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Nonequivalence between absolute separability and positive
partial transposition in the symmetric subspace
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The equivalence between absolutely separable states and absolutely positive partial transposed (PPT) states in
general remains an open problem in quantum entanglement theory. In this work, we study an analogous question
for symmetric multiqubit states. We show that symmetric absolutely PPT (SAPPT) states (symmetric states that
remain PPT after any symmetry-preserving unitary evolution) are not always symmetric absolutely separable by
providing explicit counterexamples. More precisely, we construct a family of entangled five-qubit SAPPT states.
Similar counterexamples for larger odd numbers of qubits are identified.
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I. INTRODUCTION

The study of the properties of quantum states subject to
unitary evolutions has been at the heart of quantum mechanics
since its foundation. One of the most intriguing properties
of a multipartite quantum state is entanglement, which can
be created or destroyed by unitary evolutions. In a region
surrounding the maximally mixed state, there exists a set
of mixed states, called absolutely separable (AS), which re-
main separable under any global unitary transformation [1–3].
Characterizing this set is crucial as it defines the minimum
conditions a quantum system must meet to attain a specific
level of entanglement after a unitary transformation. The AS
set in the bipartite scenario has been shown to be convex
and compact [4], and its boundary has been determined for
qubit-qudit systems [5]. A complete characterization of the
AS set is still lacking, however, and remains an important
open problem in quantum information science [6]. Absolute
separability criteria can always be expressed in terms of mixed
state eigenvalues, as these are the only quantities that are
invariant under unitary transformations. Because of this, AS
states are also called separable from spectrum.

The well-known positive partial transposition (PPT) crite-
rion introduced by Peres [7] is a simple and powerful method,
and therefore very useful, for testing entanglement, although
it only provides a sufficient and not a necessary condition. By
this criterion, a multipartite quantum state ρ is entangled in
the A|B bipartition if it is negative under partial transposition
(NPT), i.e., ρTA has at least one negative eigenvalue. This con-
dition has been shown, in fact, to be necessary and sufficient
for qubit-qubit and qubit-qutrit systems only [8–10]. This
indicates the existence of entangled PPT states, also known
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as bound entangled states. Many explicit bound entangled
states have been presented and studied [11–14]. In multipar-
tite systems, the entanglement depends on the specific way
the system is partitioned. A multipartite state is said to be
(fully) separable if it can be written as a convex combination
of multipartite product states [15]. Similarly, the PPT property
depends on the bipartition considered. In this work, we are
interested in states that are PPT for any bipartition, and we
will call them just PPT states.

By analogy with the set of AS states, there is a set of abso-
lutely PPT (APPT) states, i.e., states that remain PPT after any
unitary evolution. In contrast with the AS set, the set of APPT
states has been fully characterized through linear matrix in-
equalities [16]. Thus, because of the close connection between
separable states and PPT states, a promising way to solve the
separability from spectrum open problem would be to show
that the APPT and AS sets are equivalent, as was undertaken
in Ref. [17]. Although AS implies APPT according to the PPT
criterion, the converse remains an open question. So far, the
equivalence of AS and APPT has only been proved for qubit-
qudit systems [18] and for various families of states [17]. To
disprove the general equivalence between the sets, it suffices
to provide a counterexample, that is, an entangled APPT state.
However, finding a counterexample is a remarkably difficult
task, as many known strong entanglement criteria fail to detect
entanglement in APPT states [17]. Other criteria for states to
be APPT and AS have been explored for higher-dimensional
systems [19,20], as well as the extremal points of the AS and
APPT sets for qutrit-qudit systems [21].

