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The persistent separability of certain quantum states, known as symmetric absolutely separable (SAS), under
symmetry-preserving global unitary transformations is of key significance in the context of quantum resources
for bosonic systems. In this paper, we develop criteria for detecting SAS states of any number of qubits. Our
approach is based on the Glauber-Sudarshan P representation for finite-dimensional quantum systems. We
introduce three families of SAS witnesses, one linear and two nonlinear in the eigenvalues of the state, formulated
respectively as an algebraic inequality or a quadratic optimization problem. These witnesses are capable of
identifying more SAS states than previously known counterparts. We also explore the geometric properties of
the subsets of SAS states detected by our witnesses, shedding light on their distinctions.
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I. INTRODUCTION

Quantum entanglement is a pivotal concept in the foun-
dations of quantum theory, with significant implications for
various quantum technology applications, including quan-
tum cryptography, quantum sensing, metrology, and quantum
simulation [1–6]. Understanding how to generate, detect,
and quantify entanglement is crucial, akin to managing any
valuable resource. One established method for creating entan-
glement is to apply a global unitary transformation to a system
of interest via a unitary channel or a smooth unitary evolution
driven by a control Hamiltonian. Nonetheless, it is possible
that even after such transformations, an initially separable
state remains separable [7], i.e., unentangled. The character-
ization of these states, known as absolutely separable (AS)
[8], helps identify necessary conditions in a state’s spectrum
to turn it into an entangled state after a unitary gate. In par-
ticular, such characterizations can provide valuable insights
about entangled states very close to the maximally mixed
state [9–12]. This question is particularly relevant in systems
subjected to noisy environments [13,14] as seen, e.g., in NMR
settings [15,16]. Determining whether the quantum state of a
multipartite system is separable is a NP-hard problem [17,18].
Consequently, the absolute version of the problem may share
the same complexity. So far, the characterization of AS states
has been limited to qubit-qudit systems [19–21]. For larger
multiqudit systems, there are several works defining witnesses
of (non)absolute separability [22–24].

In addition to the problem of implementing unitary oper-
ations, the permissible unitary transformations on a quantum
system are sometimes limited by its very physical nature, such
as the physical properties of its constituents. In this paper,
we focus on permutation-invariant mixed states of a system
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composed of many qubits, i.e., symmetric multiqubit states.
This type of states appears naturally in bosonic systems such
as multiphotonic [25,26] or atomic systems with a collective
angular momentum, be it spin, orbital, or a combination of
both. Formally speaking, the set of physical states valid for
bosonic systems reduces de facto to the symmetric subspace
H∨N

1 of the full Hilbert space H⊗N

1 formed by the tensor prod-
uct of N single-qubit spaces H1. This symmetric subspace
has dimension N + 1, indicating that the global unitary trans-
formations permitted are limited to operations of the group
SU(N + 1), acting solely within H∨N

1 , instead of the whole
SU(2N ) unitary group. The entanglement in bosonic systems
has been shown to be also a relevant resource for applications
in quantum metrology and quantum information [27].

In the context described above, the question of absolute
separability arises in the following form: which symmetric
states do maintain their separability even after undergoing any
global symmetry-preserving unitary transformation? These
particular states are referred to as symmetric absolutely sep-
arable (SAS) states [28,29], or absolutely classical states in
the framework of spin systems [30] (as elaborated in Sec. II).
Previous research has provided a complete characterization
of SAS states for two-qubit systems, and a numerical explo-
ration has been conducted for three-qubit systems [29]. For
an arbitrary number of qubits N , a nonlinear SAS witness
based on a purity condition of the state has been derived in a
prior study [30]. The primary objective of the present paper is
to introduce SAS witnesses based on the Glauber-Sudarshan
representation for spin states [31,32]. This representation,
originally developed for the quantum harmonic oscillator
[33,34], provides a P representation of symmetric multiqubit
states useful to describe quantum states in terms of classical-
like probability distributions and study the separability
problem [30,32].

The absolute symmetric version of properties other than
separability has also been explored, such as absolutely posi-
tive Wigner functions states [35–37] or absolutely symmetric
positive partial transpose (PPT) states when the partial
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TABLE I. Some relations on the correspondence between the spaces of spin- j states H( j) and symmetric N-qubit states H∨N
1 .

Spin- j states Symmetric N-qubit states

Spin quantum number j = N
2 Number of qubits N = 2 j

Standard Jz eigenbasis | j, m〉 ↔ |D( j−m)
2 j 〉 Symmetric Dicke states |D(k)

N 〉 ↔ | N
2 , N

2 − k〉
Spin-coherent states |�〉 = D(�) | j, j〉 Symmetric product states |�〉 = D(�) |D(0)

N 〉 = D(�) |+〉⊗N

transposed state is also restricted to the symmetric subspace
[28]. Additionally, it has been shown that an arbitrary qubit-
qudit state is absolutely PPT if and only if it is AS [21].
For a general system, however, it is only known that absolute
separability implies absolutely PPT, a natural consequence of
the Peres criterion [38].

This paper is organized as follows: Sec. II reviews the
necessary physical concepts and mathematical methods. In
Secs. III and IV, we calculate and formulate three families
of SAS witnesses. We explain the methods to calculate the
witness functionals for two- and three-qubit cases in Sec. V.
We analyze the sets of SAS states detected by these witnesses
for a general number of qubits and compare them with each
other in Sec. VI. Finally, we conclude with some closing
remarks in Sec. VII.

II. CONCEPTS AND METHODS

A. Equivalence between symmetric multiqubit states
and spin- j states

Starting with the Hilbert space H1 of a single-qubit system,
which is spanned by two basis vectors, denoted as |+〉 and
|−〉, we proceed to define the Hilbert space for a collection
of N qubits, HN = H⊗N

1 , spanned by the 2N product states
|s1〉 ⊗ · · · ⊗ |sN 〉 with sk ∈ {+,−} for k = 1, . . . , N . For our
purposes, we will consider only the symmetric subspace H∨N

1 ,
of dimension N + 1, spanned by the symmetric Dicke states
|D(k)

N 〉 defined as [39]∣∣D(k)
N

〉 = K
∑
π∈SN

π (|+〉 ⊗ · · · |+〉︸ ︷︷ ︸
N−k

⊗ |−〉 ⊗ · · · |−〉︸ ︷︷ ︸
k

) (1)

for k = 0, . . . , N , where K is a normalization constant and the
sum runs over all permutations of N elements SN . In H∨N

1 , the
product states have the form ⊗N |ψ〉, with |ψ〉 = U |+〉 and
U ∈ SU(2). They are generally referred to as spin-coherent
states [40], due to the isomorphism between the symmet-
ric N-qubit space H∨N

1 and the spin- j = N/2 Hilbert space
H( j) (see Table I). The rule of correspondence associates
the basis vectors of H1 with the Jz eigenbasis of a spin-1/2
system, |±〉 = |1/2,±1/2〉. Consequently, the Dicke basis
corresponds to the eigenbasis of the Jz angular momentum
operator in the (2 j + 1)-dimensional irreducible representa-
tion (spin- j irrep), |D( j−m)

N 〉 = | j, m〉. The diagonal SU(2)
transformations on the symmetric multiqubit states are trans-
lated to rigid rotations R ∈ SO(3) according to the spin- j
irrep D( j)(R), or just D(R) for short. The entries of these
(N + 1) × (N + 1) matrices can be expressed in the Euler an-
gles as D( j)

m′m(α, β, γ ) = 〈 j, m′| e−iαJz e−iβJy e−iγ Jz | j, m〉 [41].
Another correspondence given by the isomorphism is between
the symmetric product states and the spin-coherent states
D(R) |+〉⊗N = D(R) | j, j〉. The symmetric product states can

then be parametrized just by the orientation � of the rotated
quantization axis:

|�〉 ≡ D( j)(�) | j, j〉 = D( j)(�) |+〉⊗N , (2)

with D( j)(�) = D( j)(φ, θ, 0) the rotation that reorients the z
axis to the n axis with spherical angles � = (θ, φ) [41]. We
can conclude by the previous observation that the symmetric
product states constitute a two-dimensional sphere S2. We
summarize the correspondence between symmetric multiqubit
states and spin- j states in Table I. While most of the dis-
cussion throughout the paper is explained in the multiqubit
framework, the calculations are mostly done in the spin lan-
guage where the SU(2) irreps appear naturally.

