the cavity field eigenstates by �n�, the global state of the
atom-field system at any time t by ���t��, and the classical
height attained by an atom of energy E in the gravity field by

hE �
E

mG
. �2�

B. The wave functions

In the z representation and in the dressed state basis

��n
±� =

1
	2

��a,n� ± �b,n + 1�� , �3�

the global wave function components

�n
±�z,t� = �z,�n

±���t�� �4�

obey the time-dependent Schrödinger equation

i�
�

�t
�n

±�z,t� = 
−
�2

2m

�2

�z2 + mGz + Vn
±�z���n

±�z,t� �5�

with

Vn
±�z� = ± �g	n + 1u�z� . �6�

Each �n
±�z , t� component encounters the potential Vn

±�z�
subject to the external linear gravitational potential mGz �see
Fig. 3�. The atom-field interaction reduces to a scattering
problem in the presence of the gravitational field.

The general solution of Eq. �5� reads

�n
±�z,t� = �

−�

�

cn
±�E�e−iEt/��E,n

± �z�dE �7�

with arbitrary coefficients cn
±�E� and where �E,n

± �z� verify the
time-independent Schrödinger equation

−
�2

2m

d2

dz2 + mGz + Vn
±�z���E,n

± �z� = E�E,n
± �z� . �8�

Introducing, for any length x, the dimensionless variable

x̃ � 	x �9�

with

	 =	3 2m2G
�2 , �10�

Eq. �8� reads

−
d2

dz̃2 + z̃ − h̃E ± h̃intu�z̃���E,n
± �z̃� = 0, �11�

where

hint = hg
	n + 1, �12�

and

hg =
�g

mG
. �13�

For rubidium atoms, the characteristic length 	−1 equals

0.3 
m and, roughly, the dimensionless variable h̃g is nu-
merically equal to the interaction coupling strength g /2�

expressed in kHz. Similarly h̃E and L̃ yield the classical
height hE and the cavity length L, respectively, in thirds of

m.

Outside the cavity where the mode function vanishes �or
can be considered as such�, the wave functions satisfying Eq.
�11� are linear combinations of Airy Ai and Bi functions �19�
and �E,n

± �z� may be strictly generally written

FIG. 2. �Color online� Scheme of the vertical micromaser.

FIG. 3. Schematic representation of the energy E �solid line� of
the atoms launched upwards upon a micromaser cavity of length L.
The cavity containing n photons acts in the gravity linear field mGz
as an additional repulsive potential �dashed� and an attractive one
�dotted�. The picture illustrates the case where the atom-field cou-
pling is contant inside the cavity. Tilted symbols are dimensionless
variables �see Eq. �9��.
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�E,n
± �z� = NE,n

± � �Ai�z̃ − h̃E�
above the cavity,

aE,n
± Ai�z̃ − h̃E� + bE,n

± Bi�z̃ − h̃E�
below the cavity,

�
�14�

where aE,n
± and bE,n

± are two real coefficients unambiguously
determined from the continuity conditions of the wave func-
tion and its first derivative at the lower cavity interface
�where the coupling mode function u�z� starts to be not null�.
NE,n

± is a normalization constant that ensures

�
−�

+�

�E,n
±* �z��E�,n

± �z�dz = �E − E�� . �15�

Using the normalization procedure for the wave functions
belonging to a continuum spectrum �20�, we get straightfor-
wardly

NE,n
± =

N

	aE,n
± 2 + bE,n

± 2
, �16�

with N=	2m /	�2.
In Eq. �14�, the Airy Bi function does not appear above

the cavity as it diverges for z→ +�. It is interesting to write
the wave function �14� in the form