The absolute separability problem arises in many forms,
notably for systems with continuous variables [22,23] and
bosonic (symmetric) systems [20]. This work focuses on the
latter case and more particularly on symmetric N-qubit sys-
tems. Their quantum states ρ and evolution are restricted to
the symmetric subspace of dimension N + 1 within the much
larger Hilbert space of dimension 2N . They satisfy ρ = πρπ ′
with π and π ′ any pair of permutation operators. The ad-
missible unitary evolutions are also limited to SU(N + 1)
transformations. A symmetric state ρ is said to be symmetric
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absolutely PPT (SAPPT) [20] if UρU † is PPT for any U ∈
SU(N + 1) [24]. Similarly, a state is symmetric absolutely
separable (SAS) if the state remains separable after the ac-
tion of any U ∈ SU(N + 1). Due to the restriction on unitary
operations that can be applied to the state, a SAS state is not
necessarily AS [25]. A full parametrization of SAS states has
been given for N = 2 [25], and additional SAS and SAPPT
witnesses have been constructed [20,25–27]. However, the
SAS and SAPPT sets remain to be fully characterized. A
question similar to that of the nonsymmetric case then arises:
Are SAPPT states always SAS? This is true for symmetric
two- and three-qubit systems, which boil down to qubit-qubit
and qubit-qutrit systems for which the PPT criterion is neces-
sary and sufficient. But what about larger qubit systems? This
question represents much more than a simplified version of
the nonsymmetric case; it is of significant independent interest
because of the many physical quantum systems constrained
by permutation symmetry, such as Bose-Einstein condensates
[28–30] and multiphoton systems [31]. In addition, it is of
interest in the study of absolutely classical spin- j states, which
are equivalent to SAS states [32]. More generally, entangle-
ment in bosonic systems plays an important role as a resource
in quantum metrology and quantum information [33]. In this
work, we thus address the question of the general equiva-
lence of SAPPT and SAS states. Our strategy is to search
for counterexamples to the equivalence between the two sets.
More specifically, we examine a subset of SAPPT states with
a spectrum of a specific form and look for some entangled
states in that subset.

The paper is organized as follows. Section II presents the
full parametrization of the SAPPT states across a uniparamet-
ric spectrum. We then prove in Sec. III that for an odd number
of qubits, some of these SAPPT states are entangled. Finally,
we provide concluding remarks in Sec. IV. A summary table
with all the acronyms used in this work, their meanings and
definitions can be found in Appendix A.

II. UNIPARAMETRIC SPECTRUM OF SAPPT STATES

The symmetric sector of the Hilbert space of a N-qubit
system, H∨N , with H the single-qubit state space, is spanned
by the Dicke states

∣∣D(α)
N

〉 = (N

α

)−1/2∑
σ

Pσ

∣∣ 00 . . . 00︸ ︷︷ ︸
N−α

11 . . . 11︸ ︷︷ ︸
α

〉
(1)

for α = 0, . . . , N , where the sum runs over all possible per-
mutation operators Pσ of the N qubits. Let us now consider a
symmetric state given by the mixture

ρ(p) = pρ0 + (1 − p) |ψ0〉 〈ψ0| (2)

of the maximally mixed state in the symmetric sector,

ρ0 = 1

N + 1

N∑
m=0

∣∣D(α)
N

〉 〈
D(α)

N

∣∣ = 1N+1

N + 1
, (3)

with probability p, and a pure symmetric state |ψ0〉 〈ψ0|
with probability 1 − p, where p ∈ [0, 1]. The spectrum of
ρ(p) consists of two distinct eigenvalues: one nondegenerate

eigenvalue 1 − N p
N+1 and another N-fold degenerate eigenvalue

p
N+1 , i.e., (1 − N p

N+1 ,
p

N+1 , . . . ,
p

N+1 ).
Now consider the bipartition of k and N − k qubits A|B.

We will denote the bipartitions of qubit systems that are
in a symmetric state by NA|NB = k|N − k with NA the car-
dinality of the set A (and the same for B) since, for such
states, the explicit specification of which qubits belong to
which partition is irrelevant. Without loss of generality, we
assume k � �N/2�. Since ρ is a fully symmetric state, it
has a support and an image in the tensor product of the
symmetric sectors of subsystems A and B. Therefore, ρ is a
convex combination of states in the bipartite Hilbert space
H∨k ⊗ H∨(N−k). This Hilbert space with dimension (k + 1) ×
(N − k + 1) is spanned by the tensor products of the k- and
(N − k)-qubit Dicke states, i.e., all the states |D(α)

k 〉 |D(β )
N−k〉 ≡

|D(α)
k 〉 ⊗ |D(β )

N−k〉 for α = 0, . . . , k and β = 0, . . . , N − k.
The partial transposed state ρTA of (2) is the convex

combination of ρ
TA
0 and ρ

TA
ψ0

≡ (|ψ0〉 〈ψ0|)TA . The smallest
eigenvalue of ρTA , denoted by λmin(ρTA ), is lower bounded by

λmin
(
ρTA
)
� σ (|ψ0〉 , p) (4)

with

σ (|ψ0〉 , p) ≡ pλmin
(
ρ

TA
0

)+ (1 − p) λmin
(
ρ

TA
ψ0

)
. (5)

This lower bound follows from the result that the minimum
eigenvalue of a sum of two Hermitian matrices, A + B, is
greater than or equal to the sum of the minimum eigenvalues
of each matrix A and B [34]. In particular, the equality holds
when A and B have a common eigenvector for their lowest
eigenvalue.

