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Dissipative phase transitions in quantum systems have been largely studied under the so-called Markovian
approximation, where the environments to which the systems are coupled are memoryless. Here, we present a
generalization of the spectral theory of dissipative phase transitions to non-Markovian systems, encompassing
a much broader class of quantum materials and experiments and opening many possibilities for non-Markovian
engineering of matter phases such as, as explored in the companion Letter [Debecker et al., Phys. Rev. Lett.
133, 140403 (2024)], reshaping of phase boundaries and triggering of phase transitions. We first prove several
statements about the connections between the spectrum of the generator of the non-Markovian dynamics of
general systems and dissipative phase transitions. Then, as a benchmark, we show that our framework can capture
all the expected signatures of the superradiant phase transition appearing in a challenging U (1)-symmetric two-
mode Dicke model from a reduced description of the dynamics of the atoms only, a task for which all other
methods have failed so far.
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I. INTRODUCTION

Understanding how phase transitions emerge in quantum
systems is one of the most important forefronts in physics
because it could help finding new routes to fabricate supercon-
ductors at higher temperatures, to cite but one. In this context,
exploring how driven-dissipative mechanisms obtained via the
coupling of the quantum systems to engineered environments
and fields constitute an interesting research direction, as it has
been shown this could yield matter phases otherwise inac-
cessible [1,2], such as phases with long-range order in two
dimensions (2D) [3], which is forbidden at equilibrium [4].

Phase transitions triggered out of equilibrium, i.e., dissipa-
tive phase transitions (DPTs), have been observed in various
experiments [5–10]. On the theory side, DPTs have mostly
been studied under the so-called Markovian approximation,
i.e., when quantum systems are coupled to memoryless reser-
voirs [11–13]. One of the main reasons explaining this is that
writing the equations of motion in the Markovian limit does
not require knowing the spectrum of the quantum systems, a
task which is particularly difficult to achieve for large, many-
body systems.

However, most realistic experimental platforms and quan-
tum materials are coupled to reservoirs with finite memory
[14], inducing non-Markovian effects which can lead to in-
teresting phenomena [15–19]. Non-Markovian effects also
appear when one derives reduced descriptions of a large
Markovian open quantum system to deal with a smaller
Hilbert space [17,20,21]. A paradigmatic example for this
are atoms trapped in a lossy cavity QED, where the atoms
and the cavity modes constitute an enlarged Markovian sys-
tem coupled to the outside electromagnetic field. In these
systems, one is usually mostly interested in the behavior of
the atomic dynamics and would thus strongly benefit, also
from a computational perspective, from a reduced description
of it, especially in the multimode-cavity case for which the

size of the Hilbert space becomes quickly intractable [22–32].
To derive reduced descriptions of atoms in this context, one
usually relies on the adiabatic elimination of the cavity modes.
However, it has been shown that precautions must be taken in
the approximations performed in the models to capture the
correct behavior of the system, as compared for the superra-
diant phase transitions appearing in driven-dissipative Dicke
models [20,21,33]. This highlights the need for a systematic
framework to characterize DPTs in arbitrary systems.

Here, we present a general method to characterize sig-
natures of DPTs in non-Markovian systems, opening possi-
bilities for exploring DPTs in a wider range of setups. Our
approach is based on the hierarchical equations of motion
(HEOM) [34–39], a numerical method for non-Markovian dy-
namics widely used in quantum physics and chemistry. From
these equations of motion, one can define a generalization of
the Liouvillian usually associated with the Lindblad master
equation for Markovian systems, whose spectral properties
are connected to DPTs. One of the necessary conditions for
DPTs is the closing of the Liouvillian gap [11]: Here we show
how to define a similar quantity for non-Markovian systems.

Other techniques to study the effects of non-Markovianity
on DPTs have been used, such as Green’s functions to study
the impact of the environment spectral density on critical
exponents [40,41], Lindblad master equations with time-
dependent rates to characterize the dynamics of a probe
coupled to a non-Markovian environment [42], or time-
evolving matrix product operators (TEMPO) to localize DPT
in quantum systems coupled to a non-Markovian harmonic
environment [43]. Most of them focus however on the
paradigmatic spin-boson model [44–46]. As our approach
is the natural extension of the powerful spectral machinery
widely used for Markovian systems, it provides an ideal
framework to explore non-Markovian effects in new regimes
and for more realistic systems and experiments.
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This paper presents all the technical details of our spectral
theory of non-Markovian dissipative phase transitions as well
as a few benchmarks. It goes along with the companion Letter
[47] which focuses on the application of the framework to
highlight new physics and opportunities for dissipation engi-
neering of DPTs, as it shows how non-Markovian effects can
be used to reshape phase boundaries but also trigger phase
transitions where Lindblad master equations do not.

The paper is organized as follows: In Sec. II, we
first present the generalization of the Liouvillian for non-
Markovian systems, i.e., the HEOM Liouvillian, and its
properties. In Sec. III, we present our spectral theory of
non-Markovian DPTs by demonstrating how the spectral
properties of the HEOM Liouvillian connect to DPTs and
symmetries. In Sec. IV, we illustrate how our framework can
be used to understand matter phases from the decomposition
of the steady states for the first- and second-order DPT ad-
dressed in our companion Letter [47]. Finally, in Sec. V, we
show that our theory can be used to capture all the expected
features of a second-order DPT associated with a continuous
symmetry in a challenging two-mode Dicke model for which
all previous reduced descriptions have failed so far [21].

II. GENERATOR OF NON-MARKOVIAN DYNAMICS

In this section, we first introduce the generator of non-
Markovian dynamics that is the centerpiece of our spectral
theory of DPTs. We then discuss its properties and, finally, the
computational advantage of using it over standard Markovian
embedding of non-Markovian systems.

A. Hierarchical equations of motion Liouvillian

We consider an open quantum system S of Hamiltonian
HS interacting linearly through Hint with NE environments
of Hamiltonian HE made of a collection of bosonic modes.
Setting h̄ = 1, the total Hamiltonian reads

H = HS + HE + Hint

= HS +
NE∑
l=1

∑
k

ωlkb†
lkblk +

NE∑
l=1

∑
k

(glkblkL†
l + g∗

lkb†
lkLl ),

(1)

where blk (b†
lk) is the annihilation (creation) operator associ-

ated with the kth bosonic mode of frequency ωlk of the lth
bath and glk is a coupling constant characterizing the strength
of the coupling between the system and the mode k of the bath
l . For each bath, the interaction is mediated by an arbitrary
system operator Ll .