B. Multipole operators

We summarize below the basic properties of the set of
multipole operators {TLM}, with L = 0, . . . , 2 j and M =
−L, . . . , L [41,42]. They form an orthonormal basis in the
space of operators acting on spin- j states, B(H( j) ), i.e.,

Tr(T †
L1M1

TL2M2 ) = δL1L2δM1M2 . (3)

In addition, they satisfy

T †
LM = (−1)MTL −M (4)

and transform block diagonally under rotations R ∈ SO(3)
according to the spin-L irrep D(L)(R):

D( j)(R) TLM D( j)†(R) =
L∑

M ′=−L

D(L)
M ′M (R) TLM ′ . (5)

The TLM operators can be given explicitly in terms of the
Clebsch-Gordan coefficients C jm

j1m1 j2m2
as follows [41]:

TLM =
j∑

m,m′=− j

(−1) j−m′
CLM

jm, j−m′ | j, m〉 〈 j, m′| . (6)

A mixed spin- j state ρ can always be expanded in the TLM

basis, which gives

ρ =
2 j∑

L=0

L∑
M=−L

ρLMTLM = ρ0 +
2 j∑

L=1

L∑
M=−L

ρLMTLM, (7)

with ρLM = Tr(ρT †
LM ) and ρ0 = (2 j + 1)−11 the maximally

mixed state in the symmetric sector. The hermiticity of the
density matrix enforces that ρ∗

LM = (−1)MρL−M . We will de-
note by r the Hilbert-Schmidt distance between ρ and ρ0.
It reads

r ≡ ‖ρ − ρ0‖HS =
√

Tr(ρ2) − (2 j + 1)−1 (8)
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or, in terms of ρLM , as

r =
√√√√ 2 j∑

L=1

(
ρ2

L0 + 2
L∑

M=1

|ρLM |2
)

. (9)

C. Separability in terms of P representation

The Glauber-Sudarshan representation for spin states
involves expressing the density operator in a form that resem-
bles a classical probability distribution function on the sphere
[31]:

ρ =
∫

S2
P(ρ,�) |�〉 〈�| d� (10)

where d� = dμ(�) is the area element of the sphere S2, and
with |�〉 given by Eq. (2). The expression (10) is called a P
representation of ρ. The correspondence described in Sec. II A
allows us to establish a P representation of symmetric multi-
qubit states ρ ∈ B(H∨N

1 ) straightforwardly:

ρ =
∫

S2
P(ρ,�)(D(�) |+〉 〈+| D†(�))⊗N d�. (11)

We are interested in separable multiqubit states [7], i.e.,
those that can be written in terms of a classical (positive)
probability distribution over the whole set of product states
D(�1) |+〉 ⊗ · · · ⊗ D(�N ) |+〉 ∈ H⊗N

1 . However, we do not
need to consider the whole set for symmetric states. Indeed, it
was shown in Refs. [43,44] that a symmetric state is separable
if and only if it can be written in terms of a positive probability
distribution over the smaller set of symmetric product states
(D(�) |+〉)⊗N . It follows that a symmetric multiqubit state ρ

is separable if and only if there exists a P representation of the
form (11) with a positive P function defined on the sphere:

P(ρ,�) � 0 ∀ � ∈ S2. (12)

In the language of spin states, the question of separability
is that of classicality because the symmetric product states
correspond to spin-coherent states (see Table I), considered
to be the most classical spin states [32,40].

The most general P representation of a state ρ ∈ B(H∨N
1 )

has the form [32]

P(ρ,�) = P0(ρ, �) +
+∞∑

L=2 j+1

L∑
M=−L

xLMYLM (�), (13)

where P0(ρ, �) is uniquely defined for ρ and given a poste-
riori by Eqs. (15) and (16), xLM are complex numbers, and
YLM (�) are spherical harmonics. The P function of a state
is not unique because the variables xLM can be any complex
number provided that (13) is real and covariant under rotations
[45]:

P(ρ,�) = P(D(�)†ρD(�), 0). (14)

On the other hand, P0(ρ, �) is a function uniquely defined for
each ρ, referred to here as the truncated P function of ρ and
given by

P0(ρ,�) =
√

4π

2 j + 1

2 j∑
L=0

(
C j j

j jL0

)−1
QL(ρ,�), (15)

TABLE II. List of eigenvalues �k of w(1)(�) as given by Eq. (21)
with k = 0, . . . , N for several numbers of qubits.

Number of qubits N = 2 j �k

2 1, −3, 3
3 −1, 4, −6, 4
4 1, −5, 10, −10, 5
5 −1, 6, −15, 20, −15, 6
6 1, −7, 21, −35, 35, −21, 7

with real functions (by the hermiticity of ρ)

QL(ρ,�) =
L∑

M=−L

ρLMYLM (�) (16)

which are covariant under rotations, just as P is [see Eq. (14)].
The latter equations come from the expansion of the operator
|�〉 〈�| in terms of the multipole operators [32,46,47]

|�〉 〈�| =
2 j∑

L=0

L∑
M=−L

(2 j)!
√

4π T †
LMYLM (�)√

(2 j + L + 1)!(2 j − L)!
(17)

combined with Eqs. (7) and (10). The function P0(ρ,�) is
also obtained by applying the Stratonovich-Weyl map w(s)(�)
for s = 1 [45], which reads

w(1)(�) =
√

4π
2 j+1

∑2 j
L=0

∑L
M=−L

(
C j j

j jL0

)−1
Y ∗

LM (�)TLM, (18)

to the state ρ:

P0(ρ,�) = Tr[ρ w(1)(�)]. (19)

In Appendix A, we show that the eigendecomposition of the
kernel w(1)(�) for a general spin j reads

w(1)(�) =
j∑

m=− j

� j+m | j, m; �〉 〈 j, m; �| (20)

with

�k = (−1)2 j−k

(
2 j + 1

k

)
(21)

for k = 0, . . . , 2 j and | j, m; �〉 = D(�) | j, m〉. In particular,
the value of P0(ρ,�) at the north pole (θ, φ) = (0, 0), de-
noted as � = 0, reads

P0(ρ, 0) =
j∑

m=− j

� j+m 〈 j, m| ρ | j, m〉 . (22)

As an illustration, we plot the spectrum � j+m for small num-
bers of qubits in Table II. The truncated P0 function is a
valid P function by itself because it is real, is covariant under
rotations (14), and fulfills Eq. (11). However, it generally does
not satisfy the positivity condition, even for separable states.
Hence, the additional terms in Eq. (13) play a crucial role, as
illustrated by examining a spin-coherent state oriented along a
specific direction �0. A positive P realization of |�0〉 〈�0| is
a Dirac delta function on the sphere, P(ρ,�) = δ(� − �0).
However, it is clear that such a delta function cannot be ob-
tained by truncating the infinite sum in Eq. (13). Indeed, if
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we did this, the resulting P function would always be negative
somewhere on the sphere, as discussed in Ref. [30].

D. Symmetric absolute separability

Finally, we introduce the concept of SAS states, and de-
note their set by Asym. SAS states are characterized by the
property that every element within their full unitary orbit
{UρU † : U ∈ SU(2 j + 1)} is separable. The SAS condition
can be reformulated as the existence of a positive P function
for UρU †, that is,

min
U∈SU(2 j+1)

�∈S2

P(UρU †,�) � 0. (23)

This formulation implicitly assumes that the xLM variables in
the P function (13) can depend on the state ρ and the applied
unitary transformation U .