Let us first focus on the density matrix ρ
TA
0 . After some

algebra (see Appendix B), we obtain that ρ
TA
0 reads

ρ
TA
0 = 1

N + 1

(
N∑

α=0

∣∣D(α)
N

〉 〈
D(α)

N

∣∣)TA

= 1

N + 1

N∑
α=0

α∑
β,γ=0

χ (α, β ) χ (α, γ )

× ∣∣D(α−γ )
k

〉 ∣∣D(β )
N−k

〉 〈
D(α−β )

k

∣∣ 〈D(γ )
N−k

∣∣ , (6)

where

χ (α, β ) ≡

⎡
⎢⎣
(

k
α−β

)(
N−k

β

)
(

N
α

)
⎤
⎥⎦

1/2

. (7)

We calculate in Appendix C the eigendecomposition of
ρ

TA
0 . In particular, we prove that its minimum eigenvalue is

given by

λmin
(
ρ

TA
0

) =[(N + 1)
(N

k

)]−1
, (8)

and that the states |D(0)
k 〉 |D(N−k)

N−k 〉 and |D(k)
k 〉 |D(0)

N−k〉 are partic-
ular eigenvectors of ρ

TA
0 with this eigenvalue.
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Next, let us calculate λmin(ρTA
ψ0

). We start with the Schmidt

decomposition of |ψ0〉 with respect to the bipartition A|B,

|ψ0〉 =
k+1∑
r=1

√
�r

∣∣φA
r

〉 ∣∣φB
r

〉
. (9)

with �r � 0,
∑

r �r = 1 and, without loss of generality, we
can assume that �r � �r+1. The set of states A = {|φA

r 〉}k+1
r=1

and B = {|φB
r 〉}k+1

r=1 form orthonormal bases of H∨k and
H∨(N−k), respectively. The spectrum of ρ

TA
ψ0

can be calculated

exactly [35,36], with λmin(ρTA
ψ0

) = −√
�1�2.

Using the previous results, we can now evaluate the lower
bound σ (|ψ0〉 , p) in Eq. (4), which gives

σ (|ψ0〉 , p) = p

(N + 1)
(N

k

) − (1 − p)
√

�1�2. (10)

We can observe that this bound depends only on the Schmidt
coefficients of |ψ0〉. To deduce when the state is SAPPT, we
are now interested in minimizing σ (|ψ0〉 , p) on the unitary
orbit of the state ρ(p), i.e., on {Uρ(p)U † : U ∈ SU(N + 1)}.
By Eq. (2),

Uρ(p)U † = pρ0 + (1 − p) |ψ〉 〈ψ | , (11)

where |ψ〉 = U |ψ0〉. This means that minimizing σ (|ψ0〉 , p)
on the unitary orbit of (2) reduces to minimizing σ (|ψ〉 , p) on
the states |ψ〉 ∈ H∨N . Thus,

min
U∈SU(N+1)

λmin
(
Uρ(p)TAU †

)
� min

|ψ〉∈H∨N
σ (|ψ〉 , p), (12)

where the right-hand side is equal to

p

(N + 1)
(N

k

) − 1 − p

2
(13)

and obtained for a state |ψ〉 with Schmidt coeffi-
cients �1 = �2 = 1/2 and the rest equal to zero. Thus,
minU∈SU(N+1) λmin(ρ(p)TA ) � 0, and consequently ρ(p) is
SAPPT on the bipartition k|N − k, whenever Eq. (13)
is greater or equal to zero. The strictest SAPPT condition
is given by k = �N/2�, where we can search for extremal
values of p by setting Eq. (13) to zero. This leads to the
sufficient condition of the following theorem, which describes
a uniparametric set of SAPPT state spectra.

Theorem 1. Any symmetric N-qubit state ρ with a spec-
trum composed of N + 1 nonzero eigenvalues of the form
(1 − N p

N+1 ,
p

N+1 , . . . ,
p

N+1 ) is SAPPT if and only if p ∈
[pmin, 1] with

pmin = 1

1 + 2
[
(N + 1)

(
N

�N/2�
)]−1 .

The necessary condition to be SAPPT for this family of
states is proven by finding an NPT state for any p strictly
smaller than pmin. Consider the state ρ(p) of Eq. (2) with
|ψ0〉 the N-qubit GHZ state |GHZN 〉 ≡ (|D(0)

N 〉 − |D(N )
N 〉)/

√
2.

