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Extreme depolarization for any spin
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The opportunity to build quantum technologies operating with elementary quantum systems with more than
two levels is now increasingly being examined, not least because of the availability of such systems in the
laboratory. It is therefore essential to understand how these single systems initially in highly nonclassical states
decohere on different timescales due to their coupling with the environment. In this work, we consider the
depolarization, both isotropic and anisotropic, of a quantum spin of arbitrary spin quantum number j and
focus on the study of the most superdecoherent states. We approach this problem from the perspective of
the collective dynamics of a system of N = 2 j constituent spin 1

2 , initially in a symmetric state, undergoing
collective depolarization. This allows us to use the powerful language of quantum information theory to analyze
the fading of quantum properties of spin states caused by depolarization. In this framework, we establish a pre-
cise link between superdecoherence and entanglement. We present extensive numerical results on the scaling of
the entanglement survival time with the Hilbert space dimension for collective depolarization. We also highlight
the specific role played by anticoherent spin states and show how their Markovian isotropic depolarization alone
can lead to the generation of bound entangled states.
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I. INTRODUCTION

The elementary building blocks for storing and processing
information on quantum devices are quantum bits or qubits.
Qubits are controllable two-level quantum systems that can
take very different forms, from the spin of an electron in
NV center, to trapped ions, neutral atoms in optical lattices,
photons, or superconducting circuits. A key figure of merit for
the quality of a qubit is its coherence time, i.e., the time during
which it can reliably store information or remain in a quantum
superposition of states before decoherence transforms it into a
statistical mixture of states. Efforts to use elementary quantum
systems with more than two degrees of freedom for quantum
technologies have been intensified by the availability of such
systems in experiments operating in the quantum regime.
These so-called qudits can be implemented with a variety of
systems, e.g., using the orbital angular momentum of light
[1], the electronic spin of magnetic atoms [2], the internal
levels of trapped ions [3], superconducting circuits [4], or
the rotational degree of freedom in molecules [5]. This
work explores previously unaddressed fundamental questions
related to the decoherence of these individual qudits or,
equivalently, of individual spins of arbitrary quantum number
j. Most of the work done so far on the depolarization of
spin states has either followed a phenomenological approach
based on a SU(n) depolarization channel [6–11], or has
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focused on dynamical decoherence of specific states, such
as NOON states and coherent states [12,13]. Our work
is different in its focus and in the spin states that play a
central role: the anticoherent spin states. These states have
recently attracted much attention because of their usefulness
in quantum metrology [14–16]. Here, we aim to provide
additional insight on the dynamical depolarization of spin
states by addressing the following questions: Which states are
most prone to decoherence on short timescales but also on
longer timescales (states reaching a quantum speed limit) for
any spin ? What is the quantum information theoretic resource
that enables superdecoherence? How long does it take before
a spin state becomes absolutely classical due to decoherence,
in the sense that nonclassicality of the state cannot be revived
by the sole application of unitary transformations?

More precisely, in this work, we study depolarization un-
der strict conservation of energy between the spin and its
environment [17,18]. This condition, which stems from ther-
modynamic considerations and applies to every microscopic
model of decoherence that leads to a Markovian master equa-
tion, induces constraints on decoherence rates. The problem
of the depolarization of a single spin j can be mapped onto
the collective decoherence of N = 2 j spin 1

2 initially in a
symmetric state. As we shall see, the time evolution has two
important properties: it is unital and it preserves separability.
The general dynamics is then as follows (for depolarization in
at least two directions): An initial pure state |ψ0〉 evolves into
a mixed state ρ whose purity

R(ρ) ≡ Tr[ρ2] (1)

decreases monotonically with time as ρ converges to the
unique stationary state, the maximally mixed state (MMS)

ρ0 ≡ 1

2 j + 1
, (2)
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proportional to the identity operator 1 on H � C2 j+1. In the
course of this evolution, the entanglement initially present,
which we quantify by the negativity across different biparti-
tions of the N spin- 1

2 system, decreases and ends up vanishing,
leading on the way to bound-entangled states with respect to
certain bipartitions. Once the state becomes separable, which
occurs after a finite time, it remains separable at any subse-
quent time. The state eventually enters the ball of absolutely
separable states and no entanglement can be recovered by
unitary evolution alone. We want to study how fast quantum
correlations decrease over time, which pure states decohere
the most rapidly, or how long it takes before the state enters
a ball of absolutely separable states. This work thus intends
to deepen our understanding of the dynamics of decoherence
associated with collective depolarization processes.

This paper is organized as follows. In Sec. II, we introduce
the tools needed for our work. In Sec. III, we present the
Lindblad master equation describing the depolarization of an
arbitrary spin and its expression in the multipole operator
basis. We discuss a conservation law for the dynamics, its
steady states, and a general solution for the density matrix and
its reductions. In Sec. IV, we study isotropic depolarization,
from the evolution of purities, the condition of appearance of
superdecoherence, the identification of the states most sensi-
tive to decoherence to the dynamics of entanglement. Finally,
in Sec. V, we study the same type of questions for anisotropic
depolarization. Most of the technical derivations of this work
are relegated to the Appendixes.

II. SPIN STATES, CLASSICALITY, ANTICOHERENCE,
AND ENTANGLEMENT

In this section, we introduce the concepts and tools about
spin states useful for this work, such as some of their
representations (Sec. II A), the notions of classicality and
absolute classicality (Sec. II B), the concept of anticoherence
(Sec. II C), and the isomorphism between spin states and
symmetric multiqubit states (Sec. II D) enabling us to use the
tools of quantum information theory.

A. Representations of spin states

Let ρ be a density operator describing the state of a spin- j
quantum system. In this work, we will use several different
representations for ρ.

a. Angular momentum basis. A first representation of ρ

follows from its expansion in the eigenbasis of the operators
Ĵ2, Ĵz. The general form of this expansion reads as

ρ =
j∑

m,m′=− j

ρmm′ | j, m〉〈 j, m′|, (3)

where | j, m〉 are the standard angular momentum basis states
satisfying

Ĵ2| j, m〉 = j( j + 1)h̄2| j, m〉,
Ĵz| j, m〉 = mh̄| j, m〉 (4)

for m = − j, . . . , j. For a pure state such as a spin-coherent
state |n〉, which is defined as the eigenstate of the angular
momentum component J · n along the unit vector n ∈ R3 with

maximal eigenvalue h̄ j, the expansion takes the form

|n〉 =
j∑

m=− j

√(
2 j

j − m

)[
cos

(
θ

2

)] j+m

×
[

sin

(
θ

2

)
eiϕ

] j−m

| j, m〉, (5)

where

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ )T (6)

with θ ∈ [0, π ] and ϕ ∈ [0, 2π [.
b. Multipole operator basis (MPB). Alternatively, one can

expand the density operator ρ in terms of multipole operators
TLM (see Appendix A 1 for a definition and some properties of
these operators) as

ρ =
2 j∑

L=0

L∑
M=−L

ρLM TLM . (7)

For example, in the multipole operator basis, a spin-coherent
state has the expansion [19]

|n〉〈n| =
2 j∑

L=0

L∑
M=−L

ρLM (�) TLM (8)

with state multipoles

ρLM (�) =
√

4π (2 j)!√
(2 j − L)!(2 j + L + 1)!

Y ∗
LM (�), (9)

where YLM (�) are the spherical harmonics and � ≡ (θ, ϕ).
Equation (9) shows that in the case of spin-coherent states, all
the state multipoles from L = 0 to L = 2 j are nonzero.

For future use, we note that, in the MPB, the purity (1)
takes the simple form (see Appendix A 1)

R(ρ) =
2 j∑

L=0

L∑
M=−L

|ρLM |2. (10)

c. Overcomplete basis of spin-coherent states. Another rep-
resentation, valid for any linear operator acting on H, follows
from the fact that spin-coherent states form an overcomplete
set from which the identity operator can be expressed as

1 = 2 j + 1

4π

∫
|n〉〈n| d� (11)

with d� = sin θ dθ dϕ. As for bosonic states, spin states ad-
mit a diagonal or P representation [19]

ρ = 2 j + 1

4π

∫
Pρ (�) |n〉〈n| d�, (12)

with Pρ (�) the P function of ρ. There is, however, one im-
portant difference from the bosonic case which is that the P
function is not unique (see, e.g., [20]).

The link between the last two representations is made by
expanding the multipole operators in terms of spin-coherent
states as

TLM = 2 j + 1

4π

∫
α

(2 j)
L YLM (�)|n〉〈n| d� (13)
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with α
(2 j)
L the constant

α
(2 j)
L = 2

√
π

(2 j + 1)!

√
(2 j − L)!(2 j + L + 1)!. (14)

By inserting Eq. (13) into Eq. (7), one can deduce the expres-
sion of a valid P function for ρ in terms of its state multipoles,
which is given by

Pρ (�) =
2 j∑

L=0

L∑
M=−L

α
(2 j)
L ρLM YLM (�). (15)

B. Classicality of spin states

a. Classical spin state. A spin state ρ is said to be classical
if it can be written as a convex combination of spin-coherent
states, i.e., if there exists a function Pρ (�) � 0 ∀ � such that
Eq. (12) holds [21]. Otherwise, it is said to be nonclassical.
Because the P function is not unique, a classical state may
also be described by other P functions taking negative values
for certain values of their arguments [20].

b. Absolutely classical spin state. A spin state is said to
be absolutely classical when it is classical and remains clas-
sical under any global unitary transformation U acting on H.
Absolutely classical spin states can only be mixed states, an
example being given by the MMS ρ0 [see Eq. (2)].

c. Distance to the maximally mixed state. We define the
distance r of a state ρ to the MMS by writing

ρ = ρ0 + r ρ̃, (16)

where ρ̃ is a traceless and normalized operator according to
the Hilbert-Schmidt norm, i.e., Tr(ρ̃ ) = 0 and Tr(ρ̃2) = 1. A
simple calculation shows that r can be written as function of
the purity R(ρ) [Eq. (1)] as

r =
√

R(ρ) − R(ρ0), (17)

where R(ρ0) = 1/(2 j + 1) is the purity of the MMS. The
maximum value

√
2 j/(2 j + 1) for r is reached for any pure

state, whereas its minimum value 0 is only reached for the
MMS. Around the MMS, there are balls of absolutely classical
states. A lower bound for the maximal radius of such balls has
been obtained in Ref. [20] and reads as

rmax =
[
(4 j + 1)

(4 j
2 j

)− ( j + 1)
]−1/2

√
4 j + 2

. (18)

The lower bound (18) decreases exponentially for large spin
quantum numbers as 4

√
π (2 j)−

3
4 2−2 j−1. When r � rmax, the

state (16) is guaranteed to be absolutely classical.

C. Anticoherent spin states

A spin state ρ will be said to be anticoherent if it verifies
[22]

〈Jn〉 ≡ Tr[ρ(J · n)] = 0 (19)

for any unit vector n ∈ R3. From a physical point of view,
anticoherent states are the most isotropic spin states since
the spin expectation value 〈J〉 = 0 does not identify a pre-
ferred direction in space. The defining property (19) is that
of anticoherence to order 1. It can be generalized to higher

orders of anticoherence by requiring that higher moments of
(J · n) are independent of n, thereby reinforcing the isotropic
character of the state. For example, anticoherent states to
order 2 are defined as spin states for which Tr[ρ(J · n)] = 0
and Tr[ρ(J · n)2] = c with c > 0 independent of n. More
generally, for any integer q > 0, a state ρ is anticoherent
to order q, or simply q anticoherent, if Tr[ρ(J · n)q] does
not depend on n. Paradigmatic examples of spin-anticoherent
states to order 1 (but not higher) are Schrödinger cat states

1√
2
(| j, j〉 + | j,− j〉) and the states | j, 0〉 for integer j.
Anticoherent states are best described in the multipole op-

erator basis, where a state is anticoherent to order q if and only
if its state multipoles vanish for L = 1, 2, . . . , q [23], or

ρ is q anticoherent
⇔

ρLM = 0 ∀ L = 1, . . . , q,

∀ M = −L, . . . , L. (20)

A q-anticoherent state has therefore a multipolar expansion
of the form

ρ = ρ0 +
2 j∑

L=q

L∑
M=−L

ρLM TLM . (21)

According to our definition, anticoherent spin states can be
pure or mixed. While mixed states can be anticoherent to
any order (think of the maximally mixed state), pure states
can only have a limited order of anticoherence. Numerical
searches have shown that the highest achievable order of anti-
coherence qmax for pure spin- j states scales approximately as
qmax ∼ √

4 j [24,25]. In this work, we use the acronym HOAP
to refer to pure states with the highest achievable order of
anticoherence (highest-order anticoherent pure states). A few
examples of HOAP states are given in Table IV at the end of
the paper, just before the Appendixes. Note that HOAP states
are generally not unique for a given spin quantum number,
even up to a rotation.