�E,n
± �z� = N ��

�E,n
±−1Ai�z̃ − h̃E�

above the cavity,

e−i�E,n
± Ai�z̃ − h̃E� + i Bi�z̃ − h̃E�

2

+ ei�E,n
± Ai�z̃ − h̃E� − i Bi�z̃ − h̃E�

2

below the cavity,

�
�17�

where

�E,n
± ei�E,n

±
� aE,n

± + ibE,n
± . �18�

Equation �17� underlines that the wave functions �E,n
± �z�

below the cavity consist of an upward and a downward wave
�Ai+ i Bi and Ai− i Bi, respectively�. Indeed, the probability
current densities j= �i� /2m����d /dz��*−�*�d /dz��� associ-
ated to these two waves are respectively given by

j = ±
	�

�m
. �19�

For large negative z̃− h̃E values, these two waves behave
similarly to plane waves with a z dependent wave vector. We
have in this region �19�

Ai�z̃ − h̃E� ± i Bi�z̃ − h̃E� �
e±i�/4

	�

e±ik�z̃��z̃−h̃E�

�h̃E − z̃�1/4
, �20�

with k�z̃�=2/3�h̃E− z̃�1/2.

III. INDUCED EMISSION PROBABILITY

Let us assume that the atom is initially prepared in the
excited state �a� and the cavity contains n photons. The
center-of-mass motion is described by the initial wave packet

��z�. We denote by A±�h̃E� the coefficients of the develop-
ment of ��z� over the two bases ��E,n

± �z��:

��z� =� dh̃EA±�h̃E��E,n
± �z� . �21�

We thus consider the initial state of the system

���0�� =� dz ��z��z,a,n� �22�

or more explicitly

�z���0�� =
1
	2
� dh̃E�A+�h̃E��E,n

+ �z���n
+�

+ A−�h̃E��E,n
− �z���n

−�� . �23�

According to Eq. �7�, the state of the system at any later
time t is given by

�z���t�� =
1
	2
� dh̃Ee−i�h̃E/h̃g�gt�A+�h̃E��E,n

+ �z���n
+�

+ A−�h̃E��E,n
− �z���n

−�� , �24�

that is

�z���t�� =� dh̃Ee−i�h̃E/h̃g�gt

�
1

2
„A+�h̃E��E,n

+ �z� + A−�h̃E��E,n
− �z�…�a,n�

+
1

2
„A+�h̃E��E,n

+ �z� − A−�h̃E��E,n
− �z�…�b,n + 1�� .

�25�

A long time after the atom interacted with the cavity, ac-
cording to Eq. �20�, packets of the wave functions �E,n

± �z�
reduce to packets of the sole downward wave components
Ai− i Bi below the cavity and we obtain

�z���t�� = N� dh̃Ee−i�h̃E/h̃g�gt

�
1

2
„A+�h̃E�ei�E,n

+
+ A−�h̃E�ei�E,n

−
…�a,n�

+
1

2
„A+�h̃E�ei�E,n

+
− A−�h̃E�ei�E,n

−
…�b,n + 1��

�
Ai�z̃ − h̃E� − i Bi�z̃ − h̃E�

2
��− z̃� , �26�

where ��z̃� stands for the Heaviside step function.
It follows that the induced emission probability of a pho-

ton inside the cavity containing initially n photons is given,
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at the end of the atom-cavity interaction, by

Pem�n� =
1

4
� dh̃E�A+�h̃E�ei�E,n

+
− A−�h̃E�ei�E,n

−
�2. �27�

Two limiting cases are particularly relevant from an ex-
perimental point of view �9–16�: the atom is launched from
below upwards to the cavity, or the atom is simply dropped
from above the cavity and passes down through it.

When the atom is launched upwards to the cavity and is
initially described by the wave packet

��z� = N� dh̃EA�h̃E�
Ai�z̃ − h̃E� + i Bi�z̃ − h̃E�

2
��− z̃� ,

�28�

we may write

��z� � � dh̃EA�h̃E�ei�E,n
±

�E,n
± �z� , �29�

provided the atom is launched from sufficiently below the
cavity �this is not a limiting condition as it is always possible
from any starting point to tune the atomic energy compo-
nents to any desired classical height hE, giving rise to a turn-
ing point anywhere below �hE�0�, inside �0�hE�L� or
above the cavity region �hE�L��. Indeed, in this case, only
packets of the upward wave components Ai+ i Bi contribute
initially to the packets of the wave functions �E,n

± �z� �see Eq.
�20��.