This state saturates the bound (12). Indeed, ρ(p)TA for the
bipartition k|N − k has an eigenvector (|D(0)

k 〉 |D(N−k)
N−k 〉 +

|D(k)
k 〉 |D(0)

N−k〉)/
√

2 with eigenvalue equal to Eq. (13), which

TABLE I. Particular values of the probability p defining the
state ρ(p) given by Eq. (2) with |ψ0〉 = |GHZN 〉, which has an
eigenspectrum (1 − N p

N+1 ,
p

N+1 , . . . ,
p

N+1 ). First column: Number of
qubits. Second column: Minimum value of p, pmin as it appears in
Theorem 1, for ρ(p) to be SAPPT. Third column: Maximum value
pWN

ent such that the witnesses WN given in Eqs. (14), (D1), and (D2) for
N = 5, 7, and 9, respectively, detect that ρ(p) is entangled. Fourth
column: value pent below which the state ρ(p) is found to be entan-
gled using the method described in Ref. [37].

N pmin pWN
ent pent

4 15
16 / 15

16

5 30
31 ≈ 0.96774 0.96862 0.96953

6 70
71 / 70

71

7 140
141 ≈ 0.99291 0.99302 0.99329

8 315
316 / 315

316

9 630
631 ≈ 0.99842 0.99845 0.99849

10 1386
1387 / 1386

1387

is negative for p < pmin, indicating that the state is NPT. We
write in Table I the value of pmin for several numbers of qubits.

Following the same lines of reasoning, the sufficient con-
dition of Theorem 1 can be generalized for symmetric states
|ψ〉 ∈ H∨N

d of N-qudit systems, with Hd the Hilbert space of
an individual qudit and D ≡ dim H∨N

d = (N+d−1
d−1

)
. We observe

by symbolic calculations that λmin(ρTA
0 ) = [D

(N
k

)
]−1, for d � 8

and different values of N � 15. Since the strictest SAPPT
condition is obtained again when k = �N/2�, we can state the
following conjecture.

Conjecture 1. Any symmetric N-qudit state ρ with a spec-
trum composed of D = (N+d−1

d−1

)
nonzero eigenvalues of the

form (1 − (D−1) p
D ,

p
D , . . . ,

p
D ), with p ∈ [pmin, 1], where

pmin = 1

1 + 2
[
D
(

N
�N/2�

)]−1 ,

is SAPPT.
Theorem 1 is an improvement over a SAPPT criterion

derived in Ref. [20] using invertible linear maps of operators.

III. ENTANGLED SAPPT STATES OF QUBITS

We are now ready to present a family of SAPPT states that
are not SAS, i.e., entangled SAPPT states. Consider now the
state (2) for five qubits with |ψ0〉 = |GHZ5〉. By Theorem 1,
ρ(p) is SAPPT for p � pmin and NPT for p < pmin. However,
we find that the state ρ(pmin) is detected to be entangled by not
having a two-copy PPT symmetric extension of the second
party for the bipartition 1|4 (see Ref. [38] for more details).
This can be checked using, for example, the QETLAB pack-
age [39]. This method, whenever the state is entangled, gives
additionally an entanglement witness [38]. In our case, an
entanglement witness for ρ(pmin) is given in the Dicke-state
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basis of H∨5 by

W5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 0 c
0 b 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 b 0
c 0 0 0 0 a

⎞
⎟⎟⎟⎟⎟⎟⎠ with

⎧⎨
⎩

a = 0.0366656
b = −0.134595
c = −9.31947

.

(14)

One can easily check that indeed Tr(ρ(pmin)W5) ≈
−0.0085 < 0. Moreover, one can check that W5 is a proper
entanglement witness for symmetric states by verifying
that W5(θ, φ) ≡ 〈θ, φ|W5 |θ, φ〉 � 0 for all symmetric
product states |θ, φ〉 = |ϕ〉⊗N , with |ϕ〉 a single-qubit state
parametrized as cos(θ/2) |0〉 + sin(θ/2)eiφ |1〉. It suffices to
check the positivity of the expectation value of W5 on the set
of pure product states |θ, φ〉 since any separable symmetric
state ρsep can be written as a convex combination of them,
i.e., ρsep = ∫ P(θ, φ) |θ, φ〉 〈θ, φ| d� with P(θ, φ) � 0
and

∫
P(θ, φ) d� = 1 [40,41]. Thus, if the operator W5 is

such that 〈θ, φ|W5 |θ, φ〉 � 0, then Tr(W5ρsep) � 0 for all
separable states. The minimal value of W5(θ, φ) is reached
at (θ, φ) = (π/2, 0) and is approximately equal to 0.00276.
Figure 1 (top panel) shows the finite values of ln[W5(θ, φ)],
illustrating the positivity of W5(θ, φ).