D. Symmetric multiqubit states

The Hilbert space associated to an individual spin- j quan-
tum system H � C2 j+1 is isomorphic to the symmetric
subspace of the Hilbert space associated to a system of N =
2 j spin 1

2 or qubits. This is due to the fact that N spin 1
2

can always be coupled to form a collective spin j = N/2.
The states resulting from this coupling can be shown to
be necessarily invariant under permutation of the spins, i.e.,
symmetric. Therefore, all concepts pertaining to spin states
can be reformulated in terms of multiqubit symmetric states
(see Table I).

In this framework, standard angular momentum basis states
| j, m〉 can be viewed as symmetric Dicke states of N = 2 j
qubits with k = j − m excitations (number of qubits in the
state |1〉) ∣∣D(k)

N

〉 = 1√(N
k

) ∑
π

| 0 . . . 0︸ ︷︷ ︸
N−k

1 . . . 1︸ ︷︷ ︸
k

〉, (22)

where the sum runs over all distinct permutations π of the
qubits. Spin-coherent states |n〉 can be viewed as N-qubit
symmetric separable pure states, which are necessarily of the
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TABLE I. Dictionary of correspondence between spin- j states and symmetric states of N spin 1
2 or qubits. The constituent spin 1

2 can be
real or fictitious.

Single spin j Multiple spin 1
2 or qubits

Spin quantum number j = N
2 Number of qubits N = 2 j

Spin operators Collective spin operators (irrep with maximal angular momentum j)
Standard basis {| j, m〉} with m = − j, . . . , j Symmetric Dicke basis {|D(k)

N 〉} with k = 0, . . . , N
Magnetic quantum number m = N

2 − k Number of excitations k = j − m
Full Hilbert space Symmetric subspace
(Absolutely) classical (Absolutely) separable
Nonclassical Entangled
Spin-coherent state |n〉 Pure symmetric separable state |�〉⊗N

Pure anticoherent state to order q Pure maximally entangled symmetric state (state with maximally mixed q-qubit
reductions in the symmetric sector)

Purity-based measure of
anticoherence to order q, Aq

Rescaled linear entropy of the q-qubit reduced density matrix

Rotation Symmetric local unitary transformation

form |�〉⊗N with |�〉 some single-qubit state. In contrast, it
was shown in [23] that anticoherent spin states are charac-
terized by the fact that their q-qubit reduced density matrices
are the maximally mixed state in the symmetric sector ρ0 =
1/(q + 1). As a result, it is possible to quantify the degree of
q anticoherence of a pure spin- j state |ψ〉 using a measure
of anticoherence based on purity, which can be related to the
Hilbert-Schmidt distance of the reductions of |ψ〉 to the MMS
ρ0 [26]. This measure of anticoherence Aq(|ψ〉) is defined by

Aq(|ψ〉) = q + 1

q
[1 − R(ρq)], (23)

where R(ρq) is the purity of ρq = Tr¬q[|ψ〉〈ψ |], the q-qubit
reduced density matrix of the state |ψ〉 viewed as an N-qubit
symmetric state. The measures of anticoherence Aq(|ψ〉) for
q = 1, 2, . . . are merely the linear entropy of entanglement of
the state |ψ〉 with respect to the possible bipartition (q, N − q)
of the N qubits. These measures are obviously rotationally
invariant. Spin-coherent states are the only pure states char-
acterized by pure reduced states and are therefore the only
states for which Aq = 0. In contrast, q-anticoherent states are
characterized by ρq = ρ0 and are therefore the only states
such that Aq = 1. For all other states, Aq is strictly between 0
and 1 [26]. Let us illustrate these measures on states that will
be of interest to us later and which are listed in Table II. GHZ
states for any number of qubits and balanced Dicke states for

TABLE II. Families of N-qubit symmetric states of interest for
this work, expressed in terms of Dicke states (22). In the definition
of the balanced Dicke state |DB〉, �N/2� denotes the largest integer
smaller than or equal to N/2.

Abbreviation State

GHZ |GHZ〉 = 1√
2
(|D(0)

N 〉 + |D(N )
N 〉)

DB |DB〉 = |D(�N/2�)
N 〉

W |W〉 = |D(1)
N 〉

HOAP Highest-order anticoherent pure states
(see Table IV and Refs. [22,24,25,29])

an even number of qubits are both anticoherent to order 1, but
not to order 2, because we have

A1(|GHZ〉) = 1, A2(|GHZ〉) = 3
4 < 1

and

A1(|DB〉) = 1, A2(|DB〉) = 3
(

N
2 − 1

)(
5 N

2 − 1
)

4(N − 1)2
< 1.

In contrast, for N > 2, the W state is never 1-anticoherent,
whereas the HOAP states always are since

A1(|W〉) = 2
N − 1

N2
< 1, A1(|HOAP〉) = 1.

Then, the notion of nonclassicality of spin states translates
into the notion of multiqubit entanglement for symmetric
states. Indeed, a classical state ρ that can be written as (12)
with a non-negative Pρ function everywhere is a continuous
convex mixture of symmetric separable states (|�〉〈�|)⊗N .
Hence, it is separable [27]. Likewise, absolute classicality of
a spin state translates into absolute separability of multiqubit
symmetric states [28].

III. DEPOLARIZATION DYNAMICS

We consider a spin- j system undergoing (Markovian) de-
polarization along the three spatial directions x, y, and z
with a priori different rates γx, γy, and γz [see Eq. (24)]. In
Appendix B, we give examples of physical models that pro-
vide a microscopic basis for our master equation: a spin
interacting with a fluctuating magnetic field and an ensem-
ble of two-level atoms interacting with the electromagnetic
field at infinite temperature. Quantum light states can also
undergo depolarization due to random SU(2) rotations as light
propagates through an optical fiber whose birefringent index
fluctuates with time [30]. Many more models leading to the
same form of dynamical evolution have been proposed and
studied in the literature. The derivation of a master equation
describing isotropic depolarization of multiphoton states was
carried out in [12] based on SU(2) invariance. The effect
of isotropic decoherence for a qubit on Uhlmann’s mixed-
state geometric phase was studied in [31]. In Ref. [32], the
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anisotropic depolarization of light stemming from its interac-
tion with a material medium was analyzed. A master equation
describing anisotropic depolarization of a spin 1

2 was derived
from a microscopic Hamiltonian model in [33] and from
disordered Hamiltonian ensembles in [34]. A non-Markovian
version for a central spin 1

2 interacting with a spin bath has
been derived in [35]. Finally, let us note that a weak continu-
ous measurement of the Cartesian components of a spin leads
to the same form of dynamical evolution and offers the possi-
bility of tuning the three depolarization rates γx, γy, and γz. On
the other hand, microscopic models and basic thermodynamic
principles can lead to constraints on the possible values that
rates can take, as we explain in the next subsection.

In Sec. III A, we present the master equation (24) central
to this work. In Sec. III B, we write the master equation in
the MPB. We then discuss a conservation law for the dynam-
ics (Sec. III C), its steady states (Sec. III D), and provide a
general solution for the density matrix, its reductions, and its
purity in Secs. III E and III F. We emphasize that particular
instances of these solutions were already known (see, e.g.,
Refs. [12,36,37]).

A. Master equation

We consider the dynamics of a spin governed by a master
equation of the Lindblad form

ρ̇(t ) = i

h̄
[ρ(t ), H] +

∑
α=x,y,z

Dα[ρ(t )] (24)

with H = h̄ωJz and

Dα[ρ] = γα

(
2JαρJα − J2

αρ − ρJ2
α

)
, (25)

where J = (Jx, Jy, Jz ) is the spin operator in the spin- j sector.
In particular, our master equation describes the well-known
pure dephasing of a spin when γx = γy = 0 and γz �= 0. In
the following, we will refer to isotropic depolarization when
γx = γy = γz and to anisotropic depolarization when γx =
γy �= γz. Since the dissipator contains only Hermitian jump
operators, the Lindblad generator is unital and it follows that
the purity of the state ρ(t ) can only decrease with time (see,
e.g., [38]). As highlighted earlier in Refs. [12,36], isotropic
depolarization as described by Lindblad’s master equation
(24) has richer dynamics than when described by the standard
phenomenological SU(N + 1) depolarization channel

E (ρ) = (1 − p) ρ + p
1

N + 1
(26)

with 0 < p � 1.
We now come back to the possible constraints on the values

that rates can take when obtained from microscopic models.
Under the assumptions that the spin environment is in thermal
equilibrium and that the interaction Hamiltonian between the
spin and the environment commutes with both Hamiltonians
of the spin and the environment, a condition coined as strict
conservation of energy, the unitary and dissipative evolutions
necessarily commute [17,18], i.e., [U ,D] = 0 where U (·) =
(i/h̄)[·, H] and D(·) =∑α=x,y,z Dα (·) for the master equation
(24). For ω �= 0, the condition [U ,D] = 0 is fulfilled only

when γx = γy. A direct calculation indeed shows that

[U (ρ),D(ρ)] = iω

2
(γx − γy)

∑
LM

(∑
±

±d±
LMTLM±2

)
ρLM

(27)

with d±
LM defined in Eq. (31) and ρLM the state multipoles of

ρ. Hence, the conclusion that [U (ρ),D(ρ)] = 0 for any ρ and
ω �= 0 only if γx = γy. Physically, this can be understood by
observing that the unitary evolution induces a precession of
the spin around the z axis and that the dissipative evolution is
invariant under a rotation around the z axis only when γx = γy.
For this reason, we will concentrate from Sec. III D on the
case γx = γy ≡ γ⊥z. For isotropic depolarization, we have that
U commutes with D even in the more general case of a
Hamiltonian of the form H = h̄ωxJx + h̄ωyJy + h̄ωzJz. When
Hamiltonian evolution and dissipative evolution commute, the
former has no impact on how the purity and entanglement of
a state evolve with time because the unitary evolution with
a linear Hamiltonian in the spin operators itself induces a
rotation (or local symmetric unitary transformation) which
preserves the purity and entanglement.

In the rest of this work, we will adopt the view of a spin
state as a multiqubit symmetric state, so that Jα = 1

2

∑N
i=1 σ (i)

α

are now collective spin operators with σ (i)
α the Pauli operators

σα for qubit i, and the dynamics corresponds to the collective
decoherence of N = 2 j qubits, initially in a pure symmetric
state. The master equation (24) preserves the permutation
symmetry of the initial state, so that we are in fact dealing
with an irreducible representation of dimension N + 1 of the
collective spin operators.

B. Master equation in the multipole operator basis

The system’s state can be expanded at all times in the
multipole operator basis {TLM} (MPB) as

ρ(t ) =
N∑

L=0

L∑
M=−L

ρLM (t ) TLM, (28)

where the state multipoles ρLM evolve according to (see
Appendix A 2)

ρ̇LM = −(�LM + i ωM ) ρLM

−�LM+2 ρLM+2 − �LM−2 ρLM−2, (29)

where

�LM = γz M2 + γx + γy

2
[L(L + 1) − M2],

�LM±2 = γx − γy

4
d±

LM (30)

with

d±
LM =

√
(L ∓ M )(L ± M + 1)

√
(L ∓ M − 1)(L ± M + 2).

(31)

We note that state multipoles with different values of L are
decoupled, as well as matrix elements with even and odd
values of M. This means that the Liouvillian superoperator
is represented in the MPB by a block-diagonal matrix, with
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N + 1 blocks of size 2L + 1 for L = 0, . . . , N . From Eq. (29),
we see that the block for L = 0 is equal to 0, so that the
stationary state has always a component on the maximally
mixed state in the symmetric sector ρ0 = 1/(N + 1). This
reflects the fact that the component ρ00 on T00 = 1/

√
N + 1

remains equal to 1/
√

N + 1 at all times, which is simply due
to normalization of the state ρ. The blocks for L > 0 have
elements −�LM for M = −L, . . . , L on the main diagonal,
−�LM+2 along the 2-diagonal, and −�LM−2 along the −2-
diagonal. Because of the relation d+

LM = d−
LM+2 [see Eq. (31)],

the 2-diagonal and the −2-diagonal are equal. When γx = γy,
�LM±2 = 0, the Liouvillian is diagonal in MPB and each ρLM

evolves independently.

C. Conservation of anticoherence

The dynamics generated by the master equation (29) con-
serves the property of anticoherence of a state at any time.
Indeed, if the state multipoles ρLM are initially equal to
zero for some L and ∀ M = −L, . . . , L, they remain zero
at all times because there is no coupling between blocks
corresponding to different values of L. Therefore, an initial q-
anticoherent state characterized by the property (20) remains
q anticoherent at any time. We emphasize that this property
would still hold if the γα rates were time dependent. There-
fore, the property of anticoherence of a state is very generally
conserved under the model of decoherence corresponding to
the master equation (24).