At zero temperature, environments are characterized by
correlation functions αl (τ ) of the form

αl (τ ) =
∑

k

|glk|2e−iωlkτ . (2)

Note however that the formalism presented here is easily
generalizable to bosonic or fermionic baths at finite temper-
atures by employing the so-called thermofield method [48],
for example. Now, we suppose that each correlation function
αl can be written, either exactly or approximately [38,49–51],

as a sum of Ml decaying exponentials, i.e.,

αl (τ ) =
Ml∑
j=1

Gl j e−iωl jτ−κl j |τ |, κl j, ωl j ∈ R, Gl j ∈ C.

(3)

This decomposition, usually performed with Gl j ∈ R, is the
so-called pseudomode picture [17,52–59]. It amounts to de-
composing each environment l into a set of Ml independent
modes of frequencies ωl j damped with rates κl j , which is
relevant for many experimental setups such as atoms in cav-
ities, superconducting qubits coupled to resonators [60,61],
electrons-phonons systems [62,63], or emitters in plasmonic
cavities [64].

A common strategy to compute the dynamics of the non-
Markovian system S coupled to such damped pseudomodes
consists of including the pseudomode degrees of freedom in
the system description. This defines an enlarged Markovian
system SM described by a density operator ρtot whose dynam-
ics is governed by a standard Markovian master equation of
the form

dρtot

dt
= −i[Htot, ρtot] +

NE∑
l=1

Ml∑
j=1

κl jDal j [ρtot] ≡ LM[ρtot],

(4)

where

Htot = HS +
NE∑
l=1

Ml∑
j=1

[ωl ja
†
l jal j + (Gl ja

†
l jLl + G∗

l jL
†
l al j )]

(5)

is the “system + pseudomodes” Hamiltonian and Do[·] =
2o · o† − {o†o, ·} the dissipator inducing the damping of the
pseudomodes, where al j is the annihilation operator of the
jth pseudomode of bath l . The superoperator LM defined in
Eq. (4) is a standard Markovian Liouvillian and constitutes the
generator of the dynamics of the Markovian system SM . The
connections between its spectral properties and dissipative
phase transitions have been studied in Ref. [11].

In this paper, we employ a different approach and derive
a spectral theory of non-Markovian DPTs directly based on
the generator of the dynamics of the non-Markovian system S
described below. When the global system is initially in the
state ρtot (0) = ρS (0) ⊗ ρB(0), the exact dynamics of S can
indeed be described by a HEOM which takes the form [34–38]

dρ (�n, �m)

dt
= − i[HS, ρ

(�n, �m)] − ( �w∗ · �n + �w · �m)ρ (�n, �m)

+
NE∑
l=1

Ml∑
j=1

{Gl jnl jLlρ
(�n−�el j , �m) + G∗

l jml jρ
(�n, �m−�el j )L†

l

+ [ρ (�n+�el j , �m), L†
l ] + [Ll , ρ

(�n, �m+�el j )]}, (6)

with �n = (nl j ) and �m = (ml j ) vectorized sets of multi-indices
in NM with M = ∑

l Ml the total number of pseudomodes
[65], �w = (κl j + i ωl j ) ∈ CM , �el j = (δ j j′δll ′ ) unit vectors, and

�a · �b = ∑
l j a∗

l jbl j the inner product on CM . Equation (6) is a
linear set of coupled master equations for the set of operators
{ρ (�n, �m)}, where ρ (�0,�0) ≡ ρS corresponds to the physical density
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operator of the system S with which all the expectation values
of system observables are computed. The operators ρ (�n, �m) for
(�n, �m) �= (�0, �0) also act on the system space and are called
auxiliary states in the literature (even if they are generally
not Hermitian and of unit trace). From these auxiliary states,
which encode the build-up of correlations between the sys-
tem and the environment, bath correlation functions can be
obtained, as shown in Sec. II C. For t = 0, we have ρ (�0,�0)(0) =
ρS (0) and ρ (�n, �m)(0) = 0 for (�n, �m) �= (�0, �0). As time evolves,
the auxiliary states become progressively populated and are
likely to influence the dynamics of the physical state at later
times, acting in this way as a memory kernel for the system.
Although the hierarchy is formally infinite, it can be truncated
at large hierarchy depth indices �n and �m, typically because
some auxiliary states stay negligibly populated at all times.
In practice, the stronger the non-Markovianity, the larger the
number of auxiliary states we need to retain to obtain conver-
gence of the results. Here, we choose the triangular truncation
ρ (�n, �m) = 0 ∀ �n, �m :

∑
l, j (nl j + ml j ) > kmax, where kmax is the

truncation order, giving a total of

K = (2M + kmax)!

(2M )! kmax!
(7)

auxiliary states [17].
Defining ρ as the vector that gathers all the operators ρ (�n, �m),

Eq. (6) is formally equivalent to

dρ

dt
= LHEOM[ρ], (8)

where we introduced the HEOM Liouvillian LHEOM, i.e., the
superoperator that generates the dynamics of the physical den-
sity operator ρS = ρ (�0,�0) and all the auxiliary operators ρ (�n, �m).
Moreover, the Choi-Jamiołkowski isomorphism directly of-
fers a matrix representation of the HEOM generator

d|ρ〉〉
dt

= LHEOM(kmax) |ρ〉〉, (9)

with |ρ〉〉 a stacked vector containing all the vectorized ver-
sions |ρ (�n, �m)〉〉 of the matrices ρ (�n, �m), while the notation
LHEOM(kmax) highlights the kmax dependency of LHEOM. Note
that we keep the same notations for the superoperator LHEOM

and its matrix representation; the context should leave no
room for ambiguity. Explicit forms of the HEOM Liouvillian
for different kmax are given in Appendix A.

B. Spectral properties of the hierarchical
equations of motion Liouvillian

The HEOM Liouvillian LHEOM(kmax) is a linear and, in
general, non-Hermitian superoperator. In the following, we
assume that it is diagonalizable and denote its eigenvalues by
λi and the corresponding right eigenvectors by |ρi〉〉, that is,

LHEOM(kmax)|ρi〉〉 = λi|ρi〉〉. (10)

For a truncation order kmax, its dimension is D = K dim(HS)2

with K given in Eq. (7). For any value of kmax ∈ N, the
following properties for LHEOM(kmax) hold:

(i) Its spectrum is symmetric with respect to the real axis.
(ii) It preserves the trace of the physical state ρ (�0,�0).

(iii) The zero eigenvalue is always in its spectrum, which
guarantees the existence of a stationary state.