We thus have according to Eq. �21�

A±�h̃E� � A�h̃E�ei�E,n
±

, �30�

and the induced emission probability �27� simplifies to

Pem�n� =� dh̃E�A�h̃E��2 sin2��E,n
+ − �E,n

− � . �31�

As �A�h̃E��2 is the probability density of finding initially
the atom in the monoenergetic state

�E,n�z� = N
Ai�z̃ − h̃E� + i Bi�z̃ − h̃E�

2
, �32�

we may interpret the coefficient

Pem
↑ �E,n� � sin2��E,n

+ − �E,n
− � �33�

in Eq. �31� as being the induced emission probability of a
photon inside the cavity containing initially n photons by a
monoenergetic atom of energy E launched upwardly in the
excited state �a�. Equation �33� is relevant for any value of
the atomic energy E.

When the atom is dropped from above the cavity and is
initially described by the free fall wave packet

��z� = N� dh̃EA�h̃E�Ai�z̃ − h̃E� , �34�

we may write

��z� � � dh̃EA�h̃E��E,n
± �E,n

± �z� , �35�

provided the atom is released from far above the cavity
�hE−L�hint�. Otherwise it is straightforward to check �e.g.,
numerically� that packets of �E,n

± �E,n
± �z� diverge significantly

inside and below the cavity compared to the same packets of

pure Ai�z̃− h̃E� functions that remain localized just above the
cavity. These divergences get smeared as the initial wave
packet increases its height above the cavity.

It then follows according to Eq. �21�

A±�h̃E� � A�h̃E��E,n
± , �36�

and the induced emission probability �27� simplifies to

Pem�n� =� dh̃E�A�h̃E��2
1

4
��E,n

+ ei�E,n
+

− �E,n
− ei�E,n

−
�2. �37�

Similarly to Eq. �33�, we may interpret the coefficient

Pem
↓ �E,n� �

1

4
��E,n

+ ei�E,n
+

− �E,n
− ei�E,n

−
�2 �38�

as being the induced emission probability of a photon inside
the cavity containing initially n photons by a monoenergetic
atom of energy E dropped from far above the cavity in the
excited state �a�. For atoms released just above the cavity,
Eqs. �35�–�37� do not hold and no factor can be regarded as
an induced emission probability of a monoenergetic excited
atom. Pem�n� must be computed using the general relation
�27�. Equation �38� is therefore only relevant for values of
the atomic energy E such as hE lies well above the cavity
�hE−L�hint�.

It is important to note that an atom initially in the excited
state �a� and launched upwards from below the cavity will be
found at any later time in a linear combination of the �a� and
�b� states according to Eq. �25�. If the classical turning point
is located just above the cavity, the wave packets of these
two electronic states are never found completely located in
this region and extend significantly inside the cavity. Hence
an atom initially in the excited state �a� located just above the
cavity cannot be seen like an intermediate state of an atom
launched from the bottom in this electronic state. This ex-
plains why the treatments of both cases have not to be simi-
lar. More precisely, an atom initially in the excited state �a�
located just above the cavity will be found to be an interme-
diate state of an atom launched from the bottom in a linear
combination of the two electronic states with wave packets
specific to each of these states. Such a case should be treated
by a relation similar to Eq. �27�, though generalized to any
initial electronic state �as this equation only holds for atoms
initially in the �a� state, see Eq. �22��.