A SAS witness [48], i.e., a functional of the state ρ that
detects some SAS states, can be written only in terms of the
eigenvalues of ρ because these form a basis for SU(2 j + 1)
invariant quantities. For example, in the particular case of a
two-qubit system, it was shown in Ref. [29] that a symmetric
state ρ with eigenspectrum (λ0, λ1, λ2) sorted in descending
order is SAS if and only if√

λ1 +
√

λ2 � 1. (24)

For N = 3, numerical evidence and conjectures about the
structure of the set Asym are also reported in Ref. [29]. More
generally, for an arbitrary N , there is a SAS witness derived
in Ref. [30] based on the distance r (8). It is denoted here by
W0, and reads as follows.

Witness W0 [30]: A symmetric N-qubit state ρ is SAS if its
Hilbert-Schmidt distance to the maximally mixed state in the
symmetric sector r satisfies

r2 � 1

2(N + 1)
[
(2N + 1)

(2N
N

)− (N
2 + 1

)] . (25)

We use the symbol S0 to denote the subset of SAS states
witnessed by W0. We use the same notation for subsequent
witnesses.

E. Unistochastic and bistochastic matrices

We end this section by introducing the concept of d × d
bistochastic matrix B ∈ Bd [49]. Bistochastic matrices pos-
sess positive entries, and the sum of entries in each column
or row equals 1. The set of bistochastic matrices, denoted as
Bd , forms a polytope in R(d−1)2

. One approach to parametrize
this set involves introducing free variables in a (d − 1) ×
(d − 1) minor of the matrix B, and then the remaining entries
are determined by satisfying the bistochastic conditions. For
instance, B3 can be parametrized by b = (b1, b2, b3, b4) ∈
[0, 1]4 as

B(b) =
⎛
⎝ b1 b2 1 − b1 − b2

b3 b4 1 − b3 − b4

1 − b1 − b3 1 − b2 − b4
∑4

i=1 bi − 1

⎞
⎠, (26)

where the positivity condition of the entries of B defines the
domain of the bk variables [50,51]:

B3 =
{

B(b)
∣∣b ∈ [0, 1]4, 1 �

∑
i

bi, b1 + b2 � 1,

b1 + b3 � 1, b2 + b4 � 1, b3 + b4 � 1

}
. (27)

For the sake of simplicity, we simply write b ∈ B3 whenever
b satisfies these conditions. Another useful parametrization of
bistochastic matrices follows from the fact that they are the
convex hull of permutation matrices σπ [49]:

B =
∑
π∈Sd

cπσπ , (28)

where cπ � 0,
∑

π cπ = 1.
A special subset of bistochastic matrices is the unistochas-

tic matrices B ∈ Ud whose entries are specified by a unitary
matrix V ∈ SU(d ), Bi j = |Vi j |2. While for d = 2,U2 = B2, a
similar equality does not hold for d � 3 [50–52]. For exam-
ple, the vectors b defining a unistochastic matrix B ∈ U3 must
satisfy, in addition to the condition b ∈ B3, an extra condition
related to the positive area of a triangle (see Refs. [50,51,53]
for more details), such that

U3 = B3 ∩ {B(b)|A(b) � 0}, (29)

with

A(b) ≡ 4b1b2b3b4 − (b1 + b2 + b3 + b4

− 1 − b1b4 − b2b3)2. (30)

Note that there is no known full characterization of unis-
tochastic matrices for d > 3 [52,53], with the exception of
partial results, such as the characterization of circulant ma-
trices for d = 4 [54] or the study of subsets of bistochastic
matrices relevant to quantum information for the general di-
mension d [55].

III. POLYTOPES OF SAS STATES

Our first family of SAS witnesses, linear in ρ, is obtained
by analyzing the truncated P function (P0), i.e., Eq. (13) with
xLM = 0 for all L and M. Throughout this section, we use a
method similar to that in Ref. [37]. First, we write a state in the
form ρ = U�U †, with � a diagonal matrix in the | j, m〉 basis
with eigenvalues λk sorted in nonincreasing order. The SAS
criterion (23) is then translated by the following condition for
P0:

min
U∈SU(2 j+1)

�∈S2

P0(U�U †,�) = min
V ∈SU(2 j+1)

P0(V �V †, 0) � 0,

(31)
where we have used the covariance property of P0 [see
Eq. (14)] to absorb the rotation in the unitary transformation
V ≡ D(�)†U ∈ SU(2 j + 1). Using Eq. (22), the previous ex-
pression can be written in terms of the entries Bkl = |Vkl |2 of
a unistochastic matrix B as follows:

P0(V �V †, 0) =
2 j∑

k, l=0

λk|Vkl |2�l = λB�T , (32)
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FIG. 1. Polytope of SAS states S1 (dark red) for N = 2 in the
simplex of eigenvalues, displayed in barycentric coordinates. The
blue dotted lines, whose equations are given by the equality condition
in Eq. (34), define the edges of the polytope. The green area delimited
by the condition (24) represents all SAS states (see Ref. [29]).

where λ = (λ0, . . . , λ2 j ) is the state eigenspectrum and � =
(�0, . . . , �2 j ) is the kernel eigenspectrum (21). Using the
decomposition of B into permutation matrices (28), we get

P0(UρU †,�) =
|S2 j |∑
α=1

cα

2 j∑
k=0

λk�πα (k). (33)

Now, Birkhoff–von Neumann’s theorem (see, e.g., Theorem
8.7.2 of Ref. [56]) establishes that a convex function with
respect to the entries Bkl has extremal values in the permuta-
tion matrices. Moreover, since our function is linear in B, the
global minimum is then achieved in one of the permutation
matrices. In particular, and by following the same line of
reasoning as in Ref. [37], the SAS condition (23) is met for
states whose spectrum satisfies

2 j∑
k=0

λk�πα (k) � 0 (34)

for each permutation πα . As explained in Ref. [37], all in-
equalities (34) are fulfilled if ρ satisfies the strictest inequality
given by

λ↓�↑ T � 0, (35)

where the upper arrow indicates ascending (↑) or descending
(↓) order of the eigenvalues. In this way, we have derived our
first family of SAS witnesses valid for any number of qubits.

WitnessW1: A symmetric N-qubit state ρ is SAS if its eigen-
spectrum λ fulfills λ↓�↑ T � 0, where �k = (−1)N−k

(N+1
k

)
for

k = 0, . . . , N .

The set S1 of SAS states detected by the witness W1

typically constitutes a polytope featuring (N + 1)! faces, cor-
responding to the number of inequalities given by (34), and a

FIG. 2. Polytope S1 for N = 3 next to the full tetrahedron of
eigenstates in barycentric coordinates. The vertices of the polytope
are indicated by the blue dots. The twice degenerate eigenvalues of
�k (see second row of Table II) produce degeneracy in the faces.
As a result, some of the blue dots are in the middle of the edges of
the polytope. The green points are SAS states obtained by numerical
optimization as described in Ref. [29].

total of

N∑
k=1

(
N + 1

k

)
= 2(2N − 1) (36)

vertices [37], each one given by the intersection of N faces. As
an illustration, we plot in Figs. 1 and 2 the resulting polytope
S1 for N = 2 and 3, respectively, in the barycentric coordinate
system (see the Appendix of Ref. [37] for more details on this
representation). For N = 2, S1 has six faces and six vertices
according to the previous discussion. However, when dealing
with odd values of N , the degeneracy in the �k eigenvalues,
as shown in Table II, leads to a degeneracy among the faces of
S1. Consequently, some vertices are positioned in the middle
of an edge. We observe this degeneracy for N = 3 in Fig. 2,
where S1 contains 12 faces instead of 24, and 6 out of the 14
vertices are situated along the middle of certain edges.