Furthermore, owing to the exactness of the generator
LHEOM(kmax) in the limit kmax → +∞, we have that

(iv) all the eigenvalues have a negative real part.
(v) Tr[1(�0,�0)ρi] = 0 with 1(�0,�0) the projector onto the phys-

ical state space and with ρi a right eigenoperator associated
with the eigenvalue λi, with Re[λi] �= 0.

All these spectral properties are proved in Appendix B. As
in Refs. [11,12], we order the eigenvalues of LHEOM by their
real part so that |Re[λ0]| < |Re[λ1]| < · · · < |Re[λD]|, where
λ0 = 0.

C. Advantage of LHEOM over Markovian embedding

Before moving on to the spectral theory of non-Markovian
DPTs, it is worth comparing the numerical effort of the
HEOM method [Eq. (9)] with the natural Markovian embed-
ding that includes the pseudomodes [Eq. (4)]. This provides an
overall idea of what kind of computational advantage can be
expected when using LHEOM instead of LM. A more detailed
comparison can be found in Appendix C.

The dimension of the matrix representing LHEOM is given
by

dim(LHEOM) = (2M + kmax)!

(2M )!kmax!
dim(HS)2 (11)

and depends on the size of the system Hilbert space HS ,
the truncation order kmax, and the number of pseudomodes
M which determines the number of auxiliary matrices in the
hierarchy.

To compare with the dimension of the matrix represent-
ing the Liouvillian of the enlarged Markovian system LM,
we need to introduce a cutoff Nc for the pseudomode Fock
spaces {|ni〉} (ni = 0, 1, . . . ,∞ and i = 1, 2, . . . , M), which
are in principle of infinite dimension. We choose here Nc =
kmax, motivated by the fact that the pseudomode correlation
functions are related to the traces of the auxiliary matrices
according to (for M = 1) [17]

〈an(a†)m〉(t ) = Tr[ρ (n,m)(t )]

(iG)n(−iG)m
, (12)

which means that, if we truncate the hierarchy at kmax, we
must at least truncate the pseudomode Fock space at Nc =
kmax to be able to compute the same correlations. The dimen-
sion of LM should thus be

dim(LM) = dim(HS)2(kmax + 1)M . (13)

The ratio dim(LHEOM)/dim(LM) is plotted as a function of
kmax and M in Fig. 1. We can see that the advantage in terms
of dimensions can be significant, especially for large numbers
of pseudomodes.

III. NON-MARKOVIAN SPECTRAL THEORY
OF DISSIPATIVE PHASE TRANSITIONS

A. Definition of dissipative phase transitions

As for the Markovian case [11], we define a phase transi-
tion as the emergence of a nonanalytic behavior of the steady
state as some control parameter g is varied. More precisely,
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FIG. 1. Overall comparison between the dimensions ofLHEOM [Eq. (11)] andLM [Eq. (13)]: ratios dim(LHEOM)/dim(LM) (a) as a function
of kmax and M, (b) as a function of kmax for M = 1, 2, and 3, and (c) as a function of M for kmax = 1, 2, and 3. Since dim(LHEOM)/dim(LM) < 1,
this means that we need less computational memory to store LHEOM than LM.

for any system described by Eq. (9) which supports a valid
thermodynamic limit N → ∞ and possesses a unique steady
state ρss for all finite N , if

lim
g→gc

∣∣∣∣ ∂ p

∂gp
lim

N→+∞
〈O〉ss

∣∣∣∣ = +∞, (14)

where O is a g-independent system observable and 〈O〉ss =
Tr[Oρ (�0,�0)

ss ], we say that the system undergoes a phase transi-
tion of order p. We call gc the critical point or critical value of
the control parameter. We stress that we always assume that
the steady state is unique at finite N .

B. Weak symmetries and spontaneous symmetry breaking

Here we define a weak symmetry of LHEOM as a unitary
superoperatorU which commutes with LHEOM, i.e.,

[LHEOM,U] = 0. (15)

In the eigenvector basis of U, LHEOM is block-diagonal and
we can write

LHEOM =
⊕

uk

Luk , (16)

where each block Luk is associated with distinct eigenval-
ues uk of U where k ∈ {0, 1, . . . }. The symmetry sector
Luk is defined as the subspace spanned by the eigenvec-
tors of U associated with the eigenvalue uk . As for the
Markovian case [11], the steady state always belongs to
the symmetry sector Lu0=1. Indeed, by the definition of
the steady state, we have LHEOM|ρss〉〉 = 0, from which we
get ULHEOM|ρss〉〉 = LHEOMU|ρss〉〉 = 0 by the definition of
weak symmetry [Eq. (15)]. Since |ρss〉〉 is unique by hypothe-
sis, we must have U|ρss〉〉 = |ρss〉〉, which shows that |ρss〉〉 ∈
Lu0=1.

Spontaneous symmetry breaking (SSB) is defined as the
emergence of a zero eigenvalue in each symmetry sector
k �= 0 in the limit N → ∞. Specifically, if a certain weak
symmetry U gives rise to n + 1 symmetry sectors Luk with
k ∈ {0, 1, . . . , n}, then a SSB occurs when there exists in each
symmetry sector an eigenvalue that converges to zero in the
thermodynamic limit, i.e.,

lim
N→+∞

λ
(k)
0 → 0, k ∈ {1, . . . , n}, (17)

where we sorted the eigenvalues in each symmetry sector Luk

as follows: ∣∣Re
[
λ

(k)
0

]∣∣ <
∣∣Re

[
λ

(k)
1

]∣∣ < · · · . (18)

This means that the independent hierarchies associated with
each block k, forced to be independent by the very existence
of the weak symmetry, merge in the thermodynamic limit
N → +∞. Consequently, steady states that explicitly break
the symmetry emerge when N → +∞.

C. Spectral theory of non-Markovian
dissipative phase transitions

In this section, we generalize the Markovian theory of
DPTs [11] to the non-Markovian regime. We discuss how
the properties of the HEOM Liouvillian are connected to
first-order DPTs and to second-order DPTs associated with
spontaneous symmetry breaking (SSB).

1. First-order dissipative phase transitions

Since first-order DPTs are independent of symmetries (and
thus of SSB), we consider below no particular symmetry and
simply label the eigenvectors and eigenvalues of LHEOM as ρi

and λi. In the case of first-order DPTs emerging in systems
with symmetries, the following results must be understood as
related to the Liouvillian block associated with the symmetry
sector containing the steady state, i.e., the block Lu0=1 of
the decomposition (16), so that ρi and λi below must be
understood simply as ρ

(0)
i and λ

(0)
i . This is exemplified in

the companion paper [47], where we show a first-order DPT
occurring concurrently with an SSB.