In the special case where the atom-field coupling inside
the cavity is constant along the atom propagation axis �mesa
mode case: u�z�=1 inside the cavity, 0 elsewhere�, the num-
bers �E,n

± and �E,n
± can be calculated analytically and this

yields an explicit expression for the induced emission prob-
abilities Pem

↑ �E ,n� and Pem
↓ �E ,n�. Inside the cavity, the sta-

tionary wave functions �14� read
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�E,n
± �z� = NE,n

±
„pE,n

± Ai�z̃ − h̃E ± h̃int� + qE,n
± Bi�z̃ − h̃E ± h̃int�…

�39�

and the continuity conditions at the cavity interfaces yield

pE,n
± = �Wab

± �− h̃E + L̃� , �40�

qE,n
± = − �Waa

± �− h̃E + L̃� , �41�

aE,n
± = �2�Waa

± �− h̃E + L̃� Wab
± �− h̃E + L̃�

Wba
± �− h̃E� Wbb

± �− h̃E�
� , �42�

bE,n
± = �2� Waa

± �− h̃E� Wab
± �− h̃E�

Waa
± �− h̃E + L̃� Wab

± �− h̃E + L̃�
� , �43�

with

Waa
± �z̃� = W„Ai�z̃�,Ai�z̃ ± h̃int�… , �44�

Wab
± �z̃� = W„Ai�z̃�,Bi�z̃ ± h̃int�… , �45�

Wba
± �z̃� = W„Bi�z̃�,Ai�z̃ ± h̃int�… , �46�

Wbb
± �z̃� = W„Bi�z̃�,Bi�z̃ ± h̃int�… , �47�

where W designates the Wronskian:

W„f�z�,g�z�… � � f�z� g�z�
f��z� g��z�

�, ∀ f�z�,g�z� . �48�

Similarly to the approach used in the description of the
cold atom micromaser in the horizontal configuration �1,2�,
we focus hereafter on the properties of the induced emission
probabilities of a monoenergetic beam �here Pem

↑ �E ,n� and
Pem

↓ �E ,n�� without particularization to any atomic spatial
structure. Pem

↑ �E ,n� is studied depending on whether the
atomic kinetic energy �or the lack of this energy� at the cav-
ity interfaces is much higher than the interaction energy
��hE��hint and �hE−L��hint� or much lower. We call each
case the hot and cold atom regime, respectively. Pem

↓ �E ,n�
being only relevant for �hE−L��hint, it is described in the
sole hot atom regime section and is not concerned with the
cold atom regime.

A. Hot atom regime: Rabi limit

In the hot atom regime, the arguments −h̃E and −h̃E+ L̃ in

Eqs. �40�–�43� are in absolute value much larger than h̃int.
For such large arguments, simplified expressions of the
Wronskians �44�–�47� can be obtained using the asymptotic