The operator W5 given above also detects entanglement
of ρ(p) for values of p other than pmin (see Fig. 1, bot-
tom panel). In fact, W5 detects that ρ(p) is entangled for
p � pW5

ent ≈ 0.96862, thus providing a uniparametric family
of SAPPT bound entangled states ρ(p) for p ∈ [pmin, pW5

ent].
A larger family can be obtained using the reformulation of
the separability problem as a truncated moment problem (see
Ref. [37] for more details), which can be implemented as a
semidefinite optimization. Using this method, with a precision
of 10−5 in the determination of the parameter p, the state ρ(p)
was found to be entangled for pmin � p < pent = 0.96953
and separable for pent � p � 1. Finally, we should mention
that there are separable SAPPT states that are not SAS. An
example is given by ρ(pmin) with |ψ0〉 a symmetric product
state |θ, φ〉.

In a similar way, we searched for entangled SAPPT states
for a number of qubits up to N = 10. For an odd number
of qubits, the state (2) with |ψ0〉 = |GHZN 〉 is SAPPT and
detected as entangled using QETLAB for values of p in the
range [pmin, pent] (see Table I). The respective entanglement
witnesses for N = 7, 9 are given in Appendix D. On the other
hand, for even N , we find that the state ρ(p) is always separa-
ble for any p ∈ [pmin, 1]. So we could not find an example of
an entangled SAPPT state for an even number of qubits.

IV. CONCLUSIONS

In this work, we established a sufficient condition for
certain symmetric states of N-qudit systems to be SAPPT
(symmetric absolutely PPT). For qubits, we showed that this
condition is also necessary. In the course of this proof, we
analytically determined the spectrum of ρ

TA
0 , where ρ0 is the

ln
[W
5
(θ
,φ
)]

pmin pentpW5ent

SAPPT

separableentangled

detected entangled by W5

NPT

FIG. 1. Top panel: Logarithm of the expectation value of the
entanglement witness W5 over the pure symmetric product states,
showing the positivity of W5(θ, φ). Bottom panel: Expectation value
of the entanglement witness W5 in ρ(p) as a function of p (black
oblique straight line). Entangled SAPPT states lie within the overlap
between the blue (entangled states) and gray (SAPPT states) ar-
eas, ranging from p = pmin = 30/31 ≈ 0.96774 to pent = 0.96953.
Those detected by the witness W5 given in Eq. (14) lie between pmin

and pW5
ent ≈ 0.96862 < pent.

maximally mixed state in the symmetric subspace. Based on
this, we proved the existence of entangled SAPPT states for
an odd number of qubits from N = 5 by constructing explicit
entanglement witnesses. These results resolve an open ques-
tion concerning the equivalence between SAPPT and SAS
states by showing that this equivalence does not hold in
general, although it does apply to 2-qubit and 3-qubit sys-
tems. On the other hand, we have not yet identified entangled
SAPPT states for an even number of qubits. It is impor-
tant to note that in the nonsymmetric case, the entangled
SAPPT states presented in this work do not refute the pos-
sibility of the equivalence between APPT and AS states. If
APPT states were indeed equivalent to AS states, then the
existence of entangled SAPPT states would provide a com-
pelling example of how perfect indistinguishability among
the constituents of multipartite systems, such as in bosonic
systems, can profoundly affect their entanglement properties.
We hope that our results will stimulate further exploration of
this line of research in order to deepen our understanding of
the interplay between symmetry and entanglement in quantum
systems.
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APPENDIX A: ACRONYMS

Table II contains all the acronyms used in this work.

APPENDIX B: DICKE STATES AS BIPARTITE STATES

For a given bipartition k|N − k of N qubits, the symmetric
Dicke states |D(α)

N 〉 defined in Eq. (1) can be rewritten as

∣∣D(α)
N

〉 = (N

α

)−1/2 α∑
r=0

⎛
⎝∑

σr

Pσr |00 . . . 00︸ ︷︷ ︸
N−α−r

11 . . . 11︸ ︷︷ ︸
k+α+r−N

〉
⎞
⎠

⊗
⎛
⎝∑

λr

Pλr |00 . . . 00︸ ︷︷ ︸
r

11 . . . 11︸ ︷︷ ︸
N−k−r

〉
⎞
⎠

=
α∑

r=0

[( k
N−α−r

)(N−k
r

)
(N
α

)
]1/2 ∣∣D(k+α+r−N )

k

〉 ∣∣D(N−k−r)
N−k

〉
,

(B1)

where Pσr (respectively, Pλr ) are permutation operators of k
(respectively, N − k) qubits. After the change of variable from
r to β = N − k − r, we get

∣∣D(α)
N

〉 = α∑
β=0

χ (α, β )
∣∣D(α−β )

k

〉 ∣∣D(β )
N−k

〉
,

with

χ (α, β ) =
[( k

α−β

)(N−k
β

)
(N
α

)
]1/2

=
[(

α

β

)( N−α

k+β−α

)
(N

k

)
]1/2

as defined in Eq. (7). It is precisely this last equation that we
use to write ρ

TA
0 as in Eq. (6).