Due to the spectral properties (i)–(v) of Sec. II B and their
similarity to the Markovian case [11], it can be shown that a
first-order DPT can occur if and only if the HEOM Liouvillian
gap Re[λ1] vanishes at the critical point in the thermodynamic
limit. Moreover, Im[λ1] must vanish in a finite domain around
the critical point. We prove below these statements in the limit
kmax → +∞. The proofs closely follow Ref. [11] which itself
relies on the results of Kato [66] and Ref. [67]. We start with
a definition of a key superoperator.

Let ρi be a right eigenoperator of LHEOM. We define the
superoperator P(�0,�0) through

P(�0,�0)ρi = ρ
(�0,�0)
i ⇔ |P(�0,�0)ρi〉〉 = ∣∣ρ (�0,�0)

i

〉〉
, (19)
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i.e., P(�0,�0) only selects the component of ρi in the phys-

ical sector (�0, �0), that is, the operator ρ
(�0,�0)
i acting on a

space of dimension dim(HS). Note that P(�0,�0) differs from
1(�0,�0) because |1(�0,�0)ρi〉〉 corresponds to the stacked vector

(|ρ (�0,�0)
i 〉〉, |0〉〉, |0〉〉, . . . )T . We are now in a position to prove

that a first-order DPT implies the vanishing of the gap exactly
at the critical point.

Proposition III.1. If a physical system undergoes a first-
order DPT in a well-defined thermodynamic limit N → +∞
at the critical point g = gc separating two unique phases, and
if limN→+∞LHEOM(g, N ) is continuous with respect to g, then
limN→+∞ λ1(g = gc, N ) = 0.

Proof. Let us assume that a system undergoes a first-
order DPT in a well-defined thermodynamic limit N → +∞
when a parameter g is varied. By definition, the steady state
ρ (�0,�0)(t → ∞) ≡ ρ (�0,�0)

ss must change discontinuously, which
implies that there exists a critical point gc such that

ρ
(�0,�0)
− �= ρ

(�0,�0)
+ , (20)

where ρ
(�0,�0)
− and ρ

(�0,�0)
+ are the states (phases) of the system

right before and after the transition point, i.e.,

ρ
(�0,�0)
− ≡ lim

g→g−
c

lim
N→+∞

ρ (�0,�0)
ss (g, N ),

ρ
(�0,�0)
+ ≡ lim

g→g+
c

lim
N→+∞

ρ (�0,�0)
ss (g, N ), (21)

which are unique by hypothesis. This implies that there exists
ρ± such that(

lim
g→g±

c

lim
N→+∞

LHEOM(g, N )

)
[ρ±] = 0, (22)

withP(�0,�0)ρ± = ρ
(�0,�0)
± . The continuity of the HEOM generator

in the thermodynamic limit then gives(
lim

g→gc

lim
N→+∞

LHEOM(g, N )

)
[ρ±] = 0. (23)

Exactly at g = gc, we then have two eigenoperators that be-
long to the null space ofLHEOM, while there is a unique steady
state for g �= gc. Consequently, we must have

lim
N→+∞

λ1(g = gc, N ) = 0 = λ0, lim
N→+∞

λ1(g �= gc, N ) �= 0,

(24)

which concludes the proof. �
Note that, even if LHEOM(g) is continuous, there is no

guarantee that ρ1(g) is continuous. Indeed, the coalescence of
eigenvalues, for instance, may induce noncontinuous eigen-
vectors [66]. Nevertheless, we get rid of these difficulties by

assuming that ρ
(�0,�0)
1 ≡ P(�0,�0)ρ1 is continuous, as is done in

the Markovian case [11]. We can then elaborate on the form
of the steady state at the critical point as a function of the
right eigenvectors of the Liouvillian associated with λ0 and
λ1, that is, ρ0 and ρ1. In the following, unless otherwise stated
we always assume the thermodynamic limit and thus remove
the N dependency.

Proposition III.2. Under the same assumptions as in Propo-
sition III.1, if ρ+ and ρ− span the null space at g = gc, then

Im[λ1] = 0 holds in a finite neighborhood of g = gc. More-

over, if limN→+∞ ρ
(�0,�0)
1 (g, N ) is continuous with respect to g

and orthogonal to the steady state, then

ρ (�0,�0)
ss (g = gc) = ρ

(�0,�0)
+ + ρ

(�0,�0)
−

2
, (25)

in the thermodynamic limit, i.e., the steady state is an equal
mixture of the two phases ρ±.

Proof. We must have Im[λ1] = 0 in a finite neighborhood
of gc because, if it were not the case, then we would have three
zero eigenvalues at g = gc: λ1(g = gc) = λ∗

1(g = gc) = λ0 =
0 due to spectral property (i). This would imply that ρ+ and
ρ− do not span the null space at g = gc,1 which contradicts
our assumptions.

To prove Eq. (25), we first note that from property (v)
of LHEOM, we have Tr[1(�0,�0)ρ1(g �= gc)] = 0 since Re[λ1(g �=
gc)] �= 0. By hypothesis, ρ

(�0,�0)
1 ≡ P(�0,�0)ρ1 is continuous. This

means that ρ
(�0,�0)
1 (g) does not change abruptly as a function g

but instead evolves continuously and makes a small excursion
into the null space of LHEOM exactly at g = gc. Therefore, we

extend the zero-trace property of ρ
(�0,�0)
1 at the critical point.

Since the system null space at g = gc is spanned by ρ
(�0,�0)
± , we

must have

ρ
(�0,�0)
1 (g = gc) ∝ ρ

(�0,�0)
+ − ρ

(�0,�0)
− . (26)

Furthermore, since ρ
(�0,�0)
± span the null space at g = gc, the

steady state at the critical point must read

ρss(g = gc) = cρ (�0,�0)
+ + (1 − c)ρ (�0,�0)

− , (27)

with c ∈ [0, 1]. The precise value of c cannot be determined
through the behavior of ρss(g �= gc). If, however, we impose

orthogonality between ρss(g = gc) and ρ
(�0,�0)
1 (g = gc), we ob-

tain

ρ (�0,�0)
ss (g = gc) = ρ

(�0,�0)
+ + ρ

(�0,�0)
−

2
, (28)

in virtue of the orthogonality between ρ
(�0,�0)
± , that we prove

below.
For λ1(g = gc) = 0 ∈ R, ρ

(�0,�0)
1 can be assumed Hermitian

without loss of generality, as a direct consequence of property

(i) of LHEOM. Consequently, ρ
(�0,�0)
1 can be diagonalized and

one can construct ρ±, satisfying Eq. (26), simply by gathering

all positive eigenvalues in ρ
(�0,�0)
+ and all negative eigenvalues

in −ρ
(�0,�0)
− and then normalizing the trace of ρ

(�0,�0)
± to one. By

construction, ρ
(�0,�0)
± are orthogonal. �

We stress that the decomposition (25) is based on strong

assumptions, e.g., the orthogonality of ρ
(�0,�0)
1 and ρss at the

critical point, which may not be met. Indeed, in Ref. [68],
it has been shown that, in the Markovian regime, there ex-
ists first-order DPTs without phase coexistence at the critical
point, which contradicts Eq. (25). Nevertheless, as shown in

1We recall that we always assume the diagonalizability of the
HEOM Liouvillian.
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the next section, we find an excellent agreement with the
present theory and the two models explored in the companion
Letter [47]. We close this section dedicated to first-order DPTs
by proving that the closing of the gap at the critical point
implies the existence of a first-order DPT.