D. Stationary state

When γx = γy ≡ γ⊥z = 0 and γz �= 0, Eq. (29) shows that
the components ρL0 are conserved for all L while all other
components decay to 0. Starting from an initial state ρ(0), the
stationary state is then given by

ρ(∞) =
N∑

L=0

ρL0(0) TL0 =
j∑

m=− j

ρmm(0)| j, m〉〈 j, m| (32)

with ρmm(0) ≡ 〈 j, m|ρ(0)| j, m〉 because TL0 =
√

2L+1
2 j+1

∑
m

C j L j
m 0 m| j, m〉〈 j, m| where C j1 j2 j

m1m2m ≡ 〈 j1m1 j2m2| j, m〉 are
Clebsch-Gordan coefficients following the notation of [39].
The set of projectors {| j, m〉〈 j, m|} is thus the pointer basis in
this case.

When γ⊥z �= 0, Eq. (29) shows that each component ρLM

evolves separately and decays to 0 (except for ρ00) at a rate
�LM > 0. The only stationary state is then the MMS [Eq. (2)].

E. Exact solutions for ρ and its reductions

Under the condition of strict conservation of energy, γx =
γy and Eq. (30) yields �±

LM±2 = 0, which implies that the state
multipoles ρLM are all decoupled from each other. They thus
evolve according to

ρ̇LM = −(�LM + i ωM ) ρLM (33)

whose general solution is given by

ρLM (t ) = e−(�LM+i ωM )tρLM (0). (34)

All state multipoles have their own different decay rates,
which contrasts with the phenomenological description of
depolarization through the SU(N + 1) depolarization channel
(26) for which all state multipoles with L �= 0 decrease with
the same factor. The solution of the master equation in the
Dicke basis readily follows by expressing the matrix elements
〈 j, m|ρ| j, m′〉 in terms of the state multipoles ρLM and using
Eq. (34). We get [40]

〈 j, m|ρ| j, m′〉 =
2 j∑

L=0

√
2L + 1

2 j + 1
C j L j

j−m′ m′−m j−m ρLm′−m. (35)

Alternatively, using Eq. (15), the state ρ(t ) can be expressed
in terms of the time-dependent P function

Pρ(t )(�) =
∑
L,M

α
(N )
L ρLM (0) e−(�LM+i ωM )t YLM (�). (36)

The solution (34) allows us to directly access the state
multipoles of all the reduced states of ρ. In Appendix C, we
show that the state multipoles ρ

(q)
LM of the q-qubit reduced

density matrix ρq = Tr¬q[ρ] can be expressed in terms of the
ρLM of ρ as

ρ
(q)
LM (t ) = q!

N!

√
(N − L)!(N + L + 1)!

(q − L)!(q + L + 1)!
ρLM (t ) (37)

for L � q and −L � M � L.
Note that in the case where depolarization rates are time

dependent and possibly negative, in which case Eq. (24)
must be considered as a time-convolutionless (TCL) non-
Markovian master equation, the previous developments are
still valid, provided that �LM t in the solution (34) is replaced
by
∫ t

0 �LM (t ′) dt ′. However, when rates are negative, the Liou-
villian is no longer unital and the purity does not necessarily
decrease monotonically over time. In what follows, Eqs. (34)
and (37) are central to our analytical developments and to all
our numerical results.

F. Decrease of purity

In order to identify the states that are the most prone to
decoherence, we focus on the rate of change of the purity
Ṙ(ρ) and its higher-order time derivatives. These quantities
can be expressed in a simple form when γx = γy because then
Eq. (33) implies that d|ρLM |2/dt = −2|ρLM |2�LM . Repeated
use of the latter equality together with Eq. (10) yields for the
nth-order time derivative

dnR(ρ)

dtn
= (−2)n

∑
L,M

|ρLM |2 (�LM )n. (38)

This equation can be rewritten as

dnR(ρ)

dtn
= (−2)n (�LM )n R(ρ), (39)

where we define the average value in state ρ of a function f
of variables L and M by

f (L, M ) =
∑

L,M |ρLM |2 f (L, M )∑
L,M |ρLM |2 . (40)
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In particular, the rate of change of purity, which is also
equal to the opposite of the linear entropy production rate [41],
is given by

Ṙ(ρ) = −2 �LM R(ρ) � 0. (41)

Similarly, the second time derivative of R(ρ) is given by

R̈(ρ) = 4 (�LM )2 R(ρ) � 0. (42)

For the maximally mixed state, the purity does not change
over time and we have dnR(ρ)

dtn = 0 for all n.
More generally, the solution (34) for the state multipole of

ρ(t ) along with Eq. (10) for the purity gives

R(t ) = 1

N + 1
+
∑

L>0,M

|ρLM (0)|2 e−2 �LM t , (43)

where we have set R(t ) ≡ R(ρ(t )). All the terms in Eq. (43)
are positive. Therefore, for any integer q > 0, the purity can
be lower bounded by retaining only the terms of the sum with
L > q, that is,

R(t ) � 1

N + 1
+
∑

L>q,M

|ρLM (0)|2 e−2 �LM t . (44)

For pure states, a state-independent bound can be obtained
by lower bounding each decreasing exponential in Eq. (43)
by the fastest decreasing one and using the purity condition∑

L,M |ρLM |2 = 1. This yields

R(t ) � 1

N + 1
+ N

N + 1
e−2 �max

LM t (45)

with �max
LM = max{�LM}L,M .

IV. ISOTROPIC DEPOLARIZATION

In this section, we focus on isotropic depolarization defined
by equal rates in the three spatial directions γx=γy=γz≡γ .
This model is commonly used as a phenomenological model
to describe decoherence in quantum computers when errors
arise from uncontrolled small random SU(2) rotations [42]. In
Secs. IV A and IV B, we study the evolution of purities and
clarify the condition for the occurence of superdecoherence,
respectively. In Sec. IV C, we identify the states most suscep-
tible to decoherence. Section IV D is concerned with quantum
speed limits and in Sec. IV E, we study how entanglement is
gradually lost over time due to depolarization.

A. Evolution of purities

We start with the rate of change of the purity of the global
state ρ, which is given by

Ṙ(ρ) = −2 L(L + 1) γ R(ρ) � 0 (46)

and can be rewritten as (see Appendix C)

Ṙ(ρ) = −2γ [N (N + 1)R(ρ) − N2R(ρN−1)], (47)

where R(ρN−1) is the purity of the (N − 1)-qubit reduced
density matrix of ρ. Due to the proportionality of the state
multipoles expressed by the relation (37) and the diagonal
form of the master equation in the MPB, the master equation
keeps exactly the same form (33) for the reduced states ρq

than for the global state ρ. Using (47), we can thus write the
closed set of equations for the purities

Ṙ(ρ1) = −2γ [2R(ρ1) − 1],

Ṙ(ρ2) = −2γ [6R(ρ2) − 4R(ρ1)],

...

Ṙ(ρ) = −2γ [N (N + 1)R(ρ) − N2R(ρN−1)]. (48)

The first q equations of the system (48) also form a closed set
of equations. Therefore, the time evolution of R(ρq) depends
only on the initial purities of the reduced states of at most
q qubits, regardless the total number of qubits N . Analytical
solutions for R(ρq) are given for the smallest values of q in
Appendix D.

B. Superdecoherence

It is known that collective dephasing can lead to a phe-
nomenon called superdecoherence [43–45], where the rate at
which states lose their coherence scales as N2 with N the
number of qubits. In this section, we establish the conditions
for superdecoherence to occur when the qubits are subject to
collective isotropic depolarization.

Let us set R(t ) ≡ R(ρ(t )) and denote by T the time it
takes for the purity of a state to decrease to half its initial
value R(0). A lower bound Tmin on T can be obtained by
replacing R(ρN−1) in Eq. (47) by its minimum value 1/N ,
solving the resulting differential equation for R(t ) and then
solving R(Tmin) = R(0)/2 for Tmin. This yields the time

Tmin =
ln
(
2 + 2

(N+1)R(0)−2

)
2γ N (N + 1)

∼
N�1

ln 2

2γ N2
(49)

such that R(t ) > R(0)/2 for t < Tmin. The lower bound Tmin

scales as N−2, which leaves room for superdecoherence. In
fact, exact conditions for the occurrence of superdecoherence
can be found by rewriting Eq. (47) as

Ṙ(ρ) = −2γ R(ρ)N − 2γ [R(ρ) − R(ρN−1)]N2, (50)

where the linear and quadratic terms in N have been separated.
We now show that the coefficient in front of N2 can only
be negative for entangled states, a result that can be inter-
preted as saying that isotropic superdecoherence cannot occur
without entanglement. To this end, we use the entanglement
criterion based on the Rényi entropy Sq for q = 2 [46,47],
which states that if a state ρ is separable, then R(ρq) � R(ρ)
for any number of qubits q < N . This criterion reflects the
fact that the reduced states of a separable state are always less
mixed than the global state is. Therefore, for separable states
R(ρ) − R(ρN−1) is always negative. For example, it is equal
to −1/[N (N + 1)] for the maximally mixed state. It can be
positive only for entangled states. A numerical optimization
shows that R(ρ) − R(ρN−1) is smaller than or equal to 1

2 ,
where the value 1

2 is reached when ρ is a pure 1-anticoherent
state. In this case, the rate of decrease of purity takes
its maximal value Ṙ = −γ N (N + 2) scaling quadratically
with N .

A consequence of the preceding result is that superde-
coherence can never occur when the system starts from a
separable state. Indeed, as we show in Appendix E, isotropic
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depolarization leads to a separability-preserving (SEPP) dy-
namical map. This means that separable states can only
evolve into separable states, which we have just shown can-
not display superdecoherence. Interestingly, the situation is
fundamentally different for the closely related phenomenon
of superradiance, which can occur without any entanglement
[48], starting, for example, from the separable state in which
all atoms are excited.

For an initial pure state |ψ0〉, the rate (50) at t = 0 can be
rewritten as (see Appendix G for more detail)

Ṙ
∣∣
t=0 = −2γ

(
N + N2

2
A1

)
, (51)

where A1 is the measure of anticoherence to order 1 of |ψ0〉
defined in Eq. (23) and expressible as

A1 = 1 − 1

j2
|〈ψ0|J|ψ0〉|2. (52)

Equation (51) relates superdecoherence to anticoherence (and
thus to entanglement of |ψ0〉, see Sec. II D) because the term
scaling quadratically with the number of qubits is directly
proportional to A1. This term vanishes for spin-coherent states
(A1 = 0) and is maximal for anticoherent states (A1 = 1),
which consequently display the largest depolarization rate
Ṙ|t=0 = −γ N (N + 2).

Higher-order time derivatives of the purity can be evaluated
by repeated use of the set of equations (48). For example, at
any time t , we have for the second-order time derivative of R

R̈ = −2γ [N (N + 1)Ṙ(ρ) − N2Ṙ(ρN−1)]

= 4γ 2N2[(N + 1)2R(ρ) − 2N2R(ρN−1)

+ (N − 1)2R(ρN−2)]. (53)

The quantity R̈ does not only depend on R(ρ) and R(ρN−1) as
Ṙ did, but also on R(ρN−2), the purity of the reduced density
matrix of N − 2 qubits. For ρ an initial pure state |ψ0〉〈ψ0|,
Eq. (53) can be rewritten as

R̈
∣∣
t=0 = 4

3γ 2N2[6 + 3N2A1 − 2(N − 1)2A2], (54)

where we have set Aq = Aq(|ψ0〉) for q = 1, 2. It can
be seen from Eq. (54) that, among 1-anticoherent states,
2-anticoherent states yield the smallest value for R̈|t=0.
Equation (54) with A1 = A2 = 1 gives immediately R̈|t=0 =
4
3γ 2N2(N + 2)2. This means that 2-anticoherent states not
only lead to the highest rate of depolarization Ṙ|t=0, but that
this rate also decreases the slowest over time among all such
states. In contrast, the maximal value of R̈|t=0 is reached for
GHZ states, for which A1 = 1, A2 = 3

4 and thus R̈|t=0 =
2γ 2N2(N2 + 2N + 3). In other words, among the maximally
entangled pure states with respect to the (1, N − 1) biparti-
tion, the GHZ states are those for which the depolarization
rate decreases most rapidly with time.

C. HOAP states are extremal

In the case of isotropic depolarization, the general solution
(34) reduces to

ρLM (t ) = e−[γ L(L+1)+i ωM]tρLM (0). (55)

This solution shows that state multipoles with the same angu-
lar momentum quantum number L all decay at the same rate
γ L(L + 1). Therefore, the initial states that reach the MMS,
ρ0 = 1/(N + 1), the faster are those whose nonzero state
multipoles have high L only. For q-anticoherent states [see
Eq. (20)], ρLM = 0 ∀ L = 1, . . . , q and the state multipoles
and coherences in the Dicke basis decay over time at a rate
at least equal to γ (q + 1)(q + 2). Thus, the higher the order
of anticoherence q of the initial state, the faster the steady
state is reached. This statement can be made more precise
by observing that anticoherent states to order q are the only
states that saturate the bound (44). Therefore, pure antico-
herent states to the highest achievable order (HOAP states
introduced in Sec. II C) yield, among pure initial states, the
lowest purity after arbitrary evolution time (see, e.g., Fig. 1).
They are extremal for isotropic depolarization.