APPENDIX C: EIGENSPECTRUM OF ρ
TA
0

In this Appendix, we calculate the eigenspectrum of ρ
TA
0 ≡

1
N+11TA

N+1, with 1N+1 the identity in the symmetric subspace

of the N-qubit system and TA the partial transposition per-
formed on the first k qubits. To this aim, we consider a similar
procedure as that used to calculate the spectra of angular mo-
mentum operators. First, we define the analog of the angular
momentum operators J±, Jz for the Dicke states, which we
denote by K± and K0. For all α = 0, . . . , N , we set

K+
∣∣D(α)

N

〉 ≡ √(N − α)(α + 1)
∣∣D(α+1)

N

〉
,

K−
∣∣D(α)

N

〉 ≡ √α (N − α + 1)
∣∣D(α−1)

N

〉
, (C1)

K0

∣∣D(α)
N

〉 ≡ (N

2
− α

) ∣∣D(α)
N

〉
.

These operators verify the commutation relations [K+, K−] =
−2K0 and [K±, K0] = ±K±. In addition, K†

± = K∓. We
now define new operators acting on H∨k ⊗ H∨(N−k)

as follows:

M± ≡ K1
∓ − K2

±, M0 ≡ K1
0 − K2

0 , (C2)

where the superscript 1 (respectively, 2) refers to the subspace
H∨k (respectively, H∨(N−k)) on which the operator acts. By
direct calculation, we obtain that

[M0, M±] = ±M±,
[
M±, ρ

TA
0

] = [M0, ρ
TA
0

] = 0. (C3)

By construction, a possible orthonormal basis of eigenvec-
tors of M0 are the Dicke product states |D(α)

k 〉 |D(β )
N−k〉 (α =

0, . . . , k; β = 0, . . . , N − k) with eigenvalue k + β − α −
N/2. These eigenvectors share the same eigenvalue as long
as the difference β − α is the same. Hence, the eigenvalues of
M0 can be written as μm = m − N/2 with m = 0, . . . , N . A
general eigenstate of M0 with eigenvalue μm has the following
general form:

|φm〉 =
min(k,m)∑

r=max(0,m+k−N )

dr

∣∣D(k−r)
k

〉 ∣∣D(m−r)
N−k

〉
. (C4)

The action of the ladder operators M± over these eigenstates
fulfills the following proposition.

Proposition C1. The equation M− |φm〉 = 0, with |φm〉 an
eigenstate of M0 with respect to μm, admits a solution if and
only if m � k, in which case it is unique (up to a normaliza-
tion constant). Similarly, the equation M+ |φN−m〉 = 0, with
|φN−m〉 an eigenstate of M0 with respect to μN−m, admits a
solution if and only if m � k, in which case it is again unique
up to a normalization constant.

Proof. Following Eq. (C4) and denoting the bounds of the
summation as r1 = max(0, m + k − N ) and r2 = min(k, m),
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TABLE II. Table of acronyms used in this work, their meaning and definition. The subscript S refers to symmetric.

Acronym Meaning Definition

AS Absolutely separable UρU † is separable for all unitary U
SAS Symmetric absolutely separable USρSU †

S is separable for all symmetry preserving unitary US

PPT Positive partial transposed ρTA � 0
APPT Absolutely positive partial transposed (UρU †)TA � 0 for all unitary U
SAPPT Symmetric absolutely positive partial transposed (USρSU †

S )TA � 0 for all symmetry preserving unitary US

the action of M− on |φm〉 gives

M− |φm〉 = dr1

√
r1(k − r1 + 1)

∣∣D(k−r1+1)
k

〉 ∣∣D(m−r1 )
N−k

〉+ r2−1∑
r=r1

(
dr+1

√
(r + 1)(k − r)

− dr

√
(m − r)(N − k − m + r + 1)

) ∣∣D(k−r)
k

〉 ∣∣D(m−r−1)
N−k

〉−dr2

√
(m − r2)(N − k − m + r2 + 1)

∣∣D(k−r2 )
k

〉 ∣∣D(m−r2−1)
N−k

〉
.

