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The quantum theory of the mazer in the nonresonant case !a detuning between the cavity mode and the
atomic transition frequencies is present" is described. The generalization from the resonant case is far from
being direct. Interesting effects of the mazer physics are pointed out. In particular, it is shown that the cavity
may slow down or speed up the atoms according to the sign of the detuning and that the induced emission
process may be completely blocked by use of a positive detuning. It is also shown that the detuning adds a
potential step effect not present at resonance and that the use of positive detunings defines a well-controlled
cooling mechanism. In the special case of a mesa cavity mode function, generalized expressions for the
reflection and transmission coefficients have been obtained. The general properties of the induced emission
probability are finally discussed in the hot, intermediate, and cold atom regimes. Comparison with the resonant
case is given.
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I. INTRODUCTION

The interaction of cold atoms with microwave high-Q
cavities !a cold atom micromaser" has recently attracted in-
creasing interest since it was demonstrated by Scully et al.
#1$ that this interaction leads to a new type of induced emis-
sion inside the cavity. The new emission properties arise
from the necessity to treat quantum mechanically the center-
of-mass motion of the atoms interacting with the cavity. To
insist on the importance of this quantization, usually defined
along the z axis, the system was called a mazer !for micro-
wave amplification via z-motion-induced emission of radia-
tion". The complete quantum theory of the mazer was de-
scribed in a series of three papers by Scully and co-workers
#2–4$. The theory was written for two-level atoms interact-
ing with a single mode of the high-Q cavity via a one-photon
transition. In particular, it was shown that the induced emis-
sion properties are strongly dependent on the cavity mode
profile. Results were presented for the mesa, sech2, and sinu-
soidal modes. Retamal et al. #5$ later refined these results in
the special case of the sinusoidal mode, and a numerical
method was proposed by Bastin and Solano #6$ for effi-
ciently computing the mazer properties with arbitrary cavity
field modes. Löffler et al. #7$ showed also that the mazer
may be used as a velocity selection device for an atomic
beam. The mazer concept was extended by Zhang et al.
#8–10$, who considered two-photon transitions #8$, and
three-level atoms interacting with a single cavity #9$ and
with two cavities #10$. Collapse and revival patterns with a
mazer have been computed by Du et al. #11$. Arun et al.
#12,13$ studied the mazer with bimodal cavities and Agarwal
and Arun #14$ demonstrated resonant tunneling of cold at-
oms through two mazer cavities.
In all these previous studies, the mazer properties were

always presented in the resonant case where the cavity mode
frequency % is equal to the atomic transition frequency %0.

When three-level atoms were considered, a generalized reso-
nant condition was assumed #9,10,12$. In this paper, we re-
move this restriction and establish the theory of the mazer in
the nonresonant case (%&%0) for two-level atoms.
The paper is organized as follows. In Sec. II, the Hamil-

tonian modeling the mazer in the nonresonant case is pre-
sented. The wave functions of the system are described and
generalized expressions for the reflection and transmission
coefficients in the special case of the mesa mode function are
derived. The properties of the induced emission probability
when a detuning is present are then discussed in Sec. III.
Three regimes of the mazer are considered !hot, intermedi-
ate, and cold". A brief summary of our results is finally given
in Sec. IV.

II. MODEL

A. The Hamiltonian

We consider a two-level atom moving along the z direc-
tion on the way to a cavity of length L. The atom is coupled
unresonantly to a single mode of the quantized field present
in the cavity. The atomic center-of-mass motion is described
quantum mechanically and the usual rotating-wave approxi-
mation is made. We thus consider the Hamiltonian

H!'%0(
†("'%a†a"

p2

2m "'gu!z "!a†("a(†", !1"

where p is the atomic center-of-mass momentum along the z
axis, m is the atomic mass, %0 is the atomic transition fre-
quency, % is the cavity field mode frequency, (!!b)*a! (!a)
and !b) are, respectively, the upper and lower levels of the
two-level atom", a and a† are, respectively, the annihilation
and creation operators of the cavity radiation field, g is the
atom-field coupling strength, and u(z) is the cavity field
mode function. We denote in the following the detuning %
#%0 by + , the cavity field eigenstates by !n), and the global
state of the atom-field system by !,(t)).
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B. The wave functions

We introduce the orthonormal basis

!-n
"!.")!cos .!a ,n)"sin .!b ,n"1),

!-n
#!.")!#sin .!a ,n)"cos .!b ,n"1), !2"

with . an arbitrary parameter. The !-n
$(.)) states coincide

with the noncoupled states !a ,n) and !b ,n"1) when .!0
and with the dressed states when .!.n given by

cot 2.n!#
+

/n
, !3"

with

/n!2g!n"1. !4"

We denote as !$ ,n) the dressed states !-n
$(.n)). The

Schrödinger equation reads in the z representation and in the
basis !2"

i'
0

0t ,n ,.
" !z ,t "!"#

'2

2m
02

0z2
"!n"1 "'%#'+cos2.