Proposition III.3. If λ1(g) vanishes only at g = gc with

Im[λ1(g)] = 0 in a finite domain around g = gc, ρ
(�0,�0)
1 (g) is

continuous and if the null space is spanned at g = gc by two
linearly independent eigenoperators, then there is a first-order
DPT occurring at g = gc.

Proof. We proceed by contradiction by assuming that
limg→gc λ1(g) = 0 and that there is no first-order DPT. Equiv-
alently, we have that for any observable O of the system
Tr[Oρ (�0,�0)

ss ](g) is continuous at g = gc, which implies that
ρ (�0,�0)

ss (g) is also continuous at g = gc. However, at g = gc,
λ1 = 0 and as in Proposition III.2, we may then extend the
zero-trace condition by setting

ρ
(�0,�0)
1 (g = gc) ∝ ρ

(�0,�0)
1+ − ρ

(�0,�0)
1− , (29)

where ρ
(�0,�0)
1± can be found by diagonalizing ρ

(�0,�0)
1 (which is al-

ways possible since ρ
(�0,�0)
1 is Hermitian in the domain in which

Im[λ1] = 0) and gathering again all positive eigenvalues in

ρ
(�0,�0)
1+ and all negative eigenvalues in −ρ

(�0,�0)
1− and then nor-

malizing the trace of ρ
(�0,�0)
1± to one. By construction, ρ

(�0,�0)
1± are

density matrices such that 〈〈ρ (�0,�0)
1+ |ρ (�0,�0)

1− 〉〉 ≡ Tr[ρ (�0,�0)†
1+ ρ

(�0,�0)
1− ] =

0. At the critical point, the steady state can then be written as

ρ (�0,�0)
ss (g = gc) = cρ (�0,�0)

1+ + (1 − c)ρ (�0,�0)
1− , (30)

where c ∈ [0, 1]. Now, for all g �= gc and g ∈ [gc − ε, gc + ε]
(ε > 0), the gap is not closed. Therefore,

P(�0,�0) lim
g→g±

c

lim
t→+∞ eLHEOM(g)tρ1±(g) = ρ

(�0,�0)
0 (g±

c )

= ρ (�0,�0)
ss (g±

c ), (31)

By hypothesis, however, ρ (�0,�0)
ss is continuous at g = gc, which

means

P(�0,�0) lim
g→g±

c

lim
t→+∞ eLHEOM(g)tρ1±(g) = ρ (�0,�0)

ss (g = gc)

= cρ (�0,�0)
1+ + (1 − c)ρ (�0,�0)

1− ,

(32)

or

ρ
(�0,�0)
1± (g = gc) = cρ (�0,�0)

1+ (g = gc) + (1 − c)ρ (�0,�0)
1− (g = gc),

(33)

since ρ1±(g) belongs to the null space at g = gc. From Eq. (33)

we infer ρ
(�0,�0)
1+ (g = gc) = ρ

(�0,�0)
1− (g = gc), hence the contradic-

tion with 〈〈ρ (�0,�0)
1+ |ρ (�0,�0)

1− 〉〉 ≡ Tr[ρ (�0,�0)†
1+ ρ

(�0,�0)
1− ] = 0 or even with

the very existence of ρ
(�0,�0)
1 . �

2. Second-order dissipative phase transitions with spontaneous
symmetry breaking

Let us now discuss the consequences of the properties of
the HEOM Liouvillian on second-order DPTs associated with

SSB. For clarity of exposition, we only consider DPTs asso-
ciated with a Z2 SSB, but the generalization to more general
symmetries is straightforward.

Let LHEOM(g) be the HEOM generator that captures a
second-order DPT associated with the spontaneous breaking
of a Z2 symmetry for g � gc, gc being the critical point. By
definition of a weak symmetry, there exists a superoperator
U2 such that

[LHEOM,U2] = 0. (34)

As discussed in Sec. III B, the very existence of the operator
U2 constrains the HEOM generator to adopt a block-diagonal
structure when written in the eigenbasis ofU2, namely

LHEOM =
⊕

uk=±1

Luk , (35)

where Luk=±1 are the two blocks associated with the two
eigenvalues of U2, namely, +1 (k = 0) and −1 (k = 1). By
hypothesis, a second-order DPT with Z2 SSB occurs for
g � gc and N → +∞, i.e., the two blocks L+1 and L−1 get
coupled in the thermodynamic limit: λ

(k=0)
0 (g � gc) = 0 =

λ
(k=1)
0 . The associated eigenvectors, denoted ρ

(k)
0 , are then

orthogonal since we have〈〈
ρ

(0)
0

∣∣ρ (1)
0

〉〉 = 〈〈
U2ρ

(0)
0

∣∣ρ (1)
0

〉〉
= 〈〈

ρ
(0)
0

∣∣U2ρ
(1)
0

〉〉
= −〈〈

ρ
(0)
0

∣∣ρ (1)
0

〉〉
(36)

because U2 is Hermitian, and thus 〈〈ρ (0)
0 |ρ (1)

0 〉〉 = 0. Now, if
we define

ρ± ∝ ρ
(0)
0 ± ρ

(1)
0 , (37)

it is clear that ρ± belong to the kernel ofLHEOM(g � gc) in the
thermodynamic limit. Note, however, that ρ± are not eigen-
vectors ofU2 becauseU2ρ± ∝ ρ∓. Moreover, the projections

ρ
(�0,�0)
± = P(�0,�0)ρ± allow us to interpret ρ

(�0,�0)
± as steady states of

the system that explicitly break the symmetry. Equation (37)
can be inverted, so that

ρ
(0)
0 ∝ ρ+ + ρ−,

ρ
(1)
0 ∝ ρ+ − ρ−. (38)

In particular, if we apply P(�0,�0) to both sides of the previous
relations, we obtain

ρ
(0)(�0,�0)
0 ∝ ρ

(�0,�0)
+ + ρ

(�0,�0)
− ,

ρ
(1)(�0,�0)
0 ∝ ρ

(�0,�0)
+ − ρ

(�0,�0)
− , (39)

withP(�0,�0)ρ
(k)
0 = ρ

(k)(�0,�0)
0 (k = 0, 1), which is exactly what the

Markovian theory predicts [11]. For finite N , the steady state

is unique, i.e., ρss ∝ ρ
(0)(�0,�0)
0 and therefore

ρss(g � gc, N ) ≈ ρ
(�0,�0)
+ (g � gc, N ) + ρ

(�0,�0)
− (g � gc, N )

2
.