(C5)

To fulfill M− |φm〉 = 0, the coefficients dr must obey

dr1 = 0, if r1 �= 0,

dr2 = 0, if r2 �= m, (C6)

and the recursive relation, ∀r = r1, . . . , r2 − 1,

dr+1 =
[

(m − r)(N − k − m + r + 1)

(r + 1)(k − r)

]1/2

dr . (C7)

If r1 �= 0 or r2 �= m, then all dr must be zero by the re-
cursive relation. This is the case when m > k. Conversely,
if m � k, r1 = 0, r2 = m, and the recursive relation yields
∀r = 1, . . . , m, then

dr =

⎡
⎢⎣
(

k−r
m−r

)(
N−k−m+r

r

)
(

k
m

)
⎤
⎥⎦

1/2

d0. (C8)

This defines a unique state |φm〉 up to a normalization
constant. Using an alternative version of Vandermonde con-
volution in combinatorics [42],

(α + β

γ

)
=

γ∑
κ=0

(α − κ

γ − κ

)(β + κ − 1

κ

)
, (C9)

we easily obtain that the state |φm〉 gets normalized with

d0 =
( k

m

)1/2(N − m + 1

m

)−1/2
. (C10)

For M+, a similar derivation holds. �
We now describe the common eigenbasis of ρ

TA
0 and M0 as

a Theorem.
Theorem C1. The operators ρ

TA
0 and M0, defined in Eqs. (6)

and (C2), form a complete set of commuting observables
(CSCO) whose common eigenvectors generate a basis of the
Hilbert space H∨k ⊗ H∨N−k with k � N/2. The normalized
eigenvectors |n, m〉 are identified by two quantum numbers
n = 0, . . . , k and m = n, . . . N − n, and satisfy the eigenvalue

equations

ρ
TA
0 |n, m〉 = λn |n, m〉 ,

M0 |n, m〉 = μm |n, m〉 , (C11)

with

λn = 1

N + 1

(
N+1

n

)
(

N
k

) , μm = m − N

2
. (C12)

The eigenvectors |n, n〉 and |n, N − n〉 explicitly read

|n, n〉 = N
n∑

r=0

ck,n
r

∣∣D(k−r)
k

〉 ∣∣D(n−r)
N−k

〉
, (C13)

|n, N − n〉 = N
n∑

r=0

cN−k,n
r

∣∣D(n−r)
k

〉 ∣∣D(N−k−r)
N−k

〉
, (C14)

with N = ( N−n+1
n )

−1/2
and

ck,n
r =

[(k − r

n − r

)(N − k − n + r

r

)]1/2

. (C15)

For n < m < N − n, we have

|n, m〉 ∝ (M+)m−n |n, n〉 ,

|n, N − m〉 ∝ (M−)m−n |n, N − n〉 . (C16)

Proof. For each n = 0, . . . , k, let us consider the unique
(normalized) eigenstate |φn〉 of M0 with respect to μn that
fulfills M− |φn〉 = 0. This state is given by Eqs. (C4), (C8),
and (C10) with m = n. The action of ρ

TA
0 on it reads

(N + 1)ρTA
0 |φn〉 =

n∑
s,r=0

dr χ (k + n − r − s, n − s)

× χ (k + n − r − s, n − r)
∣∣D(k−s)

k

〉∣∣D(n−s)
N−k

〉
.

(C17)
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Using standard binomial identities [42], we get that

χ (k + n − r − s, n − s) χ (k + n − r − s, n − r)

=
(

k+n−r−s
n−r

)(
N−k−n+r+s

r

)
(

N
k

)
⎡
⎢⎣
(

k−s
n−s

)(
N−k−n+s

s

)
(

k−r
n−r

)(
N−k−n+r

r

)
⎤
⎥⎦

1/2

=
(

k+n−r−s
n−r

)(
N−k−n+r+s

r

)
(

N
k

) ds

dr
. (C18)

Thus,
n∑

r=0

dr χ (k + n − r − s, n − s) χ (k + n − r − s, n − r)

= ds(
N
k

) n∑
r=0

(k + n − r − s

n − r

)(N − k − n + r + s

r

)

=
(

N+1
n

)
(

N
k

) ds, (C19)

where we used Eq. (C9) in the last equality. Inserting
Eq. (C19) in Eq. (C17), we obtain that ρ

TA
0 |φn〉 = λn |φn〉.