"'gu!z "!n"1 sin 2.#,n ,.
" !z ,t "

""'gu!z "!n"1 cos 2.

"
1
2 .'+ sin 2#,n ,.

# !z ,t ", !5a"

i'
0

0t ,n ,.
# !z ,t "!"#

'2

2m
02

0z2
"!n"1 "'%#'+ sin2.

#'gu!z "!n"1 sin 2.#,n ,.
# !z ,t "

""'gu!z "!n"1 cos 2.

"
1
2 '+ sin 2.#,n ,.

" !z ,t ", !5b"

with

,n ,.
$ !z ,t "!*z ,-n

$!."!,! t "). !6"

We get for each n two coupled partial differential equa-
tions. In the resonant case (+!0), these equations may be
decoupled over the entire z axis when working in the dressed
state basis and the atom-field interaction reduces to an el-
ementary scattering problem over a potential barrier and a
potential well defined by the cavity !see Ref. #2$". In the
presence of detuning, this is no longer the case: there is no
basis where Eqs. !5" would separate over the entire z axis and

the interpretation of the atomic interaction with the cavity as
a scattering problem over two potentials is less evident.
Outside the cavity !which we define to be located in the

range 0%z%L), the mode function u(z) vanishes and Eqs.
!5" become in the noncoupled state basis (.!0)

i'
0

0t ,n
a!z ,t "!"#

'2

2m
02

0z2#,n
a!z ,t ", !7a"

i'
0

0t ,n"1
b !z ,t "!"#

'2

2m
02

0z2
"'+#,n"1

b !z ,t ", !7b"

with

,n
a!z ,t "!ei(%0"n%)t*z ,a ,n!,! t "), !8a"

,n"1
b !z ,t "!ei(%0"n%)t*z ,b ,n"1!,! t "). !8b"

In Eq. !8", we have introduced the exponential factor
ei(%0"n%)t in order to define the energy scale origin at the
!a ,n) level. The solutions to Eqs. !7" are obviously given by
linear combinations of plane wave functions. If we assume
initially a monokinetic atom !with momentum 'k) coming
upon the cavity from the left side !negative z values" in the
excited state !a) and the cavity field in the number state !n),
the atom-field system is described outside the cavity by the
wave function components !which correspond to the eigen-
state !1k) of energy Ek!'2k2/2m)

,n
a!z ,t "!e#i('k2/2m)t2n

a!z ", !9a"

,n"1
b !z ,t "!e#i('k2/2m)t2n"1

b !z ", !9b"

with

2n
a!z "!$ eikz"3n

ae#ikz, z%0,

4n
aeik(z#L), z&L ,

!10"

2n"1
b !z "!$ 3n"1

b e#ikbz, z%0,

4n"1
b eikb(z#L), z&L ,

!11"

and

kb
2!k2#

2m+
'

. !12"

Introducing

52!
2mg

'
!13"

we may write

kb
2!k2#52

+
g . !14"
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The solutions !9" must be interpreted as follows: The ex-
cited atom coming upon the cavity will be found reflected in
the upper state or in the lower state with the amplitude 3n