expansions of the Airy functions �19�. We have for �z̃�� h̃int,
�z̃��1

Waa
± �− z̃� � �

1

�
sin�h̃intz̃

1/2� , �49�

Wab
± �− z̃� �

1

�
cos�h̃intz̃

1/2� , �50�

Wba
± �− z̃� � −

1

�
cos�h̃intz̃

1/2� , �51�

Wbb
± �− z̃� � �

1

�
sin�h̃intz̃

1/2� , �52�

Waa
± �z̃� � �

1

8�

h̃int

z̃
e−�4/3�z̃3/2

, �53�

Wab
± �z̃� �

1

�
e±h̃intz̃

1/2
, �54�

Wba
± �z̃� � −

1

�
e�h̃intz̃

1/2
, �55�

Wbb
± �z̃� � ±

1

2�

h̃int

z̃
e�4/3�z̃3/2

. �56�

We then find straightforwardly �E,n
± �1 for h̃E� L̃,

�E,n
± ��� h̃int�	h̃E − 	h̃E − L̃� if h̃E � L̃ ,

� h̃int
	h̃E if 0 � h̃E � L̃ ,

� if h̃E � 0,
� �57�

and thus, from Eqs. �33� and �38�,

Pem
↑ �E,n� � �sin2�2h̃int�	h̃E − 	h̃E − L̃�� if h̃E � L̃ ,

sin2�2h̃int
	h̃E� if 0 � h̃E � L̃ ,

0 if h̃E � 0,
�

�58�

and, for h̃E� L̃,

Pem
↓ �E,n� � sin2�h̃int�	h̃E − 	h̃E − L̃�� . �59�

Equations �58� and �59� are nothing else than the well
known Rabi formula

Pem�E,n� = sin2�n�

2
� , �60�

where �n=2g	n+1 and � is the classical transit time of an

atom of energy E through the cavity. For h̃E�0, the atom
launched upwards does not reach the cavity and no induced
emission process occurs �the classical interaction time � is

null�. For 0� h̃E� L̃, the atom turns back inside the cavity
and the interaction time does not depend on the cavity length

L. For h̃E� L̃, the atom launched upwards passes twice in-
side the cavity �upwards and downwards� and the interaction
time is L dependent, while the atom dropped from above
passes only once with half the interaction time, all other
conditions being equivalent.
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We illustrate in Figs. 4�a� and 4�b� the induced emission
probability Pem�Pem

↑ �E ,n� as a function of the cavity length

for h̃E� h̃int, respectively with and without quantization of
the atomic motion �Eqs. �33� and �58�, respectively�. We well
observe that both results are in accordance, except in the

region where L̃� h̃E. In this region, �h̃E− L̃� is not much

greater than h̃int and we are out of the validity domain of the
approximated expression �58�. The small additional oscilla-
tions observed in the induced emission probability curve

where L̃� h̃E are pure quantum effects originating from the
quantization of the atomic motion. These effects arise when
the cavity length matches nearly the classical turning point of
the atom in the gravitational field. In this case, the potential
barrier and well Vn

±�z� play a significant role as the kinetic
energy of the atoms is very small exactly where the potential
energy exhibits strong variations.

B. Cold atom regime

1. Negative energy resonances

In the cold atom regime, the induced emission probability
Pem exhibits a completely different behavior. This is first
illustrated in Figs. 5 and 6 that show Pem as a function of the
total atomic energy and the cavity length, respectively. In
contrast to the hot atom regime governed by a sine behavior
of Pem, fine resonances are presently observed, even in the
negative energy domain �E�0, i.e., hE�0, see Eq. �2��
where classically the atom does not reach the cavity and
cannot therefore emit any photon in there. This pure quantum
effect arises from resonant diffusion processes over quasi-
bound states of the potential Vn

−�z�. Quasibound states are
those states related to unbound potentials containing a local
minimum �like Vn

−�z�, see Fig. 3�. A particle initially confined
in the potential well may remain there for an extremely long
time, before escaping by tunnel effect to the lower potential

FIG. 4. Induced emission probability Pem as a function of the cavity length with �a� and without �b� quantization of the atomic motion

�hot atom regime: h̃E=1000 and h̃int=1�. Tilted variables are dimensionless �see Eq. �9��.

FIG. 5. Induced emission probability Pem with respect to the

particle energy for L̃=10 and h̃int=10.

FIG. 6. Induced emission probability Pem with respect to the

cavity length for h̃E=−1 and h̃int=10.
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region. These states are easily found by looking for the so-
lutions of the stationary Schrödinger equation that represent
a pure outgoing wave for z→−� �20,21�. In the case of a
mesa mode function, these solutions are given by

�E,n
−,out�z� = NE,n�−

��
Ai�z̃ − h̃E�

if z � L ,

vE,n�− Ai�z̃ − h̃E − h̃int� + wE,n�− Bi�z̃ − h̃E − h̃int�
if 0 � z � L ,

dE,n�−
„Ai�z̃ − h̃E� − i Bi�z̃ − h̃E�…

if z � 0.

�
�61�

The continuity conditions of the wave function and its
derivative at the cavity interfaces yield an homogenous sys-
tem of equations for the coefficients NE,n�− , vE,n�− , wE,n�− and dE,n�− .