(40)
To conclude this section, a summary of the behavior of the

key eigenvalues of the HEOM Liouvillian for the different
cases is depicted in Fig. 2.
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FIG. 2. Main properties of the behavior of key eigenvalues of the HEOM Liouvillian in the thermodynamic limit N → ∞ in different
scenarios. (a) When there is a first-order DPT, the first nonzero eigenvalue λ1 should vanish at the critical point. (b) When the Liouvillian
can be decomposed in symmetry sectors (illustrated here for the case of two symmetry sectors k = 0 and k = 1) and there is SSB, the first
nonzero eigenvalue of the Liouvillian in each symmetry sector different from the one of the steady state (i.e., λ

(k)
0 for k > 0) should vanish in

the symmetry-broken phase (g � gc). (c) When there is both a first-order DPT and a SSB, the system exhibits the combined behavior of cases
(a) and (b), where the eigenvalue vanishing only at gc is the one in the symmetry sector of the steady state (i.e., λ

(0)
1 ).

IV. UNDERSTANDING THE EMERGENCE OF
DISSIPATIVE PHASE TRANSITIONS

WITH SPECTRAL DECOMPOSITIONS

In this section, we illustrate how DPTs can be understood
from spectral decomposition in the cases of the two models
considered in the companion Letter [47].

A. First-order dissipative phase transitions

We have proven that the emergence of a first-order DPT
can be traced back to the existence of an eigenvalue λ

(0)
1

which vanishes at the critical point in the thermodynamic limit
N → +∞ (see Proposition III.1). Moreover, the associated
eigenvector, namely, ρ1 whose projection on the system sector

(�0, �0) is written as ρ
(�0,�0)
1 , contains information about the sys-

tem states right after or before the critical point, respectively

denoted ρ
(�0,�0)
+ and ρ

(�0,�0)
− . We also know that the steady state at

the critical point can simply be written as a mixture with equal

weights of the two phases ρ
(�0,�0)
± (see Propositions III.2 and

III.3). Those statements are strictly true in the thermodynamic
limit N → +∞. We expect, however, that, at finite N , the
approximation

ρ (�0,�0)
ss (g = gc, N ) ≈ ρ

(�0,�0)
+ (gc, N ) + ρ

(�0,�0)
− (gc, N )

2
, (41)

holds in a finite region around gc and improves in ac-

curacy as N increases. As in Sec. III C, ρ
(�0,�0)
± (gc, N ) can

be determined by spectral decomposition ρ
(�0,�0)
1 (gc, N ) ∝

ρ
(�0,�0)
+ (gc, N ) − ρ

(�0,�0)
− (gc, N ). Furthermore, as we approach the

thermodynamic limit, the states ρ
(�0,�0)
± (gc, N ) are expected to

approach the states immediately before or after the critical
point.

Here, we checked the statement above in the context of a
dissipative Lipkin-Meshkov-Glick model that corresponds to
Eq. (1) with NE = M1 = 1, with the system Hamiltonian

HS = V

2N

(
S2

x − S2
y

) = V

2N
(S2

+ + S2
−), (42)

and with the single jump operator L = S− and bath correlation
function

α(τ ) = γ κ

2N
e−κ|τ |−iωτ , (43)

where Sα = ∑N
j=1 σ

( j)
α /2 (α = x, y, z) are collective spin op-

erators defined in terms of single-spin Pauli operators σ
( j)
α and

S± = Sx ± iSy. The non-Markovian dynamics of the collective
spin is thus governed by Eq. (6) with w ≡ w11 = κ + iω and
G ≡ G11 = γ κ/(2N ).

The model above exhibits a first-order DPT as the parame-
ter

g ≡ V

γ
(44)

is varied. In the Markovian limit κ → ∞ where α(τ ) →
(γ /N )δ(τ ), i.e., when the bath has no memory, the critical
point is gM

c = 1/2 [69], separating a steady-state phase where
〈Sz〉/(N/2) → −1 (g < gM

c ) to a phase where 〈Sz〉/(N/2) →
0 (g > gM

c ) for N → ∞. In the companion Letter [47], we
show that deviations from the Markovian limit κ → ∞ make
it possible to shift toward lower values the critical point gc.

In Fig. 3, we show the true quantum solution obtained
through diagonalization of the HEOM generator and compare

it with the states ρ
(�0,�0)
± and (ρ (�0,�0)

+ + ρ
(�0,�0)
− )/2 as a function of g

and for two different values of N . As expected, the states ρ
(�0,�0)
−

and ρ
(�0,�0)
+ capture the right magnetization before and after the

critical point, as shown in Figs. 3(a) and 3(c). More precisely,

we see that ρ
(�0,�0)
− leads to 〈Sz〉/(N/2) ≈ −1 (green curve) for

g < gc and ρ
(�0,�0)
+ leads to 〈Sz〉/(N/2) ≈ 0 (blue curve) for

g > gc.
We also investigate the fidelity between ρ (�0,�0)

ss and the states

ρ
(�0,�0)
± and (ρ (�0,�0)

+ + ρ
(�0,�0)
− )/2. For this, we use the definition

F (ρ, σ ) = Tr
√√

ρσ
√

ρ (45)

for the fidelity between two density operators ρ and σ . We

find that ρ
(�0,�0)
− (ρ (�0,�0)

+ ) is a good approximation to the true

steady state ρ (�0,�0)
ss in a region below (above) the critical point.
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FIG. 3. (right panels) Fidelity between the steady states ρ (�0,�0)
ss and

the states ρ
(�0,�0)
± (green and blue curves) and (ρ (�0,�0)

+ + ρ
(�0,�0)
− )/2 (purple

curve) reconstructed from the spectral decomposition of ρ
(�0,�0)
1 . (left

panels) Magnetization 〈Sz〉 /(N/2) as a function of g for the steady

state ρ (�0,�0)
ss (black), ρ

(�0,�0)
− (green), ρ

(�0,�0)
+ (blue). Panels (a) and (b) cor-

respond to N = 30 while panels (c) and (d) correspond to N = 50.
Parameters are κ = ω = γ . The dashed red vertical line indicates the
position of the critical point.