a

and 3n"1
b , respectively, or transmitted with the amplitude 4n

a

or 4n"1
b . However, in contrast to the resonant case, the atom

reflected or transmitted in the lower state !b) will be found to
propagate with a momentum 'kb different from its initial
value 'k . The atomic transition !a)→!b) induced by the
cavity is responsible for a change of the atomic kinetic en-
ergy. According to the sign of the detuning #see Eq. !14"$, the
cavity will either speed up the atom !for +%0) or slow it
down !for +&0). This results merely from energy conserva-
tion. When, after leaving the cavity region, the atom is
passed from the excited state !a) to the lower state !b), the
photon number has increased by one unit in the cavity and
the internal energy of the atom-field system has varied by the
quantity '%#'%0!'+ . This variation needs to be exactly
counterbalanced by the external energy of the system, i.e.,
the atomic kinetic energy. In this sense, when a photon is
emitted inside the cavity by the atom, the cavity acts as a
potential step '+ !see Fig. 1", and the atom experiences an
attractive or a repulsive force according to the sign of the
detuning. Similar !although not identical" mechanical effects
are obtained under the adiabatic approximation #15$ !requir-
ing no quantum treatment of the atomic center-of-mass mo-
tion". In this case the dressed levels may also decelerate or
accelerate the atoms. However, in this regime and contrary to
what is described here, the atom always leaves the cavity
with the same kinetic energy !if no dissipation process is
considered" and the mechanical effects are not related to the
emission of a photon inside the cavity.
Presently the use of positive detunings in the atom-field

interaction defines a well-controlled cooling mechanism. A
single excitation exchange between the atom and the field
inside the cavity is sufficient to cool the atom to a desired
temperature T!'2kb

2/2mkB (kB is the Boltzmann constant"
which may in principle be as low as imaginable. However, if
the initial atomic kinetic energy '2k2/2m is lower than '+
!i.e., if k/5%!+/g), the transition !a ,n)→!b ,n"1) cannot
take place !as it would remove '+ from the kinetic energy"
and no photon can be emitted inside the cavity. In this case
the emission process is completely blocked.

Due to this change in the kinetic energy when a photon is
emitted, the reflection and transmission probabilities of the
atom in the lower state !b) are given, respectively, by !for
'2k2/2m&'+)

Rn"1
b !

kb
k !3n"1

b !2, !15a"

Tn"1
b !

kb
k !4n"1

b !2. !15b"

These probabilities vanish for '2k2/2m6'+ . When the
atom remains in the excited state !a) after having interacted
with the cavity, there is no change in the atomic kinetic en-
ergy and the reflection and transmission probabilities are di-
rectly given by

Rn
a!!3n

a!2, !16a"

Tn
a!!4n

a!2. !16b"

To calculate any quantity related to the reflection and
transmission coefficients, we must solve the Schrödinger
equation over the entire z axis. Inside the cavity, the problem
is much more complex since we have two coupled partial
differential equations. In the special case of the mesa mode
function #u(z)!1 inside the cavity, 0 elsewhere$, the prob-
lem is, however, greatly simplified. In the dressed state basis
(.!.n), the Schrödinger equations !5" take the following
form inside the cavity:

i'
0

0t ,n
$!z ,t "!"#

'2

2m
02

0z2
"Vn

$#,n
$!z ,t " !17"

with

,n
$!z ,t "!ei(%0"n%)t*z ,$ ,n!,! t ") !18"

and

Vn
"!sin2.n'+"'g!n"1 sin 2.n , !19a"

Vn
#!'+#Vn

" . !19b"

Vn
" and Vn

# represent the internal energies of the !" ,n)
and !# ,n) components, respectively. Except for the resonant
case, they cannot be strictly interpreted as a potential barrier
and a potential well as Eq. !17" holds only inside the cavity.
Using Eq. !3", we have the well-known relations

sin .n!
!7n"+

!27n
, tan .n!!7n"+

7n#+
,

cos .n!
!7n#+

!27n
, cot .n!!7n#+

7n"+
, !20"

with

7n!!+2"/n
2 . !21"

FIG. 1. Potential step effect of the cavity when a photon is
emitted by the atom. E represents the total energy of the atom-field
system.
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We thus have

Vn
"!'g!n"1 tan .n , !22a"

Vn
#!#'g!n"1 cot .n . !22b"

The exponential factor ei(%0"n%)t has been introduced as
well in Eq. !18" in order to define the same energy scale
inside and outside the cavity. Figure 2 illustrates the internal
energies of the atom-field system over the whole z axis. The
positive internal energy Vn

" increases with positive detunings
and vice versa with negative ones. For a fixed value of the
incident kinetic energy Ek!'2k2/2m , Vn

" may be switched
in this way from a higher value than Ek to a lower one.
For large positive !negative" detunings, Vn