At short times, the pure states most prone to decoherence
are, at first order, those for which �LM in Eq. (41) takes
the highest possible value at t = 0. At second order, it is
required that �LM is the largest and, at the same time, (�LM )2

in Eq. (42) is the smallest at t = 0. Indeed, the rate �LM calcu-
lated at t = 0 should decrease as slowly as possible over time
if one wants the purity loss rate to remain large. As we have
shown in the preceding section, for isotropic depolarization,
�LM is maximal and (�LM )2 is minimal for any q-anticoherent
state with q � 2.

D. Quantum speed limits

Quantum speed limits (QSLs) reflect constraints on the
minimal time required for an initial state to evolve to a target
final state under certain dynamics. These limits may also
be expressed in terms of quantum speeds. In this work, we
consider two QSL for dissipative dynamics recently derived
in the literature. The first one gives a bound on the geometric
speed, defined as [49]

‖ρ̇‖ = 1

τ

∫ τ

0

√
Tr(ρ̇ρ̇†) dt, (56)

where τ > 0 is an evolution time, ‖ · ‖ is the Hilbert-Schmidt
norm, and an overline denotes a time average over the interval
[0, τ ]. The bound (8) in Ref. [49] holds for any Lindblad
master equation and reduces in our case to

‖ρ̇‖ � 8
∑

α=x,y,z

γ 2
α ‖Jα‖2

� 2

3

(
γ 2

x + γ 2
y + γ 2

z

)
N (N + 1)(N + 2). (57)

Moreover, for γx = γy = γ⊥z, ‖ρ̇‖ =
√

R̈/2, so that the QSL
reads as √

R̈ � 4
3

(
2γ 2

⊥z + γ 2
z

)
N (N + 1)(N + 2). (58)

Figure 1 shows
√

R̈ for different 4-qubit states undergoing
isotropic depolarization. At short times, the state with the

largest
√

R̈ and thus closest to the upper bound in (58) (equal
to 480) is the GHZ state. This is perfectly consistent with our
result (54).
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FIG. 1. Isotropic depolarization for different 4-qubit states: sep-
arable state (orange dashed), W state (purple), GHZ state (green),
and HOAP state given by Eq. (68) (blue). Top: Purity as a function
of time, monotonically decreasing towards the asymptotic value 1

5 .
The black dotted curve shows the bound (60), while the red dashed
curve shows the improved bound (45). Middle: Purity loss rate as
a function of time. Bottom: Time average of the square root of the
second time derivative of the purity, which is related to the quantum

speed limit (58) giving the bound
√

R̈ � 480 (not shown in the plot).

Another QSL particularly relevant to this work is based
on the purity of the difference between the state ρ and its
stationary state ρ0, the so-called purity deviation RD(t ) =
R(ρ(t ) − ρ0) [50]. In the Liouville space, the density operator
ρ can be vectorized and its evolution under (24) can be written
as |ρ̇〉 = H|ρ〉. Under this evolution, the purity deviation of ρ

in a time interval [ti, t f ] is bounded according to [50]∣∣∣∣ln
(

RD(t f )

RD(ti )

)∣∣∣∣ �
∫ t f

ti

‖H − H†‖sp dt, (59)

where ‖ · ‖sp denotes the spectral norm [51]. For the master
equation (24), one finds ‖H − H†‖sp = γ N (N + 1)(N + 2)
in the case of isotropic depolarization. By substituting ti = 0
and t f = t into (59) and assuming that the system starts from

a pure initial state, the bound can then be expressed in terms
of the purity R(t ) of ρ(t ) as follows:

R(t ) � 1

N + 1
+ N

N + 1
e−γ N (N+1)(N+2)t . (60)

The bound in Eq. (60) is state independent, just like the one
in Eq. (45). The important difference is that the decay rate in
Eq. (60) scales as N3, whereas it only scales quadratically in
Eq. (45) through the �LM [see Eq. (30)]. Therefore, our bound
(45) is tighter than (60), as can be seen in Fig. 1 showing the
purity as a function of time for different 4-qubit states. The
HOAP state is optimal, in the sense that it leads to the lowest
purity at all times. This purity is, however, strictly larger than
the bound (45), which is therefore not tight.

We can also obtain a state-independent upper bound on the
purity, valid for short and long times. Indeed, at short times,
the purity is maximal when the opposite of the rate (51) is the
smallest, which occurs for coherent states (states for which
A1 = 0). At long times, the multipoles that dominate the time
dependence in Eq. (43) are for L = 1 as they decay most
slowly. From Eq. (C9), we know that

∑
M=0,±1 |ρ1M |2 is pro-

portional to the purity of the one-qubit reduced density matrix
ρ1, which is also maximal for coherent states. Therefore, the
purity on short and long timescales is upper bounded by the
purity of coherent states Rcoh(t ) (for isotropic depolarization,
all coherent states lead to the same purity). Using Eqs. (9) and
(43), we get

Rcoh(t ) =
N∑

L=0

(2L + 1)N!2

(N − L)!(N + L + 1)!
e−2γ L(L+1)t . (61)

E. Entanglement dynamics

1. Entanglement survival time

Under isotropic depolarization, an N-qubit system initially
in a pure entangled symmetric state |ψ〉 gradually loses its pu-
rity and entanglement over time. Asymptotically, the system
reaches its unique stationary state, an equal weight mixture of
all symmetric Dicke states, i.e., the maximally mixed state in
the symmetric sector. This asymptotic state has the smallest
purity and is separable because it can be written as a continu-
ous convex mixture of symmetric separable states [27]. From
Eq. (13), we indeed get

ρ0 = 1

4π

∫
(|�〉〈�|)⊗N d�, (62)

where |�〉 is a single-qubit state with Bloch vector pointing
in the direction specified by the polar and azimuthal angles
� ≡ (θ, ϕ) and d� = sin θ dθ dϕ. After a finite time of the
evolution leading the system from its initial state |ψ〉 to ρ0, the
state becomes separable and remains so because the dynamics
is separability preserving (see Appendix E). We call this par-
ticular time the entanglement survival time and denote it by
tES. After a longer but still finite time, the system’s state enters
a ball of absolutely separable states centered on ρ0 [20]. From
this point on, any entanglement between the qubits that could
potentially be retrieved by global unitary transformations on
the system is permanently lost.

Our aim is to study the scaling of the entanglement sur-
vival time with the number of qubits, in particular for the
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most rapidly decohering states. However, in general, it is not
practically feasible to compute this time, as this reduces to
determining whether a mixed state is entangled or separable,
a notoriously difficult problem. We will therefore use entan-
glement or separability criteria to give upper and lower bounds
for tES. As we shall see, these bounds follow the same scaling
with N , which is consequently also the scaling of tES with
N . For symmetric states, many distinct separability criteria
(realignment criterion, spin-squeezing criterion, ...) are equiv-
alent to the positive partial transpose (PPT) criterion [52,53].
In this work, we use the negativity to detect, and to some ex-
tent quantify, bipartite entanglement. Negativity is defined as
the opposite of the sum of the negative eigenvalues of the par-
tial transpose of ρ with respect to some bipartition. A nonzero
negativity indicates entanglement. We call the time when the
negativity becomes zero the NPT (negative partial transpose)
survival time tNPT. It is a lower bound for the entanglement
survival time, i.e., tNPT � tES. Symmetric N-qubit states are
either genuinely entangled or fully separable [54]. This im-
plies that if the negativity is zero with respect to a certain
bipartition (q, N − q) of the qubits, but nonzero with respect
to some other bipartition, the state is genuinely entangled and
bound entangled with respect to the bipartition (q, N − q). In
this work, we will not investigate whether the states produced
by isotropic depolarization are fully bound entangled [55], but
will focus on the distillable entanglement that is detected by
the PPT criterion for the different bipartitions of the system,
in the same spirit as the works [7,8].

Even before using the PPT criterion, we can obtain a
lower bound on the entanglement survival time for pure q-
anticoherent initial states. We proceed as before by using the
purity-based entanglement criterion which states that when
R(ρ) > R(ρq), the state ρ is entangled. Then, a similar reason-
ing as the one leading to Eq. (49) and taking into account the
fact that R(ρq) = 1/(q + 1) at any time because anticoherence
is conserved now yields that ρ(t ) remains entangled for

t <
ln
(N (q+1)

N−q

)
2γ N (N + 1)

� tES. (63)

2. Initial negativity

For a pure state ρ = |ψ〉〈ψ |, the eigenvalues of the partial
transpose ρTq of ρ with respect to q qubits are simple functions
of the Schmidt coefficients

√
λi of |ψ〉 for the bipartition

(q, N − q) (see, e.g., [56]). Equivalently, the eigenvalues of
ρTq can be expressed in terms of the q + 1 eigenvalues λi

of the reduced state ρq = Tr¬q[|ψ〉〈ψ |]. From there, a direct
application of Lemma 1 of [56] shows that the negativity of
|ψ〉 is given by (see also [57])

N (|ψ〉) =
∑
i> j

√
λiλ j . (64)

For GHZ states, the q-qubit reduced states read as ρq =
diag(1/2, 0, . . . , 0, 1/2) and the negativity is equal to 1

2 for
any bipartition. For Dicke states, the Schmidt decomposition
[58]

∣∣D(k)
N

〉 = k∑
�=0

√√√√(q�)(N−q
k−�

)
(N

k

) ∣∣D(�)
q

〉⊗ ∣∣D(k−�)
N−q

〉
(65)

FIG. 2. Negativity N with respect to the balanced bipartition
(�N/2�, �N/2�) of several families of initial pure states as a function
of the number of qubits. We have N ≈ 0.231 N for HOAP states
(blue circles), N ≈ −0.469 + 0.625

√
N for balanced Dicke states

(DB, red squares), and N = 1
2 for W states (purple diamonds) and

GHZ states (green triangles).

allows us to calculate the negativity across any bipartition
(q, N − q) through

N
(∣∣D(k)

N

〉) =
(

N

k

) q∑
i=0

i−1∑
j=0

√(
q

i

)(
N − q

k − i

)(
q

j

)(
N − q

k − j

)
.

(66)
In particular, we get for W states (k = 1)

N (|W 〉) =
√

(N − q)q

N
. (67)

In general, the maximal negativity Nmax = q/2 is reached
when all eigenvalues λi are equal to 1/(q + 1), i.e., when
ρq = 1/(q + 1). The value q/2 is thus an upper bound for the
negativity of pure states for a bipartition (q, N − q). For an
equal bipartition (q = N/2), the bound is equal to N/4 and
thus scales linearly with the number of qubits. The bound
is tight only when there are pure states |ψ〉 with maximally
mixed q-qubit reductions, or, in other words, when |ψ〉 is q
anticoherent. In general, such states do not exist and the max-
imum possible order of anticoherence for pure N-qubit states
is found to scale as

√
2N , much smaller than N/2 for large

N [24,25]. There is also strong numerical evidence that pure
anticoherent states of order q = N/2 only exist for N = 2, 4,
and 6 [25]. Figure 2 shows the negativity with respect to
a balanced bipartition for several types of initial states as a
function of the number of qubits [59]. We observe that for the
HOAP states found numerically in [25], we still find a linear
scaling of the negativity with N , but with a prefactor of 0.231
slightly smaller than the prefactor 1

4 of the upper bound.

3. NPT survival time scaling

In this section, we analyze the scaling of the NPT survival
time with the number of qubits. To begin, Fig. 3 shows the
negativity as a function of time for initial HOAP states with
different number of qubits. The logarithmic scale used in the
plot clearly shows that the negativity drops to zero after a
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FIG. 3. Negativity with respect to the (�N/2�, �N/2�) bipartition
of HOAP states [25] for N = 4, 6, 12, 28 (from right to left) as
a function of time for isotropic depolarization. The dashed lines
indicate when the negativity drops to zero.

finite time, the NPT survival time tNPT, decreasing with the
number of qubits [61]. We observe numerically that the bal-
anced bipartition (�N/2�, �N/2�) is, except for small numbers
of qubits, the one for which tNPT is the largest, while it is the
smallest for the bipartition (1, N − 1). For this reason, in what
follows, we focus only on these two bipartitions.

Figure 4 (top panel) shows tNPT for the balanced bipartition
as a function of N . We see that tNPT falls off as an inverse

FIG. 4. Negative partial transpose (NPT) survival time tNPT as
a function of N for (top) the bipartition (�N/2�, �N/2�), with the
gray solid line showing the scaling 1/N , and (bottom) the bipartition
(1, N − 1), with the gray solid lines showing the scalings 1/N and
1/N1.75.