Non trivial solutions of this system do only exist for a
well defined set of complex values of E. Writing these values

E = E0 − i
�

2
, �62�

E0 and ��−1 yield the energy and the characteristic escape
time of the quasibound states.

We illustrate in Fig. 7 the Vn
−�z� quasibound states for the

cavity parameters considered in Fig. 5. The values of h̃E0
and

h̃� for these quasibound states are given in Table I. We well
notice that the energies of these states correspond exactly to
the particle energies for which a narrow resonance in the
induced emission probability is observed �Fig. 5�. � yields
the resonance peak width.

At a fixed total atomic energy E, the quasibound state
energies vary with the cavity length. Whenever such a state
energy matches the atomic E value, the induced emission
probability is optimized and a resonance in the curve of Pem
with respect to the cavity length is observed �Fig. 6�. In this
sense, the physical interpretation of the resonances in the
induced emission probability differs significantly from what
happens with the micromaser in a horizontal configuration
where the effects of the gravitation on the quantum atomic
motion are not taken into account �1,2�. Also, it is interesting
to note that the resonance amplitudes for the micromaser in
the vertical configuration reaches 1 whereas they are limited
to 0.5 in the horizontal configuration.

More physically, the behavior of the stationary wave func-
tion �E,n

− �z� �Eqs. �17� and �39�� differs significantly depend-
ing on whether the particle energy E corresponds to a quasi-
bound state energy or not. This is illustrated in Figs. 8 and 9.
In the first case, the particle is launched upwards to the cav-
ity with a total energy matching a quasibound state energy of
the potential Vn

−�z�. The stationary wave function �E,n
− �z� en-

ters significantly inside the cavity by tunnel effect. Conse-
quently, a strong interaction between the atom and the cavity

TABLE I. Negative energy quasibound state h̃E0
and h̃� values

for L̃=10 and h̃int=10.

h̃E0
h̃�

−0.35 1.0�10−1

−1.397 2.3�10−2

−2.4504 1.8�10−3

−3.586528 4.3�10−5

−4.83661911 3.0�10−7

−6.25546372124 4.3�10−10

−7.992076463882778 4.6�10−14

FIG. 7. Vn
−�z� quasibound state energy levels for L̃=10 and

h̃int=10.

FIG. 8. Stationary probability density ��E,n
− �z��2 �in a.u.� for E

matching a quasibound state energy of the potential Vn
−�z� �L̃=10

and h̃int=10�.

FIG. 9. Stationary probability density ��E,n
− �z��2 �in a.u.� for E

different than the quasibound state energies of the potential Vn
−�z�

�L̃=10 and h̃int=10�.
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field may occur and the induced emission probability is
found to be equal to 1. When considering a realistic atomic
wave packet, this effect is of course restricted to the compo-

nents A�h̃E� of the wave packet for which h̃E falls within the

width h̃� of the quasibound state. Inversely, if the particle
energy does not match a quasibound state energy �Fig. 9�, the
stationary wave function does not enter into the cavity and
no atom-field interaction can take place. In this case, the
induced emission probability drops down to zero.

In any case, the wave function �E,n
+ �z� is reflected at the

classical turning point for any negative value of the total
energy �like �E,n

− �z� in Fig. 9� and never contributes to the
induced emission process for these energy values as it does
not enter inside the cavity.