" tends to the
!b ,n"1) (!a ,n)) state energy.
The most general solution of Eqs. !17" corresponding to

the eigenstate !1k) is given by

,n
$!z ,t "!e#i('k2/2m)t2n

$!z " !23"

with

2n
$!z "!An

$eikn
$z"Bn

$e#ikn
$z, !24"

where An
$ and Bn

$ are complex coefficients and

kn
$2!k2#

2m
'2

Vn
$ . !25"

Defining

5n!5!4 n"1, !26"

we have

kn
"2!k2#5n

2 tan .n , !27a"

kn
#2!k2"5n

2 cot .n . !27b"

Using Eq. !19b", we may also write

kn
#2!kb

2"5n
2 tan .n . !28"

From Eq. !2", we may express the wave function compo-
nents of the atom-field state inside the cavity over the non-
coupled state basis. We have

,n
a!z ,t "!cos .n,n

"!z ,t "#sin .n,n
#!z ,t ", !29a"

,n"1
b !z ,t "!sin .n,n

"!z ,t ""cos .n,n
#!z ,t ". !29b"

This allows us to find the wave function components of the
eigenstate !1k) over the entire z axis. The relations !9" hold
with

2n
a!z "!$ eikz"3n

ae#ikz, z%0,

2n
a!z "!C , 0%z%L ,

4n
aeik(z#L), z&L ,

!30"

2n"1
b !z "!$ 3n"1

b e#ikbz, z%0,

2n"1
b !z "!C , 0%z%L ,

4n"1
b eikb(z#L), z&L ,

!31"

and

2n
a!z "!C!cos .n!An

"eikn
"z"Bn

"e#ikn
"z"

#sin .n!An
#eikn

#z"Bn
#e#ikn

#z", !32a"

2n"1
b !z "!C!sin .n!An

"eikn
"z"Bn

"e#ikn
"z"

"cos .n!An
#eikn

#z"Bn
#e#ikn

#z". !32b"

The coefficients 3n
a , 3n"1

b , 4n
a , 4n"1

b , An
" , An

# , Bn
" , and

Bn
# in expressions !30"–!32" are found by imposing the con-
tinuity conditions on the wave function and its first deriva-
tive at the cavity interfaces. A tedious calculation yields

FIG. 2. Schematic energy diagram of the atom-field system in-
side and outside the cavity, for +&0 !a" and +%0 !b".
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4n
a!

!cos2.n"4n
#!k "/4n

#!kb"4n
"!kb""sin2.n4n

#!k "

#!cos2.n"!k#kb"/kn
c!L "#1$#!cos2.n"!k#kb"/kn

t !L "#1$
, !33"

3n
a!

!cos2.n"
4n

#!k "

4n!
#!k ,kb"

8n
"!k "

8n
"!kb"

3n
"!kb""% 1#!cos2.n"

4n
"!kb"

4 n"
"!k ,kb"

& 3n
#!k ""

cos2.n
4 % kbk #

k
kb

& un!k "
3n

#!k "3n
"!kb"

8n
#!k "8n

"!kb"

% cos2.nk#kb
kn
c!L "

#1 & % cos2.nk#kb
kn
t !L "

#1 & ,

!34"

4n"1
b !

sin 2.n
4 % 1"

k
kb

& #4n
#!k "/ 4̃n

#!k ,kb"$4n
"!kb"##4n

"!kb"/ 4̃n
"!k ,kb"$4n

#!k "

#!cos2.n"!k#kb"/kn
c!L "#1$#!cos2.n"!k#kb"/kn

t !L "#1$
, !35"

3n"1
b !sin 2.n

1
2 #4n

#!k "/ 4̄n
#!k ,kb"$#8n

"!k "/8n
"!kb"$3n

"!kb"# 1
2 #4n

"!kb"/ 4̄n
"!k ,kb"$3n

#!k "" 1
4 !k/kb#1 "vn!k "4n

#!k "4n
"!kb"

#!cos2.n"!k#kb"/kn
c!L "#1$#!cos2.n"!k#kb"/kn

t !L "#1$
,

!36"

with

un!k "!sin2.n
Sn

"#

sin!kn
"L "sin!kn

#L "
"% kn#kn"k2

#
k2

kn
#kn

"& ,
!37"

vn!k "!i% kn"k sin!kn"L "cos!kn
#L "

#
kn

#

k sin!kn
#L "cos!kn

"L " & #
cos 2.n
2 Sn

"# ,

!38"

Sn
"#!sin!kn

"L "sin!kn
#L "% kn#kn" "

kn
"

kn
#&

"2#cos!kn
#L "cos!kn

"L "#1$ , !39"

and

3n
$!k "!i8n

$!k "sin!kn
$L "4n

$!k ", !40"

4n
$!k "!#cos!kn

$L "#i9n
$!k "sin!kn

$L "$#1, !41"

9n
$!k "!