FIG. 5. Shortest time after which the P function (F4) becomes
positive for any �, ensuring the separability of the state. The gray
solid line shows the scaling 1/N .

power law in N for all states considered. The states that lose
their entanglement the fastest and thus lead to the smallest
value of tNPT are the HOAP states, even though they have
the largest initial negativity. Similar data for the bipartition
(1, N − 1) are displayed in the bottom panel of Fig. 4. In this
case, the GHZ states are the most fragile states under isotropic
depolarization and we find that tNPT falls off approximately as
N1.75. This observation can be contrasted with the fact that the
entanglement in a GHZ state is known to be maximally fragile
under the loss of a single qubit. Nevertheless, we see that
the global entanglement is more robust than the local one and
the optimal anticoherent states are found to be the first to be-
come PPT with respect to any bipartition. Hence, anticoherent
states are not only the most rapidly decohering states, but also
the ones that become PPT the fastest.

4. P-function separability time

For an initial pure entangled state ρ = |ψ〉〈ψ |, the P
function (15) is necessarily not everywhere positive because
otherwise the state would be separable. Over time, the state
multipoles decay exponentially, at the exception of ρ00. There-
fore, after a finite time tP � tES, the P function becomes
everywhere positive (see Appendix F), which is a sufficient
condition for separability. Because the dynamics is separabil-
ity preserving, the state remains separable for all t � tP. In
Fig. 5, we show the time tP as a function of the number of
qubits. For all the different types of states considered, we find
an inverse power-law scaling of the form tP ∼ 1/N . It is for
the HOAP states that tP is the smallest and for W states that tP
is the largest for a given number of qubits.

5. Time to reach a ball of absolutely separable state

We have computed the time it takes for an initial pure state
to enter, as a result of depolarization, the ball of absolutely
separable states of radius (18) centered on the maximally
mixed state. Let us denote this time by trmax . Figure 6 shows
trmax as a function of N , the number of qubits. We can see
that trmax increases linearly with N for GHZ and Dicke states.
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FIG. 6. Time after which an initial pure spin- j state enters the
ball of radius (18) centered on the maximally mixed state as a result
of depolarization, shown here for various states as a function of N .
Note the difference in behavior for balanced Dicke states depending
on the parity of N (red squares).

In stark contrast, for highest-order anticoherent states, trmax is
approximately independent of N , meaning that HOAP states
become absolutely separable after a time that depends only on
the decoherence rates and not on the size of the system. More
precisely, our high-precision numerics shows that γ trmax ≈
0.384 for HOAP states, γ trmax ≈ 0.116(N + 2) for GHZ and
balanced Dicke states with even N , γ trmax ≈ 0.341(N − 2) for
balanced Dicke states with odd N , and γ trmax ≈ 0.35N + 0.81
for W states.

Our results are summarized in Table III. It is interesting
to compare them with those obtained for an ensemble of
qubits subjected to individual decoherence. In that case, it has
been shown that the time tNPT calculated for the bipartition
(�N/2�, �N/2�) generally increases with N , notably for GHZ
states [6–8,10,62]. It was therefore concluded that the entan-
glement survival time tES also increases with N . Clearly, these
conclusions are no longer valid for collective depolarization
since we have just shown that then both times decrease with
N . Highly entangled symmetric states thus appear to be more
fragile to collective depolarization than to individual depolar-
ization, which we attribute to superdecoherence that is absent
for individual depolarization.

TABLE III. Scaling laws with the number of qubits of the ini-
tial negativity and the different characteristic times defined in the
text for several families of states subject to isotropic depolarization.
The scaling laws for tES have been deduced from the inequalities
tNPT � tES � tP and the scaling laws for tNPT and tP.

N tNPT tES tP trmax

GHZ 1/2 ∼1/N ∼1/N ∼1/N ∼N
W 1/2 ∼1/N ∼1/N ∼1/N ∼N
DB ∼√

N ∼1/N ∼1/N ∼1/N ∼N
HOAP ∼N ∼1/N ∼1/N ∼1/N const

6. Dynamical generation of bound entangled states

We now focus in more detail on the case of a few qubits
for which we can obtain further analytical results. To begin
with, let us consider a 4-qubit system initially in the pure
anticoherent state to order 2:

|ψtet〉 = 1
2

(∣∣D(0)
4

〉+ i
√

2
∣∣D(2)

4

〉+ ∣∣D(4)
4

〉)
. (68)

The time-evolved state ρ(t ), which follows from Eqs. (34) and
(35), is represented in the Dicke basis {|D(k)

4 〉 : k = 0, . . . , 4}
by the matrix

ρ(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u+1
5 0 − iu3/5

23/10 0 u

0 1−4u
5 0 0 0

iu3/5

23/10 0 6u+1
5 0 iu3/5

23/10

0 0 0 1−4u
5 0

u 0 − iu3/5

23/10 0 u+1
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (69)

where u = u(t ) = e−20t/4. The partial transpose of (69) has
only one eigenvalue that can potentially be negative, respec-
tively denoted by λ

(1,3)
− for the bipartition (1,3) and λ

(2,2)
− for

the bipartition (2,2). These eigenvalues are given by

λ
(1,3)
− (t ) = e−20t

20
(e20t − 5 e8t − 6) (70)

and

λ
(2,2)
− (t ) = −e−20t

30
(3 − 3 e20t

+
√

e16t [4 e4t (e20t + 3) + 75] + 9). (71)

The eigenvalue λ
(2,2)
− (t ) cancels at a time γ t (2,2)

NPT ≈ 0.134 582,
less than γ t (1,3)

NPT ≈ 0.158 384, the time at which λ
(3,1)
− (t ) can-

cels. Therefore, there is a time interval during which the
negativity is zero for the cut (2,2) while it is nonzero for the
cut (1,3). In this time interval, the state generated by isotropic
depolarization is bound entangled with respect to the (2,2)
bipartition, and thereby realizes a 3 × 3 bipartite symmetric
bound entangled state [52]. Figure 7 illustrates this dynamical
evolution of entanglement under collective depolarization in
this particular case. It should be noted that for the initial GHZ,
W, and Dicke states, no such bound entanglement is produced
during the dynamics. Similarly, we found that other types of
bound entangled states can be generated by isotropic depo-
larization starting from pure anticoherent states. For example,
starting from the 5-qubit and 6-qubit anticoherent states given
in Table IV, isotropic depolarization leads to bound entangled
states with respect to the (3,2) bipartition [63] and (3,3) bipar-
tition [64].

V. ANISOTROPIC DEPOLARIZATION

In this section, we turn to anisotropic depolarization, where
the rates in the three spatial directions are not equal, i.e., γx =
γy = γ⊥z �= γz. We start in Sec. V A with the well-known case
of pure dephasing (γ⊥z = 0, γz �= 0), which is by far the most
explored type of decoherence, mainly because a correspond-
ing microscopic model can be solved exactly [65,66]. We
show how our approach allows us to easily recover results
from the literature. Then we turn in Sec. V B to the more
interesting case of anisotropic depolarization (γ⊥z �= γz) and
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FIG. 7. Top: Distance to the maximally mixed state as a function
of time when starting from the 4-qubit pure state (68). Bottom:
Negativity as a function of time for the two possible bipartitions
(1,3) and (2,2). The times tNPT, tP, and trmax introduced in the text
are indicated on top of the figure (with the bipartition as superscript
for tNPT). It holds that tNPT � tES � tP � trmax .

look in Sec. V C for the initial states with the largest purity
decay rate. The minimization of the purity at longer times
is addressed for small quantum spin numbers in Sec. V D.
Finally, the dynamics of entanglement is briefly discussed in
Sec. V E.

A. Pure dephasing

One of the most studied types of decoherence is pure
dephasing (γ⊥z = 0, γz �= 0) [67–69]. The general solution
(34) reads as in this case ρLM (t ) = e−(M2γz+iωM )tρLM (0). From
Eq. (35) for the matrix elements ρmm′ in the Dicke basis
and the fact that the Clebsch-Gordan coefficients are non-
vanishing only when M = m′ − m, we recover the results
of [65,66], namely, that the rate of dephasing is given by
M2γz = (m′ − m)2γz. The higher the Hamming distance m′ −
m, the faster the decay of the off-diagonal density matrix
element in the Dicke basis. Only the populations remain
constant. Moreover, the dephasing rate increases quadrati-
cally with the Hamming distance. This is in contrast to the
case of independent, rather than collective, dephasing, where
the dephasing rate increases only linearly with m′ − m. The
pure states that reach their stationary state the fastest, i.e.,
those with the highest decoherence rate, are those for which
the only nonvanishing coherences have the largest possible
Hamming distance. These states are the N-qubit GHZ states
|GHZ〉 = 1√

2
(|D(0)

N 〉 + |D(N )
N 〉). Their nonzero state multipoles

are ρN±N = (∓1)N/2 and, for even L only,

ρL0 =
√

(2L + 1)(N!)2

(N − L)!(N + L + 1)!
, (72)

so that the purity decays at a constant rate

Ṙ

R
= −2γz M2 = −2γzN

2. (73)

Note that the W and balanced Dicke states belong to the
decoherence-free subspace of pure dephasing [70].

B. Purity loss rate

In the more general case of anisotropic depolarization
(γ⊥z �= γz), the rate of change of the purity is given by

Ṙ = −2
∑
L,M

(M2γz + [L(L + 1) − M2]γ⊥z )|ρLM |2. (74)

For a pure state |ψ〉, Ṙ can be expressed only in terms of
variances of the spin components in state |ψ〉. Indeed, for pure
states, the following relations hold (see Appendix G):

�J2
z = 1

2

∑
L,M

M2 |ρLM |2,

�J2
x + �J2

y = 1

2

∑
L,M

[L(L + 1) − M2] |ρLM |2 (75)

that can be combined with Eq. (74) to obtain

Ṙ|ψ〉 = −4
[
γz �J2

z + γ⊥z
(
�J2

x + �J2
y

)]
. (76)

The general result (76), which is valid for any spin, suggests
controlling depolarization on short timescales by appropri-
ately squeezing the initial state, i.e., making �J2

z smaller or
larger than �J2

x + �J2
y , depending on the value of the depolar-

ization rates γz and γ⊥z. Interestingly, a similar result applies
to continuous variable quantum states [71]. In particular, for
macroscopic quantum states, a slowing down of decoherence
due to photon loss has been experimentally demonstrated via
squeezing in phase space [72,73].

C. Optimization of Ṙ|ψ〉

In the following, we show how to find the pure states that
maximize (the opposite of) the purity loss rate (76). First, let
us remark that the variances of the spin components verify

�J2
x + �J2

y + �J2
z = N

2

(
N

2
+ 1

)
− |〈J〉|2 (77)

because J2 = N
2 ( N

2 + 1)1, and

0 � �J2
α = 〈J2

α

〉− 〈Jα〉2 �
〈
J2
α

〉
� N2

4
, (78)

where the last inequality comes from the fact that the largest
eigenvalue of J2

α is equal to N/2.

1. Case I: γz > γ⊥z

In this case, the decoherence rate (76) is maximized by
maximizing �J2

z . Let us show that the upper bound for the
variance given in Eq. (78), equal to N2/4, can be reached. It
can only be reached when 〈Jz〉 = 0. For a pure state |ψ〉 with
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FIG. 8. Minimum achievable purity at time t∗ for different values
of γ⊥z/γz < 1. The optimal initial states are the GHZ state (green
curves) at short times and the |μ∗〉 states given by Eq. (88) (gray
curves) at longer times. Vertical dashed lines locate the transition
from GHZ to |μ∗〉 which occurs when Im(μ∗) vanishes.

expansion in the Dicke basis

|ψ〉 =
N∑

k=0

dk

∣∣D(k)
N

〉
, dk ∈ C (79)

the condition 〈Jz〉 = 0 reads as

N∑
k=0

|dk|2(N − 2k) = 0, (80)

and the variance �J2
z then reduces to

〈
J2

z

〉 = N2

4
+

N∑
k=0

|dN−k|2 k(k − N ). (81)

The latter expression is equal to N2/4 when the sum on the
right-hand side vanishes, which occurs when all Dicke co-
efficients dk are equal to zero, except d0 and dN . But, then,
Eq. (80) gives |d0|2 = |dN |2 directly. The corresponding nor-
malized state is the GHZ state, for which Eq. (76) yields the
maximal purity loss rate for γz > γ⊥z

Ṙ|GHZ〉 = −2γ⊥zN − γzN
2. (82)

2. Case II: γz < γ⊥z

In this case, the decoherence rate (76) is maximized by
maximizing �J2

x + �J2
y . Rewriting Eq. (77) as

�J2
x + �J2

y = N

2

(
N

2
+ 1

)
− 〈Jx〉2 − 〈Jy〉2 − 〈J2

z

〉
, (83)

we see that a state verifying 〈Jx〉 = 〈Jy〉 = 0 and, at the
same time, 〈J2

z 〉 = 0 is optimal. For even N , 〈J2
z 〉 given by

Eq. (81) is equal to zero when |dk|2 = 1 for k = N/2 and
|dk|2 = 0 otherwise. The corresponding state is the balanced
Dicke state, which also verifies 〈Jx〉 = 〈Jy〉 = 0 and is thus
optimal. Similarly, for odd N , we find that the optimal state
has |dk|2 = 1 either for k = (N + 1)/2 or k = (N − 1)/2 and
|dk|2 = 0 otherwise. In the end, the maximal purity loss rate

FIG. 9. Same as for Fig. 8 but for different values of γz/γ⊥z < 1.
The optimal initial states are the balanced Dicke state (red curve)
at short times and the |μ∗〉 states given by Eq. (88) (grey curves) at
longer times.

for γz < γ⊥z is given by

Ṙ|DB〉 =
{−γ⊥zN (N + 2), even N
−γ⊥z[N (N + 2) − 1], odd N

(84)

and is independent of γz.