2. Positive energy resonances

Fine resonances for positive values of the particle energy
�E�0, i.e., hE�0� are also observed. This is illustrated in
Fig. 10 that shows the induced emission probability as a
function of the total atomic energy. In the positive energy
domain, fine resonances occur for hE�L and they arise from
resonant diffusion processes over quasibound states of the
potential Vn

+�z� �see Fig. 11�. In the vicinity of such a quasi-
bound state, the �E,n

+ �z� wave function overcomes the Vn
+�z�

potential barrier and extends beyond the top of the cavity,
whereas this wave function is usually restricted below the
potential barrier for ordinary values of E. This significant
change in the behavior of the �E,n

+ �z� wave function near the
Vn

+�z� quasibound states affects strongly the interplay be-
tween this wave function and the �E,n

− �z� one, which always
extends beyond the top of the cavity for any value of E in

this energy domain. Therefore and in constrast to the aE,n
− and

bE,n
− coefficients of the �E,n

− �z� wave function �see Eq. �14��
that vary smoothly with E, the aE,n

+ and bE,n
+ coefficients vary

significantly around the Vn
+�z� quasibound states, resulting in

strong and rapid variations of the induced emission probabil-
ity in these regions. These variations are found to occur be-
tween 0 and 1, corresponding to destructive and constructive
interferences between the two wave functions �E,n

± �z�, re-
spectively.

3. Cavity length effects

In the hot atom regime and in the positive energy domain,
the induced emission probability is independent of the cavity
length L as soon as this length is greater than hE �see Eq.
�58��. In the cold atom regime, this statement must be re-
vised and holds only when L�hE+hint. In this case indeed,
the classical turning points where the �E,n

+ �z� and �E,n
− �z�

wave functions drop down to zero are given by z=max�hE

−hint ,0� and z=hE+hint, respectively. Thus, any variation of
the cavity length beyond ��hE+hint� does not affect anymore
the spatial dependence of the wave functions and the induced
emission probability becomes L independent. This is illus-
trated in Fig. 12 that shows the induced emission probability

Pem with respect to the cavity length for h̃E=8.5 and h̃int

=1000. Pem starts to be constant only beyond L̃= h̃E+ h̃int
=1008.5.

4. Sine and Gaussian mode functions

The fine resonances of the induced emission probability
observed in the cold atom regime are not restricted to the
case of the mesa mode investigated so far here. Using nu-

FIG. 10. Induced emission probability Pem with respect to the

particle energy for L̃=10 and h̃int=10.

FIG. 11. Vn
+�z� quasibound state energy levels for L̃=10 and

h̃int=10.

FIG. 12. Induced emission probability Pem with respect to the

cavity length for h̃E=8.5 and h̃int=1000.

FIG. 13. Induced emission probability Pem with respect to the

particle energy for L̃=10 and h̃int=10, sine mode.
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merical procedures �22�, we have computed the solutions
�E,n

± �z� of the stationary Schrödinger equation �11� for sine
and gaussian mode functions �u�z�=sin��z /L� for 0�z�L,

0 elsewhere and u�z�=e−�z − L / 2�2/2�2
with �=	2/�L, respec-

tively�. We show in Figs. 13 and 14 the related induced emis-
sion probability Pem with respect to the total atomic energy.
The fine negative energy resonances observed in the curves
arise from the same interaction of the atomic wave function
with the quasibound states of the potential Vn

−�z�. Those are
illustrated in Fig. 15 for the sine mode. As any mode func-

tion will give rise to such quasibound states �provided h̃int is
large enough�, the resonances in the induced emission prob-
ability will be a very general feature of the vertical micro-
maser in the cold atom regime, in contrast to what happens
with the horizontal micromaser where the induced emission
probability characteristics are much more mode dependent
�3�. This defines a very interesting property as it should help
the experimenters to observe the particular behavior of the
induced emission probability in the cold atom regime, what-
ever the exact mode function of the cavity. Positive and
negative energy quasibound state resonances are an ex-
tremely robust feature of the mazer action in the vertical
geometry.

C. Intermediate regime

We define the intermediate regime by hE�L+hint. In this
regime, when hE starts to be greater than L+hint, the particle

energy lies above the potentials Vn
±�z� �h̃E�20 in Fig. 11�

and the effects of these potentials start to decrease all the
more that the particle energy increases. In this case, the cold
atom regime is left and we enter the hot atom one where the

classical results hold. This is illustrated in Fig. 16 which
shows that for hE�L+hint, the induced emission probability
starts to oscillate more and more regularly between 0 and 1,
reaching the classical oscillations as soon as the particle en-
ergy value is sufficiently high �Fig. 16 does not extend up to
the classical limit where the additional small oscillations
have smeared out�.