1
2 % kn$k "

k

kn
$& , !42"

8n
$!k "!

1
2 % kn$k #

k

kn
$& , !43"

4n!
$!k ,kb"!"cos!kn$L "#i

kb
k 9n

$!k "sin!kn
$L "##1

,

!44"

4n"
$!k ,kb"!"cos!kn$L "#i

k
kb

9n
$!k "sin!kn

$L "##1

,

!45"

4̃n
$!k ,kb"!#cos!kn

$L "#i9̃n
$!k ,kb"sin!kn

$L "$#1, !46"

4̄n
$!k ,kb"!"cos!kn$L "#i

k"kb
2kb

9n
$!k "sin!kn

$L "##1

,

!47"

9̃n
$!k ,kb"!% kn

$

k"kb
"

kb
k"kb

k

kn
$& , !48"

kn
c!L "!i

„k"i cot!kn
#L/2"kn

#…„kb"i cot!kn
"L/2"kn

"…
cot!kn

#L/2"kn
##cot!kn

"L/2"kn
"

,

!49"

kn
t !L "!i

„k#i tan!kn
#L/2"kn

#…„kb#i tan!kn
"L/2"kn

"…
tan!kn

"L/2"kn
"#tan!kn

#L/2"kn
#

.

!50"

At resonance, +!0, .n!:/4, kb!k , 4n
$(k)!4n!

$(k ,kb)
!4"n

$(k ,kb)! 4̃n
$(k ,kb)! 4̄n

$(k ,kb), and the reflection and
transmission coefficients reduce to the well-known results
!see Ref. #2$"

4n
a!
1
2 !4n

""4n
#", !51a"

3n
a!
1
2 !3n

""3n
#", !51b"

and
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4n"1
b !

1
2 !4n

"#4n
#", !52a"

3n"1
b !

1
2 !3n

"#3n
#". !52b"

III. INDUCED EMISSION PROBABILITY

The induced emission probability of a photon inside the
cavity is given by

Pem!n "!Rn"1
b "Tn"1

b . !53"

According to Eqs. !15", this probability may be written as

Pem!n "!$ kbk # !3n"1
b !2"!4n"1

b !2$ if
k
5

&!+
g ,

0 otherwise.
!54"

We distinguish three regimes determined by the incident
kinetic energy of the atom compared with the internal energy
Vn

" !see Fig. 2": the hot atom regime !when k'5n!tan .n
and kb is approximated to k), the intermediate regime (k
;5n!tan .n), and the cold atom regime (k(5n!tan .n). In
comparison with the resonant case, the detuning defines an
additional parameter that fixes the working regime of the
system.

A. Hot atom regime

In the hot atom regime, the kinetic energy is much higher
than the energies Vn

$ and the atoms are always transmitted
through the cavity. For the mesa mode, the atomic momen-
tum inside the cavity is given by

'kn
"''k% 1#

5n
2

2k2
tan .n& , !55a"

'kn
#''k% 1"

5n
2

2k2
cot .n& . !55b"

After the atom-field interaction, the global state of the
system reduces to

!,! t ")!( dz,!z ,t "!cos .ne#i(5n
2L/2k)tan .n!z ," ,n)

#sin .nei(5n
2L/2k)cot .n!z ,# ,n)) !56"

with

,!z ,t "!eikze#i('k2/2m)t. !57"

The induced emission probability is thus given by

Pem!n "! )*z ,b ,n"1!,! t ") )2

!
sin2!2.n"

4 !e#i(5n
2L/2k)tan .n

#ei(5n
2L/2k)cot .n!2. !58"

Using Eq. !20" we get straightforwardly

Pem!n "!"1"% +
/n

& 2##1

sin2% 4

2
!/n

2"+2& , !59"

where 4!mL/'k is the classical transit time of the thermal
atoms through the cavity.
Equation !59" is exactly the classical expression of the

induced emission probability of an atom interacting with a
single mode during a time 4 . We recover the well-known
Rabi oscillations in the general case where the field and the
atomic frequencies are detuned by the quantity + .