Moreover, in a small region around the critical point, the

steady state is best described by (ρ (�0,�0)
+ + ρ

(�0,�0)
− )/2. All these

results are consistent with what we would expect for finite

N ; as N increases, we find that the region in which (ρ (�0,�0)
+ +

ρ
(�0,�0)
− )/2 ≈ ρ (�0,�0)

ss is getting narrower [compare Figs. 3(b) and
3(d)], which is consistent with the fact that Eq. (41) strictly
holds at a unique point in the thermodynamic limit. Finally,
we note that the location of the critical point gets shifted as N
increases while the fidelities get higher.

B. Second-order dissipative phase transitions

In this section, we illustrate the validity of the spectral
decomposition (40), namely,

ρss(g, N ) ≈ ρ
(�0,�0)
+ (g, N ) + ρ

(�0,�0)
− (g, N )

2
, (46)

for the second model considered in the companion Letter [47],
which corresponds to Eq. (1) with NE = M1 = 1, with the
system Hamiltonian

HS = V

2N
(S2

+ + S2
−) + hSz, (47)

with the jump operator L = Sx and the bath correlation func-
tion

α(τ ) = γ κ

2N
e−κ|τ |−iωτ . (48)

The enlarged Markovian description of this model reads

ρ̇tot = −i[H, ρtot] + κDa[ρtot], (49)

with H = HS + ωa†a + √
G(a†L + L†a) with G = γ κ/2N ,

where a is the annihilation operator of the single pseudomode

FIG. 4. (a) Fidelity [see Eq. (45)] and (b) natural logarithm of
the infidelity (defined as 1 − fidelity) between the reconstructed state
[Eq. (46)] and the steady state ρss found by numerical diagonalization
of LHEOM for the second model as a function of g in phases (I) and
(III) for N = 40, 50. Panels (a) and (b) prove the validity of the
decomposition (46). Note that we only show the region for which
λ

(1)
0 is real (Im[λ(1)

0 ]/ω < 10−8). Parameters are ω = κ = 2γ = 2h
and kmax = 9, which yields gc,1 = −3/4 and gc,2 = 1.

of the enlarged Markovian embedding. From this, it is clear
that the model exhibits a Z2 symmetry represented by U2 =
U2 · U †

2 with U2 = eiπ (Sz+a†a). The superoperator U2 has two
distinct eigenvalues uk = eikπ = ±1 with k = 0, 1, so there
are two symmetry sectors, with Lu0 containing the steady state.

In the companion Letter [47], we show that the Markovian
limit κ → ∞ is not leading to any DPT upon varying the
parameter g = V/γ , but that deviations from it yield two con-
secutive second-order DPTs separating three different phases
labeled (I), (II), and (III) at two critical points gc,1 and gc,2,
with the Z2 symmetry spontaneously broken in phases (I)
and (III).

Hence, Eq. (46) should hold in phases (I) and (III), for large
but finite N . However, note that the explicit construction of

ρ
(�0,�0)
± requires λ

(1)
0 to be real such that the associated eigen-

vector is Hermitian. The imaginary part of this eigenvalue
should vanish after the critical point in the thermodynamic
limit because of the SSB (see Sec. III C), however, finite-size
effects cause the imaginary part to vanish further than right
after the critical point. Therefore, we illustrate the validity
of Eq. (46) only in the region where the imaginary part is
negligible. Figure 4 highlights the accuracy of Eq. (46), as
shown by the high fidelity between the steady state obtained
by numerical diagonalization of LHEOM and the reconstructed

steady state (ρ (�0,�0)
+ + ρ

(�0,�0)
− )/2. Although the Z2 symmetry is

broken in phases (I) and (III), it is clear that the way it is
broken is different. Indeed, the convergence is slower and
less smooth in phase (III) than in phase (I). This cannot be
attributed to numerical errors due to a finite truncation or-
der kmax since 〈a†a〉 = 0 in phase (III) [47]. However, this
could be due to the fact that in phase (I) it is the symmetry
Sx → −Sx, a → −a that is broken, while in phase (III) it is
the symmetry Sy → −Sy. Interestingly, the former symmetry
involves both the system and the environment, while the latter
is more concerned with the coherent part of the generator. In
this context, Fig. 4 suggests that the breaking of the Z2 sym-
metry through involving both the system and the pseudomode
is less prompt to undergo large finite-size effects.
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V. CHALLENGING TWO-MODE DICKE MODEL

We now provide an example of a DPT that appears in
a two-mode Dicke model described by the Lindblad master
equation [21,70]

ρ̇tot = −i[Htot, ρtot] + κ (Da[ρtot] +Db[ρtot]), (50)

where a, b are bosonic annihilation operators damped at rate
κ and where

Htot = ω0Sz + ω(a†a + b†b) + g√
N

(aS+ + bS− + H.c.).

(51)
This model corresponds to a collective spin system coupled to
two damped cavity modes, that is Eq. (1) with NE = 2, M1 =
M2 = 1, the system Hamiltonian

HS = ω0Sz, (52)

the jump operators L1 = S−, L2 = S+, and the bath correlation
functions

α1(τ ) = α2(τ ) = g2

N
e−κ|τ |−iωτ . (53)

The model (50) exhibits a continuous U (1) symmetry de-
scribed byU1 = U1 · U †

1 with U1 = eiα(Sz+a†a−b†b) (α ∈ R). It
undergoes a second-order DPT associated with a breaking of
the U (1) symmetry at the critical point

gc =
√

ω0(ω2 + κ2)

2ω
. (54)

This critical point separates a normal phase with
|〈Sz〉|/(N/2) = 1 for g < gc to a superradiant phase (where
the symmetry is broken) with |〈Sz〉|/(N/2) < 1 for g > gc as
N → ∞ [70].