IV. NONLINEAR SAS WITNESSES

Now that we have characterized all detectable SAS states
on the basis of the truncated P0 function, S1, let us consider
additional terms of the P function present in the general form
(13) to derive stronger nonlinear witnesses. In order to sim-
plify the complexity of the minimization problem presented in
Eq. (23) and facilitate the derivation of analytical results, we
choose to focus exclusively on additional terms (terms with
L > 2 j) that arise from the product of QL functions, as defined
in Eq. (16). Specifically, we consider only those extra terms,
denoted hereafter as P(2 j)

L = P(2 j)
L (ρ,�), obtained by squaring

the QL functions and then subtracting their lower angular
momentum components so that only spherical harmonics with
L > 2 j are involved. We thus add to the truncated P function
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terms proportional to

P(2 j)
L ≡ Q2

L −
2 j∑

σ=0

σ∑
ν=−σ

(∫
Q2

L Y ∗
σν d�

)
Yσν, (37)

where only the integrals with σ even are nonzero. It is im-
portant to note that, by construction, the functions (37) are
nonzero only for L > j and are covariant under rotations as
inherited from the QL’s. Consequently, we can work only with
the P functions of a unitarily transformed state ρ ′ evaluated at
� = 0:

P(UρU †,�) = P(ρ ′, 0) = P0(ρ ′, 0) +
2 j∑

L> j

yLP(2 j)
L (ρ ′, 0),

(38)

with ρ ′ = V ρV †, V = D(�)†U and yL real numbers. Just like
the xLM variables in Eq. (13), the yL’s can depend on the
state ρ and U . However, for the sake of simplicity, we will
only consider them as variables independent of the unitary
and the state. The general idea for obtaining a SAS witness
is to reduce the minimization problem on the full unitary orbit
formulated in Eq. (23) to a problem that requires minimization
on the unistochastic matrices only, as in the developments for
obtaining the polytopes of SAS states.

A direct application of a formula giving the integral of a
triple product of spherical harmonics [see, e.g., Eq. (4), p. 148
of Ref. [41]] together with the equality |ρLμ| = |ρL−μ| lead us
to an algebraic expression for the functions P(2 j)

L (ρ, 0) defined
in Eq. (37):

P(2 j)
L (ρ, 0) = 2L + 1

4π

L∑
μ=0

F (L, μ)|ρLμ|2, (39)

with F (L, μ) state-independent coefficients given by

F (L, μ) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
2 j∑

σ=0
σ even

(
Cσ0

L0L0

)2
if μ = 0

2(−1)μ+1
2 j∑

σ=0
σ even

Cσ0
L0L0C

σ0
LμL−μ if μ �= 0

,

(40)
where the identity Cσ0

L0L0 = 0 for σ odd restricts the sum to
σ even. Some values of F (L, μ) are given in Table IV. Note
that these coefficients are real and can be positive or negative.
The factors (2L + 1)/4π in Eq. (39) can be absorbed into the
variables yL without loss of generality to rewrite Eq. (38) as
follows:

P(ρ ′, 0) = P0(ρ ′, 0) +
2 j∑

L> j

L∑
μ=0

yLF (L, μ)|ρ ′
Lμ|2. (41)

Using Eq. (9) squared, we can isolate the component |ρ ′
2 j 1|2

as

2|ρ ′
2 j 1|2 = r′2 −

2 j∑
L=1

ρ ′
L0

2 − 2
2 j∑

L=1

L∑
μ=1+δL,2 j

|ρ ′
Lμ|2, (42)

TABLE III. SAS witnesses W1 and W3 for a state with eigen-
spectrum λ = (λ0, . . . , λN ) sorted in descending order λ0 � λ1 �
· · · � λN .

Number of qubits N = 2 j

{
Witness W1

Witness W3

2

{
λ (−3, 1, 3)T � 0
r2 � 1

78 ≈ 0.01282

3

{
λ (−6, −1, 4, 4)T � 0
r2 � 1

354 ≈ 0.002 825

4

{
λ (−10, −5, 1, 5, 10)T � 0
r2 � 11

25390 ≈ 0.000 433 2

5

{
λ (−15, −15, −1, 6, 6, 20)T � 0
r2 � 1595

16058598 ≈ 0.000 099 32

and then insert this expression into Eq. (41) to get

P(ρ ′, 0) = P0(ρ ′, 0) + �(ρ ′, 0) + �̃(ρ ′, 0) (43)

with

�(ρ ′, 0) =
(

y2 jF (2 j, 1)

2

)
r′2

+
2 j∑

L=1

[
yLF (L, 0)�(L − j) − y2 jF (2 j, 1)

2

]
ρ ′

L0
2

(44)

and

�̃(ρ ′, 0) =
2 j∑

L=1

L∑
μ=1+δL,2 j

[yLF (L, μ)�(L − j)

− y2 jF (2 j, 1)]|ρ ′
Lμ|2, (45)

where �(x) is the Heaviside step function defined here as

�(x) =
{

0 x � 0
1 x > 0 . (46)

In what follows, we will omit the contribution of �̃ in
Eq. (43), under the assumption that it is positive: �̃(ρ ′, 0) �
0. This simplification allows us to reduce the requirement
of positivity for P to the simpler condition of positivity for
PLB ≡ P0 + �. The general form of the remaining function

TABLE IV. Numerical values of F (L, μ) defined in Eq. (40) for
several numbers of qubits and N � L > N/2.

N = 2 j L F (L, μ) for μ = 0, . . . , L

2 2 18
35 , − 24

35 , 6
35

3

{
2
3

{
18
35 , − 24

35 , 6
35

2
3 , − 4

7 , − 2
7 , 4

21

4

{
3
4

{
100
231 , − 50

77 , 20
77 , − 10

231
250
429 , − 90

143 , − 20
143 , 10

39 ,− 10
143

5

⎧⎨
⎩

3
4
5

⎧⎪⎨
⎪⎩

100
231 ,− 50

77 , 20
77 , − 10

231
250
429 , − 90

143 , − 20
143 , 10

39 , − 10
143

2
3 , − 80

143 ,− 40
143 , 20

429 , 30
143 , − 12

143
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PLB reads

PLB(ρ ′) = f (ρ ′) +
2 j∑

L=1

(
gLρ ′

L0 + hLρ ′
L0

2)
, (47)

where the function f (ρ ′) and the coefficients gL and hL are
deduced from Eqs. (15) and (43) as being

f (ρ ′) = 1

2 j + 1
+
(

y2 jF (2 j, 1)

2

)
r′2,

gL =
√

2L + 1

2 j + 1

(
C j j

j jL0

)−1
,

hL = yLF (L, 0)�(L − j) − y2 jF (2 j, 1)

2
. (48)

Note that gL is a constant, hL depends on the yL variables,
while the function f (ρ ′) depends only on the SU(2 j + 1)-
invariant distance to the maximally mixed state r′ given by
Eq. (8). Hence, f , gL, and hL are constant along the unitary
orbit of ρ ′. In the end, the function PLB only depends on the
components ρL0 = Tr(ρT †

L0) which, for a general element of
the unitary orbit ρ ′ = V �V †, reads

ρ ′
L0 = Tr(V �V †T †

L0)

=
j∑

m,m′=− j

Vm′mλmV ∗
m′mtLm′

= λB tT
L (49)

with tL = (tL, j, , . . . , tL,− j ) the vector containing the eigenval-
ues of TL0 (6), tL,m = 〈 j, m| TL0 | j, m〉, and B the unistochastic
matrix defined from V , with entries Bkl = |Vkl |2. The expres-
sion of PLB eventually reduces to

PLB(UρU †) = f (ρ ′) +
2 j∑

L=1

[
gLλB tT

L + hL
(
λB tT

L

)2]
. (50)

As a result, we have moved from a minimization problem
over the full unitary orbit of a state to a simpler problem that
necessitates a minimization over the unistochastic matrices
only:

min
U∈SU(2 j+1)

�∈S2

P(UρU †,�) = min
V ∈SU(2 j+1)
V =D(R)†U

P(V ρV †, 0)

� min
V ∈SU(2 j+1)

PLB(V ρV †)

= min
b∈U2 j+1

PLB(V ρV †) (51)

where in the second line we have used our assumption �̃ � 0
and in the last line we refer to a parametrization b of U2 j+1,
as discussed in Sec. II E. In particular, the terms λB tT

L in PLB

are linear expressions of the b variables of the bistochastic
matrices. It follows that PLB is quadratic over b (see also
Appendix B). The inequality (51) is valid as long as the
contribution �̃ given in Eq. (45) is positive, which defines
the admissible range of variation of the parameters yL in our
approach.