D. Minimization of purity at any fixed time

Until now, we have identified the states which decohere the
fastest at short times for any possible value of the rates γ⊥z and
γz. It is much more difficult to answer the question of which
initial pure states give the smallest purity after an arbitrary
period of time t∗. Through a combination of analytical and
numerical methods, we were able to answer this question for
2 and 4 qubits. First, we have observed that, for N = 2 and 4
(but not N = 3), the optimal initial states found numerically
are always 1-anticoherent. Taking this observation as a work-
ing hypothesis, we can perform the optimization analytically.
To this end, let us denote by R|ψ〉(t∗) the purity of the system’s
state at time t∗ when the system is initially in state |ψ〉. We

FIG. 10. Measure of anticoherence to order 2 of optimal states
(see text) as a function of the final time t∗ for N = 4 and different val-
ues of the depolarization rates. Symbols correspond to data obtained
by numerical optimization and solid curves show the analytical pre-
dictions based on Eqs. (87) and (88).

013178-14



EXTREME DEPOLARIZATION FOR ANY SPIN PHYSICAL REVIEW RESEARCH 4, 013178 (2022)

FIG. 11. Evolution of the different characteristic times [NPT survival time tNPT, P-function separability time tP, and time trmax to reach the
ball of absolutely separable state of radius (18)] as a function of the number of qubits for W states (purple), balanced Dicke states (red), GHZ
states (green), and HOAP states (blue). Top: γ⊥z

γz
= 0.5. Middle: γz

γ⊥z
= 0.5. Bottom: γz

γ⊥z
= 0.0.

then define the derivative of this purity with respect to a pure
state |φ〉 as

dR|ψ〉(t∗)

d|φ〉 = lim
ε→0

R|ψε〉(t
∗) − R|ψ〉(t∗)

ε
, (85)

where |ψε〉 is the normalized state

|ψε〉 = N (|ψ〉 + ε|φ〉). (86)

In order to find optimal states, we look for critical states that
cancel the derivative (85) for a fixed value of t∗.

1. j = 1 or N = 2 qubits

For N = 2, the only critical states are the GHZ and bal-
anced Dicke states, whatever the value of t∗. They are both
1-anticoherent [24]. The GHZ and balanced Dicke states were
previously found to be optimal at short times for γz > γ⊥z and
γz < γ⊥z, respectively. Our numerics shows that this is also
the case for longer times, and thus for any t∗.

2. j = 2 or N = 4 qubits

We assume that the optimal initial 4-qubit states are all
1-anticoherent, which our numerics confirms, regardless of
the final time t∗ and the depolarization rates. In [24], it was
shown that any 1-anticoherent 4-qubit state can be brought by

rotation to the form

|μ〉 = N
(∣∣D(0)

4

〉+ μ
∣∣D(2)

4

〉+ ∣∣D(4)
4

〉)
(87)

with μ ∈ C and N a normalization constant. We can always
find a critical state of the form (87). Indeed, by canceling the
derivative of the purity at time t∗ for the initial state (87) and
solve for the real and imaginary parts of μ, we find a critical
value μ∗ with Re(μ∗) = 0 and

Im(μ∗) =
√

7(e8(4γ⊥z−3γz )t∗ − e8γzt∗ )

4 e4(7γ⊥z+2γz )t∗ − 7 e24γ⊥zt∗ + 3 e8γzt∗ + 2. (88)

Let us make some observations on this result. First, when
γ⊥z = γz, Eq. (88) reduces to μ∗ = i

√
2 and Eq. (23) then

gives A2 = 1, so that we recover the result of the previous
section that, for isotropic depolarization, the optimal state is
at any time a 2-anticoherent state. Next, the critical value (88)
exists only for times for which the argument in the square root
is non-negative, i.e., for t∗ > t∗

μ∗ with t∗
μ∗ a time that depends

only on the rates.
We show in Fig. 8 the evolution of the purity for the optimal

state |μ∗〉 for different values of γ⊥z/γz with γz > γ⊥z. The
vertical dashed lines, drawn at t∗ = t∗

μ∗ , indicate the time at
which the initial optimal state changes from the GHZ state to
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|μ∗〉. Finally, we note that μ∗ → i
√

2 when t → ∞, meaning
that the asymptotically optimal state always converges to the
pure anticoherent state to order 2 given in Eq. (68). The same
type of behavior can be seen in Fig. 9, where we let γz/γ⊥z

vary with γz < γ⊥z. Here, the optimal state changes from the
balanced Dicke state to |μ∗〉. As all nonzero-state multipoles
of the balanced Dicke state have M = 0, the purity decay is
insensitive to the value of the rate γz.

Finally, in Fig. 10, we compare the rotationally invariant
measure of 2-anticoherence of the numerically obtained op-
timal states and the |μ∗〉 states as a function of t∗. As can be
seen, both give the same results. At short times, A2 is constant
and equal to 3

4 . The corresponding state is either the GHZ state
when γz < γ⊥z, or the balanced Dicke state when γz > γ⊥z. At
longer times, A2 increases monotonically with t∗ and tends to
1 as t∗ → ∞. All this shows that the optimization results of
the purity for arbitrary times are already complex for a small
number of qubits.

E. Entanglement dynamics

As for isotropic depolarization, we now look at the evolu-
tion with the number of qubits of the different characteristic
times related to entanglement. Our numerical results are dis-
played in Fig. 11. The first two rows show that, when γz �= 0,
the times tNPT and tP (and thus also the entanglement survival
time) follow the same scaling ∼1/N as for isotropic depolar-
ization for all state families considered in this work. However,
when γz = 0, we observe that these times increase or decrease
only very slightly with N for GHZ and HOAP states (see left
two bottom panels) for N � 50. As for the time trmax , we can
see in the right column that it is the smallest for the HOAP
states for all the values of the rates considered. This suggests
that HOAP states are, also for anisotropic depolarization, the
ones that lead to the smallest purity at long times, in line
with our detailed analysis of the 4-qubit case in the preceding
subsection. An in-depth study of these behaviors as a function
of the depolarization rates would be desirable, but is beyond
the scope of this work.

VI. CONCLUSION

In this work, we presented a general study of the de-
polarization dynamics of an arbitrary spin using tools from
quantum information theory. Considering that the single spin
j results from the coupling of N = 2 j constituent spin 1

2
or qubits, we analyzed depolarization in terms of multiqubit
states evolving in the symmetric sector of the full Hilbert
space. A simple analytical solution to the general master
equation (24) was obtained in the multipole operator basis and
exploited to find the states featuring the most rapid decoher-
ence, both for isotropic and anisotropic depolarization.

In the case of isotropic depolarization, we proved that pure-
or mixed-state entanglement between the constituent qubits
is a necessary condition for superdecoherence to occur, in
stark contrast to the closely related phenomenon of super-
radiance which can occur without any entanglement [48].
Our result suggests that superdecoherence could be used as
an entanglement witness for multiqubit symmetric states, or
equivalently as a nonclassicality witness for spin states. We

found a relationship [Eq. (51)] between the initial decoherence
rate of pure states and their measure of anticoherence (and
thus their linear entanglement entropy). This allowed us to
identify a class of maximally entangled pure states distinct
from the GHZ and Dicke states, known as anticoherent states,
which exhibit the highest initial decoherence rates and lead
to the states with the lowest purity at any time, starting from
a pure state. The potential of these anticoherent spin states
for rotation sensing has been demonstrated in a series of
works (see, e.g., [14–16]). The entanglement of the different
families of states listed in Table II and its evolution over time
was studied numerically. More precisely, the entanglement
survival time, that we lower and upper bounded using the PPT
entanglement criterion and a sufficient separability criterion
based on the P function, was shown to scale as 1/N with N the
number of qubits, consistently with the bound (63). Although
other families of states show the same scaling (see Table III),
we found the entanglement of anticoherent states to be more
fragile to depolarization than for GHZ, W, or even Dicke
states. The tES ∼ 1/N scaling we found is also different from
that of individual, rather than collective, decoherence. We
attribute this difference to superdecoherence that is absent for
individual depolarization. A detailed analysis for a few qubits
showed that isotropic depolarization can lead to the dynamical
creation of bound entanglement across balanced bipartitions
(see, e.g., Fig. 7). Then, we studied when a state enters the
ball of absolutely separable states of radius (18). The states
belonging to this ball are too mixed for any unitary operation
to create entanglement. It was found that pure states with
maximum order of anticoherence enter this ball after a time
roughly independent of the number of qubits, in sharp contrast
to other states for which this time increases linearly with N .
This again points to the extreme fragility of entanglement in
anticoherent states against depolarization.

In the case of anisotropic depolarization, we first related the
initial purity loss rate to the variances of the spin components
in a pure state [Eq. (76)]. We then showed for any spin that
the maximum purity loss rate at short times is achieved by
the GHZ states for γz > γ⊥z and by the balanced Dicke state
for γz < γ⊥z. As for the dynamics at longer times, we have
completely identified the pure states of N = 2 and 4 qubits
that display the lowest purity after an arbitrary fixed time. The
extremal states for N = 4 were found to exhibit a transition
from the GHZ/balanced Dicke state to a parametric antico-
herent state given by Eq. (87).

Regarding the perspectives of this work, the entanglement
dynamics for anisotropic depolarization was only touched
upon and deserves further investigation. In particular, the
question remains whether entanglement between the con-
stituent qubits is a necessary condition for superdecoherence
to occur in this case. Another perspective this work suggests
is to analyze the potential of anticoherent spin states, which
we have shown to be the most sensitive to isotropic depo-
larization, for quantum parameter estimation and quantum
sensing strategies based on decoherence, in line with the
works [30,74,75]. Finally, recent experiments with multipho-
ton quantum states [30] or the electron spin of dysprosium
atoms whose ground state has an angular momentum j = 8
[2] suggests that some of the predictions made in this work
can already be verified in the laboratory.
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TABLE IV. Examples of pure states with maximum order of anticoherence (HOAP states) for the smallest values of the spin quantum
number j, and their state multipoles. Here, q is the order of anticoherence of the state.

j q Pure q-anticoherent spin- j state and its nonzero-state multipolesa

1 1
|ψ〉 = 1√

2
(|1, 1〉 + |1, −1〉)

ρ00 = 1√
3
, ρ20 = 1√

6
, ρ2−2 = 1

2

3/2 1
|ψ〉 = 1√

2
(| 3

2 , 3
2 〉 + | 3

2 , − 3
2 〉)

ρ00 = 1√
4
, ρ20 = 1

2 , ρ3−3 = 1
2

2 2
|ψ〉 = 1

2 (|2, 2〉 + i
√

2|2, 0〉 + |2,−2〉)

ρ00 = 1√
5
, ρ3−2 = i

2 , ρ4−4 = 1
4 , ρ40 = 1

2

√
7

10

5/2 1
|ψ〉 = 1√

2
(| 5

2 , 3
2 〉 + | 5

2 , − 3
2 〉)

ρ00 = 1√
6
, ρ20 = − 1

2
√

21
, ρ3−3 = 1

3 ρ40 = − 3
2
√

7
, ρ5−3 = −

√
5

6

3 3
|ψ〉 = 1√

2
(|3, 2〉 + |3, −2〉)

ρ00 = 1√
7
, ρ4−4 = 1

2

√
5
11 , ρ40 = −

√
7

22 , ρ6−4 = −
√

3
22 , ρ60 = −

√
3
77

7/2 2

|ψ〉 =
√

2
3 | 7

2 , 7
2 〉 +

√
7
2

3 (| 7
2 , 1

2 〉 + | 7
2 , − 5

2 〉)

ρ00 = 1√
8
, ρ3−3 = 7

3
√

66
, ρ30 = 7

6
√

66
, ρ5−3 = 7

6
√

78
, ρ50 = 7

6

√
7
78 , ρ6−6 = 1

9

√
7
2 ,

ρ6−3 = 1
18

√
77
2 , ρ60 = − 1

6

√
11
6 , ρ7−6 = 1

9

√
7
2 , ρ7−3 = − 5

18

√
35
143 , ρ70 = − 8

3

√
2

429

4 3

|ψ〉 =
√

5
6

2 (|4, 4〉 + |4, −4〉) +
√

7
3

2 |4, 0〉
ρ00 = 1

3 , ρ4−4 = 7
6

√
5

143 , ρ40 = 7
3

√
7

286 , ρ6−4 = 1
3

√
35
22 , ρ60 = − 1

3

√
5
11 , ρ8−8 = 5

24 , ρ8−4 = 1
12

√
35
13 ,

ρ80 = 1
4

√
55
26

9/2 3

|ψ〉 = 1√
6
(| 9

2 , 9
2 〉 + | 9

2 , − 9
2 〉) − 1√

3
(| 9

2 , 3
2 〉 + | 9

2 ,− 3
2 〉)

ρ00 = 1√
10

, ρ3−3 = 10
√

429−3
√

2002
1287 , ρ40 = 4√

715
, ρ5−3 = − 1

117 (6
√

26 + √
273), ρ6−6 = − 1√

30
,

ρ60 = 1
2

√
5
33 , ρ7−3 = − 5

√
3−2

√
14√

2431
, ρ8−6 = − 1

3

√
7

10 , ρ80 = − 1
6

√
55
13 , ρ9−9 = 1

6 , ρ9−3 = −
√

2+2
√

21
3
√

221

5 3

|ψ〉 = 1√
11

(|5, 5〉 + |5, −5〉) +
√

3
5 |5, 0〉

ρ00 = 1√
11

, ρ40 = 3
√

2
143 , ρ5−5 = 3

5
√

13
, ρ60 = −3

√
3

935 , ρ7−5 = 6√
221

, ρ80 = 2
√

22
1235 , ρ9−5 = 1

5

√
21
17 ,

ρ10−10 = 1
5 , ρ100 = − 29

5

√
13

3553

aWhen a state multipole ρL−M is non-zero, the same applies to ρLM due to the relation ρ∗
LM = (−1)MρL−M . For the sake of simplicity, only the

state multipoles ρL−M with M � 0 are given in the table.