B. Intermediate regime

The frontier between the cold atom and the hot atom re-
gime appears when the atomic kinetic energy becomes equal
to the positive energy Vn

" inside the cavity, i.e., when the
ratio k/5n is equal to the critical value

k
5n

*
c
!!tan .n!% !!+/g "2"4!n"1 ""+/g

!!+/g "2"4!n"1 "#+/g &
1/4

. !60"

At resonance, this frontier occurs for k/5n!1. This condi-
tion changes significantly when the cavity and the atomic
transition are detuned. This is well illustrated in Fig. 3,
which shows the induced emission probability as a function
of k/5 at resonance and for a positive value of the detuning.
In the second case, the regime change occurs for a larger
value of k/5 than one. Please notice also that the induced
emission probability vanishes for k/5%!+/g according to
Eq. !54".
Equation !60" may be inverted to yield a critical detuning

when working with a fixed value of k/5 . We get

FIG. 3. Induced emission probability Pem(n!0) with respect to
k/5 !for 5L!10: and two different values of the detuning".
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+
g *c!!n"1" % k5n

& 2#% k5n
& #2# . !61"

Figure 4 illustrates the induced emission probability as a
function of the detuning for k/5 slightly greater than 1. At
resonance, the system is on the hot atom regime side as the
atomic kinetic energy is greater than the internal energy Vn

" .
When the detuning is increased, Vn

" is increased as well and
becomes greater than the kinetic energy #see Fig. 2!a"$,
switching the system toward the cold atom regime. This
therefore could define a convenient way to switch from one
regime to the other rather than by varying the incident
atomic momentum.
A similar effect of the detuning is presented in Fig. 5

which presents the induced emission probability with respect
to the interaction length in the intermediate regime. It ap-
pears clearly there that working with a negative detuning is
similar to working with hotter atoms at resonance. This re-
sults merely from the level of Vn

" compared to the incident

kinetic energy, which is identical in both cases considered in
Fig. 5.
From all these situations, we conclude that a detuning

variation has an identical effect as a change of the kinetic
energy of the incoming atoms, confirming that the only im-
portant parameter of the system in the intermediate regime is
the actual value of the Vn

" energy in comparison with the
kinetic energy '2k2/2m .

C. Cold atom regime

In the cold atom regime (k/5n(!tan .n), the induced
emission probability exhibits a completely different behav-
ior. We have in this regime for !+!//n(1, exp(5nL)'1, and
5nL((5n /k)2,

Pem!n "!
B!L "

2
1"#!cot .n"/2$sin!25n!cot .nL "

1"!5n/2k "2 cot .n sin2!5n!cot .nL "
,

!62"

with

B!L "!
kb
k

1
!!cos2.n"!k#kb"/kn

c!L "#1!2!!cos2.n"!k#kb"/kn
t !L "#1!2

. !63"

At resonance, this expression simplifies to

Pem!n "!
1
2

1" 1
2 sin!25nL "

1"!5n/2k "2 sin2!5nL "
!64"

and the results of Meyer et al. #2$ are well recovered. Figure
6 illustrates the induced emission probability !62" with re-
spect to the interaction length 5L for various values of the
detuning. The curves present a series of peaks where the
induced emission probability is optimum. The detuning af-
fects the peak position, amplitude, and width. Similarly to
the resonant case, the curves still look like the Airy function
of classical optics #1"F sin2(8/2)$#1 with finesse F and
total phase difference 8 , even if the structure of Eq. !62" has

become complicated with the factor B(L). In fact, this equa-
tion is extremely well fitted in its domain of validity by the
function

Pem!n "!
2kb /k

!1"kb /k "2
1" 1

2 sin!25n!cot .nL "

1"#5n /!kb"k "$2 sin2!5n!cot .nL "
.

!65"

1. Peak position

The induced emission probability is optimum when

5n!cot .nL!m: !m a positive integer". !66"

FIG. 4. Induced emission probability Pem(n!0) with respect to
+/g in the intermediate regime (k/5!1.01). The interaction length
was fixed to 5L!100.