In principle, the minimization on the unistochastic matrices
U2 j+1 presented in Eq. (51) seems intractable to perform for

2 j = N > 3 due to the lack of a complete characterization of
U2 j+1. However, we can extend the minimization domain to
the bistochastic matrices b ∈ B2 j+1 ⊃ U2 j+1 as follows,

min
U∈SU(2 j+1)

�∈S2

P(UρU †,�) � min
b∈U2 j+1

PLB(V ρV †)

� min
b∈B2 j+1

PLB(V ρV †), (52)

and prove that the second inequality is in fact always tight.
This follows from two key facts:

(i) For any bistochastic matrix B, one can always find a
unistochastic matrix B′ such that λB = λB′ for any vector λ

[57].
(ii) The bistochastic matrix appears in the objective func-

tion (50) only in the form λB.
From Eq. (52), we can now derive another family of SAS

witnesses, denoted as W2({yL}), or just W2 for short, taking
the form of a quadratic optimization problem on the b vari-
ables of the bistochastic matrix [see Appendix B, in particular
Eq. (B3)], with the yL parameters constrained by the positivity
condition �̃(ρ ′, 0) � 0 (45). These witnesses are expressed as
follows.

Witness W2({yL}): A symmetric N-qubit state ρ is SAS if

min
b∈B2 j+1

PLB(UρU †) � 0, (53)

where PLB(UρU †) is given by Eq. (50) and yL are real param-
eters restricted by the inequalities

yLF (L, μ)�(L − j) − y2 jF (2 j, 1) � 0, (54)

for L = 1, . . . , 2 j and μ = 1, . . . , L, where the coefficients
F (L, μ) are defined in Eq. (40).

One can relax the minimization problem to the whole real
domain b ∈ R4 j2

while retaining a useful SAS witness pro-
vided that hL > 0, otherwise the Hessian (B4) of the quadratic
function PLB (50) has a negative eigenvalue and hence PLB has
a minimum equal to negative infinity. The latter requirement
implies that

yLF (L, 0)�(L − j) >
y2 jF (2 j, 1)

2
(55)

for all L. Under these assumptions, the global minimum of
PLB on b ∈ R4 j2

has an algebraic solution given by (see Ap-
pendix B for details)

min
b∈U2 j+1

PLB � min
b∈R4 j2

PLB = f − 1

4

2 j∑
L=1

g2
L

hL
. (56)

Any state for which the right-hand side of Eq. (56) is positive
is then SAS, which after a bit of algebra can be rewritten as an
upper bound on r:

r2 �
( −2

y2 jF (2 j, 1)

)⎛⎝ 1

2 j + 1
− 1

4

2 j∑
L=1

g2
L

hL

⎞
⎠. (57)

Note that we have used the inequality y2 j � 0, which is a
direct consequence of F (2 j, 1) < 0 shown in Appendix C
[see Eq. (C1)] and the inequality (54) for L = 1. In order
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to obtain the best SAS witness, we need to maximize the
right-hand side of the last equation over the admissible pa-
rameters yL. If we first maximize Eq. (57) with respect to yL

for L �= 2 j, we find that we need to maximize the hL variables
(48) and consequently maximize the yL variables, which are
upper bounded by the conditions (54). Our numerical obser-
vations [see Eq. (C2)] show that the strictest upper bound is
yL � y2 jF (2 j, 1)/F (L, 1). We can then evaluate yL at these
apparently tight upper bounds. Finally, we maximize Eq. (57)
with respect to y2 j , to obtain the extremal point:

yL = F (2 j, 1)

F (L, 1)
y2 j, for j < L < 2j,

y2 j = (2 j + 1)

F (2 j, 1)

2 j∑
L=1

g2
L

2�(L − j) F (L,0)
F (L,1) − 1

. (58)

In particular, yL � 0 implies that hL > 0 is fulfilled, as re-
quired above. Thus, we obtain a simpler SAS witness W3,
weaker than W2, but with an analytical expression.

Witness W3: A symmetric N-qubit state ρ is SAS if its
distance r to the maximally mixed state in the symmetric sector
fulfills

r2 � 1

(2 j + 1)2

⎛
⎝ 2 j∑

L=1

g2
L

1 − 2�(L − j) F (L,0)
F (L,1)

⎞
⎠−1

(59)

with F (L, μ) and gL state-independent constants defined in
Eqs. (40) and (48).

One final remark needs to be made about W3. We can
eliminate another ρLμ in Eq. (42) instead of ρ2 j 1. However,
the witnessed SAS set does not change substantially.

V. TWO- AND THREE-QUBIT CASES

In this section, we exemplify our witnesses in the specific
cases of N = 2 and 3, in order to clarify all the technical
aspects of our method.

A. N = 2 qubits

In this case, the witness W1 is given by

λ(↑)(−3, 1, 3)T � 0. (60)

We plot in Figs. 1 and 3 the witnessed set S1 in the whole
eigenspectra simplex of the state and in one Weyl chamber,
respectively. In contrast, the other two witnesses, W2({yL})
and W3, rely on the P function (38) with only one extra term:

P(ρ,�) = P0(ρ,�) + y2P(2)
2 (ρ,�), (61)

with

4π

5
P(2)

2 (ρ, 0) = 6

35

(
3ρ2

20 − 4|ρ21|2 + |ρ22|2
)
. (62)

By scaling y2 with the factor 5/4π , and performing the change
of variable (42) in Eqs. (61) and (62), reading explicitly

2|ρ21|2 = r2 −
2∑

L=1

ρ2
L0 − 2

2∑
L=1

L∑
M=1+δL,2

|ρLM |2, (63)

FIG. 3. SAS states in the first Weyl chamber (λ0 � λ1 � λ2) for
N = 2 represented in barycentric coordinates. The curves correspond
to the bounds of the sets S0 (blue) and S3 (orange), established by the
purity-based witnesses W0 and W3, respectively. The green area en-
compasses all the remaining SAS states, as completely characterized
by the condition (24). The witnessed states S1 are depicted in light
red. Lastly, S2 with y2 = 455/12 is formed by the light and dark red
regions. We note that S2 is only very slightly bigger than S3.

we get

P(ρ, 0) = P0(ρ, 0) + �(ρ, 0) + �̃(ρ, 0), (64)

with

�(ρ, 0) = 6

35
y2
(−2r2 + 2ρ2

10 + 5ρ2
20

)
,

�̃(ρ, 0) = 6

35
y2(4|ρ11|2 + 5|ρ22|2). (65)

The inequality P � P0 + � ≡ PLB defines the admissible re-
gion (54) of the y2 variable, here y2 � 0. The function PLB has
now the form (47) with factors (48) given by

f (ρ) = 1

3
− 12

35
y2r2,

(g1, g2) =
(√

2, 5

√
2

3

)
,

(h1, h2) = 6

35
(2y2, 5y2), (66)

which are the elements needed to calculate the witness
W2({yL}) defined by Eq. (53). Lastly, we use Eq. (59) to
calculate our third witness at y2 = 455/12 (58):

W3 for two qubits : ρ ∈ Asym if r2 � 1

78
. (67)

B. N = 3 qubits

The linear witness W1 is given by

λ(↑)(−6,−1, 4, 4)T � 0. (68)

Its corresponding witnessed SAS set S1 is plotted in Figs. 2
and 4 in dark red. Now, for the nonlinear witnesses, we start
by defining the respective P function (38) which has two
additional terms:

P = P0 + y2P(3)
2 + y3P(3)

3 , (69)
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FIG. 4. SAS states in the first Weyl chamber (λ0 � λ1 � λ2 �
λ3) for N = 3. The dark red and orange surfaces are the boundaries of
S1 and S3, respectively. The dark red points are the states contained
in S2({yL}) with yL equal to Eq. (58). The green points are SAS states
obtained numerically as described in Ref. [29].

where P(3)
2 = P(2)

2 [given by Eq. (62)] and

4π

7
P(3)

3 (ρ, 0) = 2

21

(
7ρ2

30 − 6|ρ31|2 − 3|ρ32|2 + 2|ρ33|2
)
.