VII. EXAMPLES OF PURE ANTICOHERENT
STATES IN THE MPB

We give in Table IV examples of pure states with the
maximum achievable order of anticoherence (taken from
Refs. [22,24,25,29]) expressed in both the standard angular
momentum basis and the multipole operator basis. These
states are abbreviated as HOAP states in this work.
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APPENDIX A: MASTER EQUATION IN
THE MULTIPOLE OPERATOR BASIS

In this Appendix, we use the shorthand notation
∑

L,M for∑N
L=0

∑L
M=−L. Our aim is to write the master equation (24) in

the multipole operator basis (MPB) as defined below.

1. Multipole operator basis (MPB)

The multipole operator basis (MPB) is defined as the set
{TLM : L = 0, . . . , N ; M = −L, . . . , L} of (N + 1)2 operators

TLM =
√

2L + 1

2 j + 1

∑
m,m′

C j L j
m M m′ | j, m〉〈 j, m′|, (A1)

where N = 2 j and C j1 j2 j
m1 m2 m is the Clebsch-Gordan coefficient

representing the probability amplitude that the coupling of the
two angular momenta j1 and j2 with projections m1 and m2

results in the angular momentum j with projection m. The
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operator set {TLM} forms an orthonormal basis of the space of
linear operators acting on H � CN+1 verifying [40]

T †
LM = (−1)MTL−M,

Tr[T †
LMTL′M ′ ] = δLL′δMM ′ ,

Tr[TLM] = √
N + 1 δL0δM0. (A2)

The multipole operators are irreducible tensor operators of
rank L and component M [77].

We start with the expansion of the density operator in the
MPB

ρ(t ) =
∑
L,M

ρLM (t ) TLM (A3)

with the state multipoles

ρLM (t ) = Tr[T †
LM ρ(t )] (A4)

satisfying

ρ∗
LM = (−1)MρL−M, ρ00 = 1√

N + 1
(A5)

at all times because of Hermiticity and normalization of ρ.
Additional nonlinear constraints on the components ρLM fol-
low from the positivity of ρ (see, e.g., [78,79]). In the MPB,
the purity of a state ρ reads as

Tr[ρ2] =
∑
L,M

∑
L′,M ′

ρLM ρL′M ′Tr[TLMTL′M ′ ]

=
∑
L,M

(−1)M ρLM ρL−M

=
∑
L,M

|ρLM |2. (A6)

In particular, for pure states,
∑

L,M |ρLM |2 = 1, and the |ρLM |2
can be seen as forming a set of discrete probabilities.

The time derivative of ρLM (t ) defined in (A4) reads as

ρ̇LM (t ) = d

dt
(Tr[T †

LMρ(t )]) = Tr[T †
LM ρ̇(t )] (A7)

or, using the master equation ρ̇(t ) = L(ρ),

ρ̇LM (t ) = Tr[T †
LML(ρ(t ))]. (A8)

2. Depolarization in terms of ρLM

As the Lindblad operators Jα (α = x, y, z) are Hermitian,
the dissipator

Dα (ρ) = γα (2JαρJα − JαJαρ − ρJαJα ) (A9)

can be rewritten as

Dα (ρ) = −γα[Jα, [Jα, ρ]]. (A10)

Let us first consider Dz(ρ). Using [40]

[Jz, TLM] =
√

L(L + 1)CL 1 L
M 0 MTLM, (A11)

we get

Dz(ρ) = −γz

∑
L,M

ρLM[L(L + 1)]
(
CL 1 L

M 0 M

)2
TLM .

From CL 1 L
M 0 M = M/

√
L(L + 1), we conclude that the state

multipoles ρLM evolve under depolarization along z according
to

ρ̇LM (t )|Dz ≡ Tr[T †
LMDz(ρ)] = −γz M2ρLM (t ). (A12)

Next, we consider Dx(ρ). By writing Jx = (J+ + J−)/2 and
using the commutator [40]

[J±, TLM] = ∓
√

2L(L + 1)CL 1 L
M ±1 M±1TLM±1 (A13)

we get

[Jx, ρ] = 1

2

∑
L,M

ρLM ([J−, TLM] + [J+, TLM])

= 1

2

∑
L,M

√
2L(L + 1) ρLM

× (CL 1 L
M −1 M−1TLM−1 − CL 1 L

M 1 M+1TLM+1
)

(A14)

and, therefore,

[Jx, [Jx, ρ]] = 1

2

∑
L,M

L(L + 1) ρLM
[
CL 1 L

M −1 M−1

(
CL 1 L

M−1 −1 M−2 TLM−2 − CL 1 L
M−1 1 M TLM

)
− CL 1 L

M 1 M+1

(
CL 1 L

M+1 −1 M TLM − CL 1 L
M+1 1 M+2 TLM+2

)]
. (A15)

Using the explicit formula for Clebsch-Gordan coefficients [40]

Ca b a+b−1
α β α+β = 2 (bα − aβ )

(
(2a + 2b − 1) (2a − 1)! (2b − 1)! (a + b + α + β − 1)! (a + b − α − β − 1)!

(a + α)! (a − α)! (b + β )! (b − β )! (2a + 2b)!

)1/2

(A16)

we eventually get

ρ̇LM (t )|Dx = −γx

4
[2(L2 + L − M2)ρLM + d+

LM ρLM+2 + d−
LM ρLM−2], (A17)

where

d±
LM =

√
(L ∓ M )(L ± M + 1)(L ∓ M − 1)(L ± M + 2). (A18)
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A similar calculation for Jy = (J+ − J−)/(2i) yields

ρ̇LM (t )|Dy = −γy

4
[2(L2 + L − M2)ρLM − d+

LM ρLM+2 − d−
LM ρLM−2]. (A19)

Eventually, by adding all three contributions (A12), (A17),
and (A19), we get Eq. (29).

APPENDIX B: MODELS OF DEPOLARIZATION

In this Appendix, we present models that provide a physi-
cal basis for the master equation (24). A first model, inspired
from [36], is that of a spin system interacting with a fluctuat-
ing magnetic field B(t ). The interaction Hamiltonian is

Hint = −μ J · B, (B1)

where J = (Jx, Jy, Jz ) and μ = μJ is the spin magnetic mo-
ment. We choose a coarse-graining time �t for the evolution
and make the assumption that this time is much larger than the
correlation time τc of the fluctuations of the magnetic field.
Then, assuming white noise and isotropic magnetic field fluc-
tuations, the two-time correlation functions of the components
of B(t ) are given by

Bα (t1)Bβ (t2) = B2

3
τc δ(t1 − t2) δαβ, (B2)

where α, β = (x, y, z) and an overbar denotes the ensemble
average over realizations of the stochastic process. Finally, if
we make the Born approximation that no correlations appear
between the system and the magnetic field, by taking the limit
�t → dt , it can be shown that the evolution reduces to

dρ

dt
=
∑

α=x,y,z

γ [Jα, [Jα, ρ]], (B3)

where γ = τcω
2
0/2 is the effective Larmor frequency ω0 =

μB/(
√

3h̄). The limit �t → dt is valid as long as �t � τs

where τs = 1/γ is the typical evolution time of the system,
hence, τc � �t � τs.

As a second model, we consider a collection of two-level
atoms of electric dipole moment d interacting collectively
with the electromagnetic field at thermal equilibrium. This
system is governed by the usual superradiant master equation
[80]

dρ

dt
= γ0(n̄ + 1)[2J−ρJ+ − (J+J−ρ + ρJ+J−)]

+ γ0n̄[2J+ρJ− − (J−J+ρ + ρJ−J+)], (B4)

where γ0 = 4ω3|d|2/3h̄c3 is the spontaneous emission rate
and n̄ = (eh̄ω/kBT − 1)−1 is the average number of thermal
photons at the atomic transition frequency ω. The first line of
Eq. (B4) describes spontaneous and thermally induced emis-
sion of photons while the second line describes the absorption
of thermal photons. When kBT � h̄ω, the average number of
photons n � 1 and n + 1 ≈ n, so that the rates for emission
and absorption are roughly the same. In this case, the master
equation (B4) reduces to

dρ

dt
= −γ⊥z([Jx, [Jx, ρ]] + [Jy, [Jy, ρ]]) (B5)

with γ⊥z = 2γ0n and thus provides a model for anisotropic
depolarization.

Finally, a third model is based on a weak continuous mea-
surement of the spin components. When an observable A of a
quantum system is continuously measured with an apparatus
and that the measurement is not read out, the system evolves
according to [81]

dρ

dt
= −γ [A, [A, ρ]] (B6)

with γ > 0 a constant proportional to the strength of the
measurement. We immediately recognize the form of our dis-
sipator (25). Thus, in order to obtain the full master equation
(24), the three collective spin observables Jx, Jy, and Jz must
be simultaneously subjected to a continuous measurement.
Because these observables are not compatible, cross terms of
the form [Jα, [Jβ, ρ]] with α �= β appear in addition to the
simple sum of terms of the form (B6). However, these extra
terms can be neglected within the Born-Markov approxima-
tion [82].

APPENDIX C: PARTIAL TRACE IN THE MPB

In this Appendix, we show that if ρ is an N-qubit symmet-
ric state, with expansion in the MPB given by

ρ =
N∑

L=0

L∑
M=−L

ρLMT (N )
LM , (C1)

then its q-qubit reduction ρq ≡ Tr¬q[ρ] is given by

ρq =
q∑

L=0

L∑
M=−L

q!

N!

√
(N − L)!(N + L + 1)!

(q − L)!(q + L + 1)!
ρLMT (q)

LM , (C2)

where, for clarity, we have added a superscript to the multi-
polar operators indicating the number of qubits. To prove the
above result, we work in the spin-coherent-state representa-
tion (or symmetric separable-state representation). Denoting
by |�〉 the state of a qubit with Bloch vector pointing in the di-
rection of the unit vector n = (sin θ cos ϕ, sin θ sin ϕ, cos θ )T

and d� = sin θ dθ dϕ, the multipole operators read as [83]

T (N )
LM = N + 1

4π
α

(N )
L

∫
YLM (�)(|�〉〈�|)⊗N d�, (C3)

with YLM (�) the spherical harmonics and α
(N )
L the constant

α
(N )
L = 2

√
π

√
(N − L)!(N + L + 1)!

(N + 1)!
. (C4)

In the coherent-state representation, the partial trace is readily
performed because the partial trace of (|�〉〈�|)⊗N over any
set of N − q qubits is trivially (|�〉〈�|)⊗q. Thus, the partial
trace of (C3) yields

Tr¬q
[
T (N )

LM

] = N + 1

4π
α

(N )
L

∫
YLM (�)(|�〉〈�|)⊗qd� (C5)
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or, upon comparison with (C3) where N has been replaced
by q,

Tr¬q
[
T (N )

LM

] =
⎧⎨
⎩

N+1
q+1

α
(q)
L

α
(N )
L

T (q)
LM , L � q

0, L > q.

(C6)

Equation (C6) for L > q holds true because the integral∫
YLM (�)(|�〉〈�|)⊗qd� (C7)

vanishes for L > q, as can be seen by substituting Eq. (8) for
(|�〉〈�|)⊗q and using the orthogonality of spherical harmon-
ics. In (C6), the prefactor of T (q)

LM can also be written as

N + 1

q + 1

α
(q)
L

α
(N )
L

= q!

N!

√
(N − L)!(N + L + 1)!