IV. PHOTON STATISTICS

When the micromaser is pumped by a flux of excited
atoms launched upwards and dissipation is considered, a
steady-state photon number distribution P�n� is established
inside the cavity. This distribution is given by �2�

P�n� = P�0��
m=1

n
Cnb + rPem�m − 1�/m

C�nb + 1�
, �63�

where r is the atomic injection rate, C the cavity decay rate
and nb the number of photons inside the cavity in thermal
equilibrium. In the cold atom regime, unusual “dragon” pho-
ton number distributions P�n� have been predicted by Meyer
et al. �2�. For the vertical micromaser, Eq. �63� still holds
provided Eq. �33� is used to compute the induced emission
probability Pem�n�. We show in Fig. 17 the photon number
distribution P�n� obtained in the mesa mode case for r /C

=104, nb=20, h̃g= L̃=100 and h̃E=−2. This figure illustrates
that remarkably the unusual “dragon” distributions are pre-
served in the vertical configuration. This result is extremely
interesting as it shows that a vertical micromaser in the cold
regime �in principle experimentally more feasible� could be

FIG. 14. Induced emission probability Pem with respect to the

particle energy for L̃=10 and h̃int=10, Gaussian mode.

FIG. 15. Vn
−�z� quasibound state energy levels for L̃=10 and

h̃int=10, sine mode.

FIG. 16. Induced emission probability Pem with respect to the

particle energy for L̃=10 and h̃int=10, mesa mode �the dashed line
represents the classical limit given by Eq. �58��.

FIG. 17. Steady-state photon number distribution P�n� �r /C

=104, nb=20, h̃g= L̃=100, and h̃E=−2, mesa mode�.
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used rather than a horizontal one to demonstrate the highly
nonclassical “dragon” photon number distributions �23�. It is
also interesting to point out that this distribution is obtained
for a flux of incident atoms classically not reaching the cav-
ity. Similar distributions are obtained when considering other

values of h̃E, including positive ones. Each maximum in the
dragon photon number distribution P�n� occurs at n values
maximizing Pem�n�. The width of the resonances in the in-
duced emission probability determines therefore the accept-
able level of noise in the atomic kinetic energy that preserves
the shape of the photon number distribution.

V. SUMMARY

In this paper we have presented the quantum theory of the
cold atom micromaser in a vertical configuration, consider-
ing gravity action on the quantized atomic motion. Analytical
expressions for the atom-field wave functions and the in-
duced emission probability have been obtained in the special
case of the constant cavity mode. Interesting effects related
to the vertical geometry have been pointed out. In particular,
we have shown that the cavity containing n photons acts in
the gravity linear field as an additional repulsive and attrac-
tive potential, resulting in quasibound states of the atomic

motion that enhance significantly the induced emission prob-
ability of a photon inside the cavity as soon as the total
atomic energy matches one of these states. This feature give
rise to fine resonances in the induced emission probability
and is not restricted to any particular cavity mode function.
This should make easier any experimental demonstration of
these effects. We have also shown that an atom is able to
emit a photon inside the cavity, though classically it does not
reach the interaction region. This peculiarity is related to the
cavity potential quasibound states that enable the particle to
enter inside the cavity by tunnel effect. It has also been dem-
onstrated that the classical results are well recovered for hot
atoms where the quantization of the atomic motion is unnec-
essary. Finally, we have shown that the unusual “dragon”
photon number distribution predicted when a horizontal mi-
cromaser is pumped by a flux of excited atoms might also be
observed in the vertical geometry, even with a flux of atoms
that classically do not reach the cavity.
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