(70)

By using Eq. (42) to substitute |ρ31|2 in the P function, we get
P = P0 + � + �̃ with

� =2

7

[
x3
(
ρ2

10 − r2
)+

(
9y2 + 5y3

5

)
ρ2

20 + 10

3
y3ρ

2
30

]
,

�̃ =2

7

[
2y3|ρ11|2 + 2

5
(5y3 − 6y2)|ρ21|2

+
(

3

5
y2 + 2y3

)
|ρ22|2 + y3|ρ32|2 + 8

3
y3|ρ33|2

]
. (71)

Again, P � P0 + � ≡ PLB when all the coefficients of the
terms in �̃ are positive, i.e.,

y3 � 0, 5y3 − 6y2 � 0, 3
5 y2 + 2y3 � 0. (72)

Let us remark that y2 may take negative values. Now, we can
calculate the factors (48) which are necessary to calculate PLB

and the witness W2({yL}). They are given by

f (ρ) = 1

4
− 2

7
y3r2, (g1, g2, g3) =

(√
5

2
,

5

2
,

7
√

5

2

)
,

(h1, h2, h3) = 2

7

(
y3,

9

5
y2 + y3,

10

3
y3

)
. (73)

Finally, for W3, we have the extra condition hL > 0 (55) for
the yL values

9y2 + 5y3 > 0, (74)

which is always satisfied for the extremal yL values given in
Eq. (58), which read

y2 = 2065

16
, y3 = 1239

8
. (75)

The witness W3 eventually reads

W3 for three qubits : ρ ∈ Asym if r2 � 1

354
. (76)

VI. DISCUSSION AND COMPARISON
BETWEEN SAS WITNESSES

Let us now discuss the physical implications of our SAS
witnesses (W1, W2, and W3) and explore their differences. In
Table III, we present the witnesses W1 and W3 for N ranging
from 2 to 5, while the witness W2({yL}) generally requires a
numerical optimization. To highlight the differences between
these witnesses, we illustrate their corresponding sets Sk in
Figs. 1–4 for N = 2 and 3, respectively, alongside the set S0

defined by the witness W0 previously obtained in Ref. [30].
In addition, we provide a video in the Supplemental Material
[58] showing S2({yL}) as yL varies for N = 2. Below, we give
some general observations and remarks about our witnesses.

The sets Sk exhibit diverse geometric forms. S1 is repre-
sented as a polytope, in contrast to S0 and S3, which appear as
balls centered around ρ0. Furthermore, S2 generally exhibits
a more complex and nontrivial shape. By construction, S1 =
S2({yL = 0}) and S3 ⊂ S2({yL}) for {yL} given by Eq. (58).
A detailed analysis reveals that the ball S0 is included in
and tangent to S1, meaning that the largest inner SAS ball
contained within S1 actually coincides with S0. We prove this
result for all values of N in Appendix D.

For N = 2 and 3, we observe that S0 � Sk for k = 1, 2, 3.
This result is expected since S0 is tangent to S1, S3 is max-
imized such that it witnesses a bigger SAS ball than S0, and
S3 ⊂ S2({yL}) for the yL values (58). We can appreciate this
behavior in Fig. 5 where we plot the distances

rmax(Sk ) ≡ max
ρ∈∂Sk

‖ρ − ρ0‖HS = max
ρ∈Sk

‖ρ − ρ0‖HS,

rmin(Sk ) ≡ min
ρ∈∂Sk

‖ρ − ρ0‖HS, (77)

where ∂Sk is the boundary of Sk . In particular,

rmax(S0) = rmin(S0) ≡ r(S0), (78)

and the same holds for S3. Specifically, we can observe in
Fig. 5 that r(S0) � rmax(S1), r(S3). By the previous remark,
we also have that rmin(S1) = r(S0). The discrepancy between
the SAS states identified by S2({yL}) and S3 is notably small
for N = 2 when yL is determined by Eq. (58) (see Fig. 3).
This difference is even less pronounced for N = 3, making it
difficult to discern visually.

For N = 2, S1 is a proper subset of S3, while for N = 3,
the sets identified by the two witnesses are complementary.
We anticipate a similar behavior for larger values of N , as
confirmed by Fig. 5 showing that r(S0) = r(S1) < r(S3) <

rmax(S1) from N = 11 to 65. A noteworthy consequence of
the previous observation is that the furthest away vertex of
S1 from ρ0 is not contained in S3. Conversely, the closest
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FIG. 5. Top: Distances r(S0) (blue) and r(S3) (orange) as defined
in Eq. (77). The black crosses show rGHZ, defined by the NPT
entangled state of the form (79) closest to ρ0, which provides an
upper bound to the radius of the largest inner ball contained in Asym.
The red line shows the radius rNS of the largest ball containing only
AS states in the full Hilbert space [see Eq. (80)]. Bottom: Distances
rmax(S1) (purple), rv

min(S1) (blue), and r(S3) (orange), rescaled by
the distance of the witness r(S0), as a function of the number of
qubits. rv

min(S1) corresponds to the minimal distance between ρ0 and
the vertices of the polytope S1. Note that all ratios are larger than 1,
indicating an improvement on previous results.

vertex of S1 to ρ0 is included in S3, a characteristic that has
been observed, as depicted in Fig. 5, where we present the
minimal distance between ρ0 and the vertices of the poly-
tope W1, denoted as rv

min(S1). The values of r(S3)/r(S0) and
rv

min(S1)/r(S0) reach asymptotic values, observed at around
1.849 and 1.423, respectively.

Finally, we stress once again that our witnesses do not
detect the whole Asym set. To get a better idea of its size, we
can establish an upper bound on the radius of the largest ball
contained within Asym, denoted by rmin(Asym ). Such a bound
can be obtained by computing for example the distance rGHZ

above which the mixture of a pure GHZ state and ρ0,

ρp = p|GHZ〉〈GHZ| + (1 − p)ρ0, (79)

has a negative partial transpose (NPT) and thus entanglement
that can be detected by the PPT criterion. The resulting upper
bound, which is not tight but improves the numerical bound
found in Ref. [30], is plotted in Fig. 5 along with the radii
of the other witnessed SAS sets S0 and S3. The radius of
the largest inner ball in Asym lies between the yellow and the
black lines of Fig. 5. For comparison, we also plot the radius
of the largest ball containing only AS states in nonsymmetric
multiqubit systems [10]:

rNS = 1√
2N (2N − 1)

. (80)