Hence the unique eigenstate |φn〉 of M0 with respect to μn

that fulfills in addition M− |φn〉 = 0 is also an eigenstate of
ρ

TA
0 with respect to λn. For n = 0, . . . , k, we can denote ac-

cordingly these states by |λn, μn〉 or just |n, n〉 for short. They
are given by Eqs. (C13) and (C15). In a very similar way, we
obtain that the unique eigenstate |φN−n〉 of M0 with respect
to μN−n that fulfills in addition M+ |φN−n〉 = 0 is also an
eigenstate of ρ

TA
0 with respect to λn. They can be denoted

accordingly |n, N − n〉.
Because of the commutation relations (C3), the state

M+ |n, n〉 is either zero or a common eigenstate of ρ
TA
0 and

M0 with respective eigenvalues λn and μn+1. In the latter case,
we can denote it by |n, n + 1〉 after normalization. Again,
M+ |n, n + 1〉 is either zero or generates a new common
eigenstate |n, n + 2〉. We can iterate this procedure a finite
number of steps q (since our Hilbert space is finite) until
we get a state |n, n + q〉 that fulfills M+ |n, n + q〉 = 0. In
this case we know from above that this state must identify
to |N − (n + q), n + q〉, and consequently q = N − 2n. In
this way, we obtain N + 1 − 2n common eigenstates |n, m〉
(m = n, . . . , N − n) for each n = 0, . . . , k. The total number
of these eigenstates amounts to

k∑
n=0

(N + 1 − 2n) = (k + 1)(N − k + 1), (C20)

which matches the dimension of the Hilbert space. �
Let us give an example. For N = 5 qubits and the biparti-

tion of k = 2 and N − k = 3 qubits, we present in Fig. 2 the
allowed quantum numbers defining (k + 1)(N − k + 1) = 12
eigenstates. We note that the eigenspectrum of ρ

TA
0 is highly

degenerate. The most-left (most-right) points are associated
to the states that are eliminated by M− (M+).

Finally we may note that 0 < λn < 2/(N + 1), for all k
and N .

FIG. 2. Schematic representation of the common eigenvectors
|n, m〉 of ρ

TA
0 and M0 with respect to the quantum numbers n and m

for N = 5 and k = 2. Each dot represents a common eigenvector and
the dot ensemble illustrates the allowed pairs of quantum numbers
(n, m).

APPENDIX D: ENTANGLEMENT WITNESSES FOR N > 5

For N = 7, the state ρ given by (2) with |ψ0〉 = |GHZ7〉 for
p = pmin = 140/141 is detected to be entangled by not having
two-copy PPT symmetric extension of the second party for the
bipartitions 1|6. An entanglement witness in the Dicke basis
is given by

W7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 0 0 0 d
0 b 0 0 0 0 0 0
0 0 c 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 c 0 0
0 0 0 0 0 0 b 0
d 0 0 0 0 0 0 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

⎧⎪⎪⎨
⎪⎪⎩

a = 0.00197514
b = 0.0643064
c = −0.189017
d = −31.2405

, (D1)

from which we get Tr(ρW7) ≈ −0.0038 < 0 and
min W7(θ, φ) ≈ 0.001975 at (θ, φ) = (0, 0). Taking into
account the results of Theorem 1, W7 detects that ρ(p) is an
entangled SAPPT state for pmin � p � pW7

ent ≈ 0.9930.
Similarly, for N = 9, the state ρ given by (2) with |ψ0〉 =

|GHZ9〉 for pmin = 630/631 is detected to be entangled by not
having a two-copy PPT symmetric extension of the second
party for the bipartitions 4|5. An entanglement witness in the
Dicke basis is given by

W9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 0 0 0 0 0 e
0 b 0 0 0 0 0 0 0 0
0 0 c 0 0 0 0 0 0 0
0 0 0 d 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 d 0 0 0
0 0 0 0 0 0 0 c 0 0
0 0 0 0 0 0 0 0 b 0
e 0 0 0 0 0 0 0 0 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D2)

042418-7



JONATHAN LOUVET et al. PHYSICAL REVIEW A 111, 042418 (2025)

with ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a = 0.00235791
b = −0.013747
c = 0.0621661
d = −0.1636915
e = −114.305

.

We have Tr(ρW9) ≈ −0.004 < 0 and min W9(θ, φ) ≈
0.0002234 at (θ, φ) = (0.381, 0). In the range pmin � p � 1,
i.e., when the state is SAPPT, W9 detects that ρ is entangled
for pmin � p � pW9

ent ≈ 0.99845.
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