(q − L)!(q + L + 1)!
. (C8)

In the end, by linearity of the partial trace, using Eqs. (C1),
(C6), and (C8), we get (C2). A similar result to the one
presented here was obtained in [84] by a different method.

Purity of reduced density matrices

The purity of the q-qubit reduced density operator (C2) of
a state ρ with state multipoles ρLM is given by

Tr
[
ρ2

q

] =
q∑

L=0

L∑
M=−L

(q!)2

(N!)2

(N − L)!(N + L + 1)!

(q − L)!(q + L + 1)!
|ρLM |2.

(C9)
In particular, for q = N − 1, we have

Tr
[
ρ2

N−1

] =
N−1∑
L=0

L∑
M=−L

N (N + 1) − L(L + 1)

N2
|ρLM |2. (C10)

Then, by combining Eq. (A6) for Tr[ρ2] with Eq. (C10), and
after some algebra, we arrive at the identity

N∑
L=0

L∑
M=−L

L(L+1)|ρLM |2=N (N+1)Tr[ρ2]−N2 Tr[ρ2
N−1]

(C11)

which is valid for any state ρ (pure or mixed). As the mea-
sure of anticoherence Aq is a function of Tr[ρ2

q ], it can be
expressed in terms of state multipoles using (C9).

APPENDIX D: EVOLUTION OF PURITIES

In this Appendix, we give analytical solutions to the system
of equations (48) for the purities, which we reproduce below:

Ṙ(ρ1) = −2γ [2R(ρ1) − 1],

Ṙ(ρ2) = −2γ [6R(ρ2) − 4R(ρ1)],

...

Ṙ(ρN−1) = −2γ [(N − 1)NR(ρN−1) − (N − 1)2R(ρN−2)],

Ṙ(ρ) = −2γ [N (N + 1)R(ρ) − N2R(ρN−1)]. (D1)

We start by noting that the first q < N equations of (D1)
also form a closed set of equations. Therefore, the time
evolution of R(ρq) depends only on the initial purities
Rq(0), Rq−1(0), . . . , R1(0), where we have used the shorthand

notation Rq(0) for R(ρq(0)). The general solutions are then
given, for q = 1, by

R1(t ) = e−4γ t

2
[2 R1(0) − 1] + 1

2
,

for q = 2, by

R2(t ) = e−12γ t

6
[2 e12γ t + 3 [2 R1(0) − 1] e8γ t

+ 6 [R2(0) − R1(0)] + 1],

and, for q = 3, by

R3(t ) = e−24γ t

20
[e12γ t (9 [2R1(0) − 1] e8γ t

− 30R1(0) + 30R2(0) + 5 e12γ t + 5)

+ 12R1(0) − 30R2(0) + 20R3(0) − 1].

The system of equations (D1), supplemented with the
dummy variable R0 = 1 and the corresponding equation
Ṙ0 = 0, can be written in matrix form as ṘT = MRT with
R = (R(0), RN−1(0), . . . , R1(0), R0(0)) and M a matrix with
nonzero entries only on the main diagonal and the subdiago-
nal. The eigenvalues of M are therefore given by its diagonal
elements −2γ q(q + 1) with q = 1, . . . , N . This explains the
decay rates appearing in the three expressions above.

Furthermore, for pure initial states, it holds that Rq(0) =
RN−q(0) and the solution for R(ρ) can be expressed solely in
terms of the initial purities R�N/2�(0), . . . , R1(0) or, equiva-
lently, in terms of anticoherence measures (23).

APPENDIX E: PRESERVATION OF SEPARABILITY
UNDER ISOTROPIC DEPOLARIZATION

In this Appendix, we show that the dynamics generated by
the master equation (24) for γx = γy = γz preserves the sep-
arability of states, i.e., that a separable state can only evolve
into a separable state under isotropic depolarization. As the
Hamiltonian part only induces a rotation in the state space,
it clearly preserves the separability and coherence of a state.
For notational convenience, we set h̄ = 1 in the following. We
start by rewriting the dissipative part of the master equation as∑

α=x,y,z

Dα (ρ) = D+z(ρ) + D−z(ρ), (E1)

where

D±z(ρ) = γ
(
J±ρJ∓ − 1

2 {J∓J±, ρ} + JzρJz − 1
2

{
J2

z , ρ
})

.

We then follow the method of Gisin [85] to show that certain
quantum diffusion equations for spin relaxation preserve spin-
coherent states. This method is based on the unraveling of the
master equation into stochastic quantum trajectories and will
allow us to prove that both dissipators D±z are separability
preserving.

First, consider as in [85] the deterministic equation for the
relaxation of a spin

d|ψ〉
dt

= (〈Jz〉 − Jz )|ψ〉. (E2)

If the initial state |ψ〉 is a coherent state (or separable sym-
metric state in the language of multiqubit systems), then at
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any later time the state will also be coherent (and therefore
separable). This is because a state is coherent iff |〈J〉|2 ≡∑

i=x,y,z〈Ji〉2 = j2, and because |〈J〉|2 is a quantity conserved
under spin relaxation for a coherent initial state. Indeed, it
holds that

d

dt
|〈J〉|2(t ) = 2

∑
i=x,y,z

〈Ji〉(2〈Ji〉〈Jz〉 − 〈{Ji, Jz}〉). (E3)

For a coherent state initially pointing in the direction of the
unit vector n, we have 〈Jk〉 = jnk and 〈{Jk, J�}〉 = j(2 j +
1)nkn� + jδk�, from which follows that

d

dt
|〈J〉|2(0) = 2 j2

∑
i=x,y,z

nk (nknz − δkz ) = 0. (E4)

As the direction z in Eq. (E2) is arbitrary, the result is equally
valid for Jx and Jy. Moreover, a similar calculation shows that
it is also valid for jump operators J±. The next step is to write a
stochastic differential equation (SDE) for the master equation
(E1). The Stratonovitch SDE associated with D±z reads as
[86]

d|ψ〉 = √
γ [(J± − 〈J±〉) + (Jz − 〈Jz〉)]|ψ〉dξ

+ γ [〈J∓〉(J± − 〈J±〉) − 1
2 J∓J± + 1

2 〈J∓J±〉]|ψ〉dt

+ γ [〈Jz〉(Jz − 〈Jz〉) − 1
2 J2

z + 1
2

〈
J2

z

〉
]|ψ〉dt, (E5)

where the first line is the diffusion term and the second and
third lines are the drift terms. Then, due to the relation J∓J± −
J2

z = j( j + 1) ∓ Jz, we can write

〈J−〉J+ − 〈J−〉〈J+〉 = 〈J−〉(J+ − 〈J+〉,
〈J−J+〉 + 〈J2

z

〉− J−J+ − J2
z = Jz − 〈Jz〉

so that Eq. (E5) can now be written as a sum of terms of the
form (E2) for the jump operators Jz and J+. Both preserve
spin-coherent states, which eventually shows that a coherent
state remains coherent when subjected to isotropic depolariza-
tion.

APPENDIX F: POSITIVITY OF THE P FUNCTION

The set of coherent states forms an overcomplete basis
in which any state ρ can be expanded. This leads to the P
representation of ρ, which for multiqubit symmetric density
matrices reads as

ρ = N + 1

4π

∫
Pρ (�) (|�〉〈�|)⊗N d�. (F1)

Here, the P function Pρ (�) is a nonunique real quasiprobabil-
ity distribution over S2. When Pρ (�) is non-negative for all
� ≡ (θ, ϕ), the state (F1) is separable because it is a convex
combination of separable symmetric states. The P function
being an angular function, it can always be expanded over the
spherical harmonics. By truncating the expansion to keep only
spherical harmonics with orbital quantum numbers L � N , we
end up with an equally valid P function for ρ [21]:

P̃ρ (�) =
∑
L,M

PLM YLM (�), (F2)

where [87]

PLM = (−1)L−M

N!
√

4π

√
(N − L)!(N + L + 1)! ρLM (F3)

with ρLM the state multipoles of ρ. Using Y00 = 1/
√

4π ,
ρ00 = 1/

√
N + 1, ρL−M = (−1)M ρ∗

LM , YL−M = (−1)M Y ∗
LM

and the solution (34) for the matrix elements in the case of
isotropic depolarization, Eq. (F2) yields

P̃ρ(t )(�) = 1

4π
+

N∑
L=1

β(N, L)

N!
e−L(L+1)t

L∑
M=0

(−1)M (2 − δM0)

× Re[YLM (�)e−iωMtρLM (0)] (F4)

with β(N, L) = (−1)L√
(N − L)!(N + L + 1)!/(4π ). For an

initial entangled state ρ, the corresponding P function, given
by Eq. (F4) with t = 0, is not everywhere positive. How-
ever, after some time, the exponentially decaying term in the
right-hand side of Eq. (F4) becomes small enough to make
the P function positive for all �. We define tP as the min-
imum time after which this occurs, ensuring that the state
(F1) is a convex combination of separable states, hence is
separable at t = tP. This also implies that the state is sep-
arable for all t � tP because the dynamics is separability
preserving.

To estimate tP numerically, we computed a discretized
version of the P function (F4) for � = (θ, ϕ) ∈ [0, π ] ×
[0, 2π ] sampled on a grid with resolution δθ = δϕ =
1/N3/4. Then we checked at what time, with precision δt =
1/(4096

√
N ), this discretized P function becomes everywhere

positive.

APPENDIX G: DECOHERENCE RATES
FOR PURE STATES

In this Appendix, we use the shorthand notation
∑

L,M for∑N
L=0

∑L
M=−L. Our aim is to evaluate, for pure states, the

decoherence rates of isotropic and anisotropic depolarization
appearing in Eqs. (46) and (74). Up to a constant factor, they
are given by ∑

L,M

L(L + 1) |ρLM |2,
∑
L,M

M2 |ρLM |2,
∑
L,M

[L(L + 1) − M2] |ρLM |2.

We make use of the fact that

ρ = |ψ〉〈ψ | ⇒
{

Tr[ρ2] = 1,

Tr
[
ρ2

N−1

] = Tr
[
ρ2

1

]
.

(G1)

For ρ = |ψ〉〈ψ |, Eq. (C11) can then be simplified with the
help of Eq. (G1) into∑

L,M

L(L + 1) |ρLM |2 = N (N + 1) − N2Tr
[
ρ2

1

]
. (G2)

Now, it holds that for any state ρ (pure or mixed), Tr[ρ2
1 ]

can be expressed as a function of the sum of the variances
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�J2
α = 〈J2

α〉 − 〈Jα〉2 of the spin components Jα (α = x, y, z)
in state ρ, a quantity also known as the total variance [88]

V ≡
∑

α=x,y,z

�J2
α = j( j + 1) − |〈J〉|2, (G3)

where j = N/2. The total variance quantifies the overall level
of quantum fluctuations of the spin. It is minimal for spin-
coherent states and maximal when 〈J〉 = 0 (in particular, this
holds for pure anticoherent states and for the maximally mixed
state). In terms of total variance, we have [26]

Tr
[
ρ2

1

] = 1 − V − j

2 j2
= N (N + 1) − 2 V

N2
. (G4)

This relationship allows us to rewrite the first decoherence rate
(G2) as∑

L,M

L(L + 1) |ρLM |2 = 2
(
�J2

x + �J2
y + �J2

z

)

= N

(
N

2
+ 1

)
− 2 |〈J〉|2. (G5)

We then show that the second decoherence rate is given,
for pure states, by ∑

L,M

M2 |ρLM |2 = 2 �J2
z . (G6)

The left-hand side of Eq. (G6) can be obtained by combin-
ing the commutator [Jz, TLM] = M TLM with the expansion

(C1) of the density operator and the orthonormality relation
Tr[T †

LMTL′M ′ ] = δLL′δMM ′ of the MPB as

Tr([Jz, ρ][ρ, Jz]) =
∑
L,M

M2|ρLM |2. (G7)

For a pure state ρ = |ψ〉〈ψ |, the left-hand side of (G7) is equal
to 2�J2

z . Indeed, by expanding the commutators, we get

Tr([Jz, ρ][ρ, Jz]) = 2
[
Tr
(
J2

z ρ2
)− Tr(JzρJzρ)

]
. (G8)

Using (G1), the first term is given by

Tr
(
J2

z ρ2) = Tr
(
J2

z ρ
) = 〈J2

z

〉
(G9)

while the second term is given by

Tr(JzρJzρ) = Tr(Jz|ψ〉〈ψ |Jz|ψ〉〈ψ |)
= 〈ψ |Jz|ψ〉〈ψ |Jz|ψ〉 = 〈Jz〉2. (G10)

Eventually, for pure states, it holds that Tr([Jz, ρ][ρ, Jz]) =
2(〈J2

z 〉 − 〈Jz〉2) = 2�J2
z .

Last, by substracting Eq. (G6) from Eq. (G5), we readily
get the third decoherence rate∑

L,M

[L(L + 1) − M2] |ρLM |2 = 2
(
�J2

x + �J2
y

)
.
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