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have derived three families of SAS wit-
nesses for mixed symmetric multiqubit states, one linear (W1)
and two nonlinear (W2 and W3) in the eigenvalues of the
state. Each of these witnesses detects a greater number of SAS
states than the witness W0 previously established in Ref. [30].
We have thoroughly explored their distinctions and delved
into their geometric properties. Particularly, we showed that
the set S1 of SAS states detected by W1 is a polytope that
encompasses and is tangent to the SAS ball defined by W0.
To get the formal proof of this result, we derived an analyt-
ical expression for the eigenvalues of the Stratonovich-Weyl
kernel w(1)(�) (21). This expression can be useful beyond
this paper, in contexts where quantum states are examined in
their phase space (see Ref. [45] for a review). Furthermore,
all the SAS witnesses introduced in this paper can be applied
to detect absolute classicality [30] in the framework of spin- j
systems via the correspondence explained in Sec. II. Among
our witnesses, W1 and W3 are simple functionals on the
spectrum and the purity of the state. In contrast, W2({yL}),
which is capable of detecting a larger subset of SAS states,
necessitates solving a quadratic optimization problem over
the bistochastic matrices. Nevertheless, our observations on
the cases N = 2 and 3 indicate that the disparity between the
SAS subsets detected by W3 compared to W2 is minimal, as
illustrated in Fig. 3. It is also important to note that none of
our witnesses provides complete detection of all SAS states,
i.e., the full Asym set. This limitation highlights the need for
further exploration towards complete detection of SAS states.
To efficiently uncover more SAS states, instead of scrutinizing
W2, a viable approach is to include additional terms in the P
function, as outlined in Eq. (37). The minimum number of
terms to be added for a complete characterization remains as
an open question, even in the case of two qubits.

Another strategy for witnessing larger sets of SAS states
is to use the convexity property of Asym [59]. In particular,
we can immediately establish a stronger SAS witness defined
by the convex hull of all Sk found in this paper. Moreover, as
N increases, the discrepancy between S1 and S3 (see Fig. 5)
increases and, subsequently, the convex union of the sets
becomes larger, as does the number of SAS states detected.
The convexity of Asym in the eigenspectra simplex could be
also exploited to define a notion of optimal SAS witness that
depends linearly on the spectrum of the state. This would
be the analogous concept of optimal linear witnesses for en-
tanglement [18]. In terms of experimental implementation,
measuring the state spectrum is required for W1 and W2,
while W3 relies on evaluating the state’s purity. Importantly,
both the spectrum and purity of a quantum state can be es-
timated without the need for full quantum tomography [60],
which facilitates the implementation of our witnesses.

Lastly, it should be mentioned that there is a debate in the
literature about whether entanglement in systems of indistin-
guishable particles can arise artificially from their exchange
symmetry. Consequently, alternative definitions of entangle-
ment have been introduced that extend the set of separable
states to include those states whose entanglement comes
solely from exchange symmetry (see, e.g., Ref. [61]). Nev-
ertheless, it is interesting to note in this context that if a
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state is not entangled in the usual sense of the term, neither
will it be entangled in the alternative definitions of entangle-
ment. Consequently, the SAS states detected by the witnesses
W1,W2, and W3 are also SAS for alternative definitions of
entanglement.
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APPENDIX A: EIGENDECOMPOSITION OF THE
STRATONOVICH-WEYL MAP

Here we derive the eigendecomposition of Eqs. (20)
and (21) of w(1)(�). We start with the expression of the
Stratonovich-Weyl map w(1)(�) (18) evaluated at � = 0:

w(1)(0) =
√

4π

2 j + 1

2 j∑
L=0

L∑
M=−L

Y ∗
LM (0)TLM

C j j
j jL0

=
j∑

m=− j

[
(−1) j−m

√
2 j + 1

2 j∑
L=0

√
2L + 1CL0

jm j−m

C j j
j jL0

]
| j, m〉 〈 j, m|

=
j∑

m=− j

� j+m | j, m〉 〈 j, m| , (A1)

where we used Eq. (6) for the multipole operators. The oper-
ator w(1)(�) is covariant under rotations [45], i.e.,

D(�)w(1)(0)D(R)†(�) = w(1)(�). (A2)

Therefore, the eigenvectors of w(1)(�) are the standard spin
eigenstates over the quantization axis in the direction �,
| j, m; �〉 = D(�) | j, m〉. On the other hand, the eigenvalues
� j+m can be rewritten as

� j+m =
2 j∑

L=0

(−1) j−m

(2 j + 1)!
CL0

jm, j−m

×
√

(2L + 1)(2 j − L)!(2 j + L + 1)!, (A3)

by using the identity [41]

C j j
j jL0 = (2 j)!

√
2 j + 1

(2 j − L)!(2 j + L + 1)!
. (A4)

In order to evaluate the sum in (A3), our strategy is to
write a polynomial whose coefficients are proportional to the
� j+m eigenvalues deduced above. We start with a generat-
ing function of the Clebsch-Gordan coefficients in terms of
the Legendre polynomials, given through the hypergeometric
function 2F1(a1, a2; b1; t ) [see Eq. (5), p. 263 of Ref. [41] or

Ref. [62], and Eq. (4), pp. 976 and 1005 of Ref. [63])]:√
2L + 1

(2 j − L)!(2 j + L + 1)!
(t − 1)2 jPL

(
t + 1

t − 1

)

=
√

2L + 1

(2 j − L)!(2 j + L + 1)!
(t −1)2 j−L

2F1(−L,−L; 1; t )

= 1

(2 j)!

j∑
m=− j

(
2 j

j + m

)
CL0

jm, j−mt j+m. (A5)

We now multiply Eq. (A5) by the necessary factors and sum
over L to bring out the eigenvalues � j+m:

(t − 1)2 j
2 j∑

L=0

(
2L + 1

2 j + 1

)
PL

(
t + 1

t − 1

)

=
j∑

m=− j

(
2 j

j + m

)
(−1)− j+m� j+mt j+m

=
2 j∑

k=0

(
2 j

k

)
(−1)−2 j+k�kt k . (A6)

Now, we can rewrite the left-hand side of Eq. (A6) as

2 j∑
L=0

(
2L + 1

2 j + 1

)
PL

(
t + 1

t − 1

)

= t − 1

2

[
P2 j+1

(
t + 1

t − 1

)
− P2 j

(
t + 1

t − 1

)]
, (A7)

where we used Christoffel’s identity [see, e.g., Eq. (1), p. 986
of Ref. [63]] with x = t+1

t−1 , y = 1, and n = 2 j, that is,

n∑
k=0

(
2k + 1

n + 1

)
Pk (x)Pk (y)

= Pn+1(x)Pn(y) − Pn(x)Pn+1(y)

x − y
. (A8)

Lastly, we use the power expansion of the Legendre polyno-
mials [63]

(t − 1)LPL

(
t + 1

t − 1

)
=

L∑
a=0

(
L

a

)2

t a (A9)

to get

(t − 1)2 j
2 j∑

L=0

(
2L + 1

2 j + 1

)
PL

(
t + 1

t − 1

)

= 1

2

⎡
⎣2 j+1∑

k=0

(
2 j + 1

k

)2

t k − (t − 1)
2 j∑

k=0

(
2 j

k

)2

t k

⎤
⎦

= 1 +
2 j∑

k=1

[(
2 j + 1

k

)2

+
(

2 j

k

)2

−
(

2 j

k − 1

)2
]

t k

2
,

=
2 j∑

k=0

(
2 j

k

)(
2 j + 1

k

)
t k . (A10)
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By comparing Eqs. (A6) and (A10), we deduce that

�k = (−1)2 j−k

(
2 j + 1

k

)
, for k = 0, . . . , 2 j, (A11)

which is the result stated in Eq. (21).