FIG. 5. Induced emission probability Pem(n!0) with respect to
the interaction length 5L in the intermediate regime. Comparison of
a detuning variation with a change of the atomic kinetic energy.
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This occurs when the cavity length fits a multiple of one-half
the de Broglie wavelength <dB of the atom inside the cavity:

L!m
<dB
2 . !67"

Indeed, in the cold atom regime, only the !# ,n) compo-
nent propagates inside the cavity with the de Broglie wave-
length

<dB!
2:

kn
#

'
2:

5n!cot .n
. !68"

Inserting Eq. !68" into Eq. !67" gives the condition !66".

2. Peak amplitude

The peak amplitude of the induced emission probability
Pem(n) is given by

A=
B!L!m<dB/2"

2 '
1
2

4kb /k

!1"kb /k "2
. !69"

We illustrate this amplitude in Fig. 7 as a function of the
detuning + . In contrast to the hot atom regime #see Eq. !59"$,
the curves present a strong asymmetry with respect to the
sign of the detuning. This results from the potential step '+
!see Sec. II" experienced by the atoms when they emit a
photon. For cold atoms whose energy is similar to or less

than the step height, the sign of the step is a crucial param-
eter. According to Eq. !54", the induced emission probability
drops down very rapidly to zero for positive detunings, in
contrast to what happens for negative detunings.
It is also interesting to note that the peak amplitude !69" is

equal to the amplitude at resonance (1/2) times the factor
(4kb /k)/(1"kb /k)2 that corresponds exactly to the trans-
mission factor of a particle of momentum 'k through a po-
tential step '+ . This is an additional argument to say that the
use of a detuning adds a potential step effect for atoms emit-
ting a photon inside the cavity !see Fig. 1".

3. Peak width

The peak width is determined by the finesse #5n /(kb
"k)$2. Positive detunings increase the finesse (kb%k) while
negative ones decrease it (kb&k).

4. Large detunings

For large detunings, Eq. !62" is no longer valid and the
induced emission probability must be computed using the
general relation !54". We present in Fig. 8 Pem(0) as a func-
tion of the detuning and the interaction length 5L . The varia-
tion of the resonance positions with respect to the detuning is
very clear in this figure. It is interesting to note that one
resonance out of two disappears when increasing the detun-
ing toward negative values. Also, the induced emission prob-
ability does not decrease monotonically with the detuning
!especially for small interaction lengths". This effect is
strictly limited to the cold atom regime as for hot atoms the
Rabi oscillation amplitudes always decrease when larger and
larger detunings are used #see Eq. !59"$.
The use of large negative detunings in the cold atom re-

gime is not limitless. As #+ increases, the internal energy
Vn

" decreases #see Fig. 2!b"$ and may finally become lower
than the incident kinetic energy. To keep the system in the
cold atom regime, we must have for k/5n(1 #see Eq. !61"$

#
+
g%!n"1% 5n

k & 2. !70"

FIG. 6. Induced emission probability Pem(n!0) with respect to
the interaction length 5L in the cold atom regime (k/5!0.1) and
for various values of the detuning.

FIG. 7. Amplitude A of the resonances with respect to +/g for
two values of k/5 in the cold atom regime.

FIG. 8. Induced emission probability Pem(n!0) with respect to
the interaction length 5L and +/g !for k/5!0.1).
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This condition is well respected in Fig. 8 as the limiting
lower value of +/g to keep the system in the cold atom
regime is #100 for k/5!0.1.
The use of large positive detunings in the cold atom re-

gime is not possible as the induced emission probability van-
ishes for

+
g >% k5 & 2. !71"

IV. SUMMARY

In this paper we have presented the quantum theory of the
mazer in the nonresonant case. Interesting effects have been
pointed out. In particular, we have shown that the cavity may
slow down or speed up the atoms according to the sign of the
detuning and that the induced emission process may be com-
pletely blocked by use of a positive detuning. We have also
demonstrated that the detuning adds a potential step effect
not present at resonance. This defines a well-controlled cool-

ing mechanism for positive detunings. In the special case of
the mesa mode function, generalized expressions for the re-
flection and transmission coefficients have been obtained.
The properties of the induced emission probability in the
presence of a detuning have been discussed. In the cold atom
regime, we have obtained a simplified expression for this
probability and have been able to describe the detuning ef-
fects on the resonance amplitude, width, and position. In
contrast to the hot atom regime, we have shown that the
mazer properties are not symmetric with respect to the sign
of the detuning. In the intermediate regime, the use of detun-
ing could be a convenient way to switch from the hot atom
regime to the cold atom one.
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