APPENDIX B: PROOF OF EQ. (56)

We begin by noting that PLB(ρ), as given in Eq. (47), de-
pends only on the components ρL0, and on r, which, however,
is constant along the unitary orbit of ρ. These components
can be expressed for a generic state within the unitary orbit,
ρ = U�U †, with � being a diagonal matrix in the | j, m〉 basis
whose diagonal entries are the eigenvalues of ρ, as follows:

ρL0 = λB tT
L = vL b′T , (B1)

where tL is the vector of eigenvalues of TL0 with the entries
tL,m = 〈 j, m| TL0 | j, m〉, Bi j = |Ui j |2 is a unistochastic matrix
(hence also bistochastic) parametrized by a generalization of
Eq. (26) in the bk variables, and the new variables bk = b′

k +
1

N+1 are defined to remove an irrelevant constant term. The
vectors vL have the components

[vL]k = λ
∂B

∂b′
k

tT
L (B2)

for k = 1, . . . , N2, where the derivative of B has all elements
zero with the exception of[

∂B

∂b′
k

]
i, j

=
[

∂B

∂b′
k

]
N+1,N+1

= 1,

[
∂B

∂b′
k

]
i,N+1

=
[

∂B

∂b′
k

]
N+1, j

= −1

where i = � k−1
N + 1� and j ≡ k − 1 (mod N ). The function

PLB defined in Eq. (47), written as a quadratic function on the
coefficients of b′, then reads

PLB = f + 2 qb′T + b′H b′T , (B3)

with

q = 1

2

N∑
k=1

gkvk, H =
N∑

k=1

hkvT
k vk . (B4)

We assume in Sec. IV that the eigenvalues hL of the matrix
H are non-negative. On the other hand, the vectors v1, . . . , vL

can be completed to form an orthogonal basis V = {vk}N2

k=1.
We now define the dual basis Ṽ = {ṽk}N2

k=1 of V as the set of
vectors satisfying

ṽkvT
l = δkl . (B5)

We use this basis to define a new affine transformation b′ =
b′′ − H̃qT with

H̃ =
N∑

k=1

h−1
k ṽT

k ṽk . (B6)

Now, PLB written in terms of the new variables reads

PLB = f + b′′Hb′′T − qH̃qT

= f + b′′Hb′′T − 1

4

N∑
k=1

g2
k

hk
, (B7)

where we have used that HH̃qT = qT . The global minimum
of PLB is achieved for b′′ = 0 because H is a non-negative
matrix, which proves the result (56). Note that the global
minimum of PLB is strongly degenerate because we can move
b′′ through the directions of the kernel H without affecting
the value of PLB. To illustrate this, let us look at the procedure
described above for N = 2. The vectors vL are

v1 = 1√
2

(2(λ0 − λ2), λ0 − λ2, 2(λ1 − λ2), λ1 − λ2),

v2 = −
√

3

2
(0, λ0 − λ2, 0, λ1 − λ2),

v3 = (λ1 − λ2, 0,−λ0 + λ2, 0, ),

v4 = (0, λ1 − λ2, 0,−λ0 + λ2, ), (B8)

where we have completed the basis with two other vectors
v3 and v4 which are orthogonal and satisfy the condition
HvT

3 = HvT
4 = 0. The corresponding vector b which satisfies

the condition b′′ = 0 is

b = 1
3

+
(

35

72
(
λ2

0 + λ2
1 + 2λ2

2 − 2(λ0 + λ1)λ2
)
y2

)

× (5(λ0 − λ2), 4(λ2 − λ0), 5(λ1 − λ2), 4(λ2 − λ1))

+ z3v3 + z4v4, (B9)

where 1 is the vector with all the components equal to 1, and
z3 and z4 are arbitrary real numbers.

APPENDIX C: PROPERTIES OF F(L, μ)

Here we present some inequalities associated with the
function F (L, μ) defined in Eq. (40).

Property 1.

F (2 j, 1) < 0. (C1)

Proof. Writing N = 2 j, we have

F (N, 1) = 2
N∑

σ=0

Cσ0
N0N0C

σ0
N1N−1

= 2
N∑

σ=0

(
Cσ0

N0N0

)2( σ (σ + 1)

2N (N + 1)
− 1

)

< 2
N∑

σ=0

(
Cσ0

N0N0

)2( N (N + 1)

2N (N + 1)
− 1

)

< 0,
�

where we used an identity between the Cσ0
N0N0 and Cσ

N1N−1
given in Eq. (7), p. 253 of Ref. [41].

Property 2. For all μ = 0, . . . , L,

F (L, 1) � F (L, μ) and F (L, 1) < 0. (C2)

This inequality is a conjecture supported by the explicit eval-
uation of F (L, μ) for several (L, μ) values, as shown in
Table IV for j � 5/2. These inequalities become relevant for
specifying the allowed domain of the xL parameters restricted
by Eqs. (54) and (55). If we assume that Eq. (C2) is true, then
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the inequality that gives the best upper bound on xL for L > j
comes from μ = 1:

xL � F (2 j, 1)

F (L, 1)
x2 j, (C3)

where we have used that F (2 j, 1) < 0 (C1) and that x2 j � 0.

APPENDIX D: CALCULATION OF rmin(S1)

We present here the calculation of rmin(S1) which, by con-
vexity of S1, is equal to the radius rSAS of the largest inner
ball within S1 centered on the maximally mixed state ρ0 =
(N + 1)−11N+1 in the symmetric sector. In this Appendix,
we closely follow the method proposed in Ref. [37]. Before
starting, it is convenient for our calculations to evaluate the
norm of the (2 j + 1) vector � = (�0, . . . ,�2 j ). Using the
explicit expression of the eigenvalues (21), we get

|�|2 =
2 j∑

k=0

(
2 j + 1

k

)2

=
(

4 j + 2

2 j + 1

)
− 1, (D1)

where we used
∑n

k=0

(n
k

)2 = (2n
n

)
for the second equality.

Then, we write the Hilbert-Schmidt distance (8) in terms of
the Euclidean distance in the simplex between the spectra λ

and λ0 of ρ and ρ0, respectively,

r =

√√√√√
⎛
⎝ 2 j∑

i=0

λ2
i

⎞
⎠− 1

2 j + 1
= ‖λ − λ0‖.

By definition, rmin(S1) is the minimum distance between ρ0

and the hyperplanes restricting the polytope S1. Mathemati-
cally, this translates to the following constrained minimization
problem:

min
λ

‖λ − λ0‖2 subject to

{∑2 j
i=0 λi = 1

λ�T = 0
. (D2)

To solve this problem, we employ the method of Lagrange
multipliers, introducing the Lagrangian

L = ‖λ − λ0‖2 + μ1λ�T + μ2

(
1 −

2 j∑
i=0

λi

)
.

Here, μ1 and μ2 represent Lagrange multipliers that will be
determined. The stationary points, denoted as λ̃, of the La-
grangian must satisfy the following condition:

∂L
∂λ

∣∣∣
λ=λ̃

= 0 ⇔ 2λ̃ + μ1� − μ21 = 0 (D3)

with the vector 1, which consists of elements all equal to 1 and
has a length of 2 j + 1. By summing across the components of
(D3), we get

μ2 = μ1 + 2

2 j + 1
. (D4)

Next, by performing the scalar product of (D3) with � and
using (D4), we obtain the following Lagrange multipliers:

μ1 = 2

(2 j + 1)|�|2 − 1
, μ2 = 2|�|2

(2 j + 1)|�|2 − 1
.

Finally, upon substituting the above values for μ1 and μ2 into
Eq. (D3) and solving for the stationary point λ̃, we arrive at
the following expression:

λ̃ = |�|21 − �

(2 j + 1)|�|2 − 1
, (D5)

which leads us to

rmin(S1) = 1√
(2 j + 1)[(2 j + 1)|�|2 − 1]

(D6)

since rmin(S1) = r(ρ̃) with ρ̃ any state with eigenspectrum
(D5). Remarkably, the radius (D6) is exactly the same as that
deduced in Ref. [30] [see Eq. (25)], as can be verified by
inserting Eq. (D1) into Eq. (D6).

We close this Appendix by noting that the same calculation
generalizes directly to the general Stratonovich-Weyl kernel
w(s)(�) defined by

w(s)(�) =
√

4π

2 j + 1

2 j∑
L=0

L∑
M=−L

(
C j j

j jL0

)−s
Y ∗

LM (�)TLM (D7)

where s ∈ [−1, 1] [45].
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