This model offers a challenge for two main reasons. First,
because there are two pseudomodes to consider in the en-
larged system made of the spin and the pseudomodes, which
increases drastically the size of the corresponding Hilbert
space while in the same time motivates the search for ap-
propriate reduced descriptions of the spin dynamics. Second,
as explained in the introduction, such reduced descriptions of
spin dynamics have been studied and compared in Ref. [21]
with the mean-field results summarized above. However, so
far, none of them were able to describe all aspects of the
phase transition. Indeed, it has been shown that, by contrast
with the single-mode Dicke model [20], a standard Redfield
approach completely misses the DPT, while a fourth-order
Redfield master equation (i.e., a fourth-order perturbative
treatment of the interaction) captures the correct steady state
and critical point but fails to predict the closing of the gap, a
necessary condition for a DPT. This suggests that the correct
description of the low-lying spectrum of the generator of the
dynamics requires including higher-order corrections in the
interactions, i.e., deepen more in the non-Markovian regime.
All of this makes this model an ideal candidate for testing
and demonstrating the power of our general framework. In
fact, our method captures all the features of the DPT and
SSB, as shown in Fig. 5, which shows the magnetization 〈Sz〉
[Fig. 5(a)], the closing of the gap |Re[λ(k>0)

0 ]| [Figs. 5(c) and
5(d)], and of the imaginary part of λ

(k>0)
0 [Fig. 5(b)].

FIG. 5. Signatures of the second-order DPT for the two-
mode Dicke model (51) obtained from LHEOM for κ = ω = 5ω0.
(a) Steady-state magnetization 〈Sz〉 as a function of g for N =
10 − 50 (kmax = 7) and 60 (kmax = 8). As N increases, the curves get
closer to the mean-field result (dotted line). (b) Imaginary part of
the eigenvalue λ

(k>0)
0 with the largest real part among all symmetry

sectors with k > 0 as a function of g/gc, confirming the SSB. The
inset shows the scaling of Im[λ(k>0)

0 ] as a function of N at g/gc =
1.49. (c) −Re[λ(k>0)

0 ] as a function of g/gc showing a decreasing gap
in the superradiant phase as N increases. The vertical dashed lines
show g/gc = 1.49 (red) and g/gc = 0.6 (black) used in panel (d) to
compare the scaling of −Re[λ(k>0)

0 ] (circles) and of the Liouvillian
gap of the fourth Redfield master equation of Ref. [21] (crosses) as
a function of 1/N [with N = 60−90 (kmax = 8) and 100 (kmax = 9)].
In the normal phase (black), both methods are in good agreement,
while in the superradiant phase (red), only LHEOM gives the expected
closing. The points at 1/N = 0 were extrapolated from a line defined
by the two last points of our data.

VI. CONCLUSION

We developed a comprehensive framework for study-
ing dissipative phase transitions in non-Markovian systems,
which are more relevant experimentally. Our method is nu-
merically exact, systematic, easily accessible (since it is based
on the well-established HEOM technique available in open
access libraries [38,39]), and provides a considerable compu-
tational advantage over a standard embedding technique. As
an example, we applied our theory to capture all the defining
features of a challenging second-order DPT with a continuous
SSB for which other previous reduced descriptions had failed
up to now [21]. In our companion Letter [47], we showed that
non-Markovian effects cannot only reshape phase boundaries
but also trigger phase transitions, illustrating the power and
the opportunities that our framework offers for future works.

While our work focuses on first- and second-order phase
transitions, it would be interesting to determine the signatures
of infinite order phase transitions, such as BKT transitions,
in the spectrum of the HEOM Liouvillian. For such phase
transitions, under the hypotheses of our Propositions III.1–
III.3, the gap should not close only at a particular point, as
this would imply a discontinuity of the order parameter. This
is consistent with what is known in the literature for closed
systems [71], i.e., that the gap closes exponentially in a certain
region around the critical point. Another perspective could
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be to improve our method via hybridization with advanced
numerical techniques, such as corner-space renormalization
[72] or matrix product operators (as in Refs. [62,63,73–75]).
Moreover, it would be interesting to include initial system-
bath correlations [76], but also the case of non-Lorentzian
environments, i.e., where the correlation functions do not cor-
respond to decaying exponentials and thus where Markovian
embedding is not possible, via the extended HEOM (eHEOM)
technique [77]. This would open opportunities for the study
of critical behaviors [41,76,78]. Other interesting research
directions include investigating whether non-Markovianity
could be used as a tool to produce steady states that can-
not be reached by Markovian dissipation alone [79] or to
transform quasi-equilibrium steady state of dissipative sys-
tems (appearing, e.g., in cavity QED [80]) into genuine
out-of-equilibrium ones.
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APPENDIX A: EXPLICIT MATRIX FORM OF THE
HIERARCHICAL EQUATIONS OF MOTION LIOUVILLIAN

In this Appendix, we show how one can construct the
matrix representation of the HEOM Liouvillian. By vector-
izing Eq. (6) thanks to the Choi-Jamiołkowski ismorphism
(|i〉 〈 j| ∼= |i〉 ⊗ | j〉 [81]), we get

˙|ρ (�n, �m)〉〉 = −i
[
HS ⊗ 1 − 1⊗HT

S −( �w∗ · �n + �w · �m)
]|ρ (�n, �m)〉〉

+
NE∑
l=1

Ml∑
j=1

(Gl jnl jLl ⊗ 1|ρ (�n−�el j , �m)〉〉

+G∗
l jml j1 ⊗ L∗

l |ρ (�n, �m−�el j )〉〉)

+
NE∑
l=1

Ml∑
j=1

[(1 ⊗ L∗
j − L†

j ⊗ 1)|ρ (�n+�el j , �m)〉〉

+(1 ⊗ L∗
l − L†

l ⊗ 1)†|ρ (�n, �m+�el j )〉〉], (A1)

where |ρ (�n, �m)〉〉 denotes the vectorization of the matrices ρ (�n, �m),
1 the identity matrix acting onHS , and L∗

l (LT
l ) the conjugate

(transpose) matrix of Ll . By stacking in a vector |ρ〉〉 all
the vectorized matrices |ρ (�n, �m)〉〉, we can construct the matrix
LHEOM(kmax) and Eq. (A2) becomes Eq. (9), i.e.,

d|ρ〉〉
dt

= LHEOM(kmax) |ρ〉〉. (A2)

For the sake of clarity, we now explicitly construct the
different blocks of the matrix representation of the HEOM
Liouvillian for a unique environment NE = 1 made of one
damped pseudomode (M = 1). For this special case, the

vectorized HEOM reads

| ˙ρ (n,m)〉〉 = Dnm|ρ (n,m)〉〉 + An|ρ (n−1,m)〉〉 + Bm|ρ (n,m−1)〉〉
+ C|ρ (n+1,m)〉〉 − C†|ρ (n,m+1)〉〉,

where

Dnm ≡ −i
(
HS ⊗ 1 − 1 ⊗ HT

S

)
− [(n − m)iω + (n + m)κ]1 ⊗ 1,

An ≡ GnL ⊗ 1, Bm ≡ G∗m1 ⊗ L∗,

C ≡ 1 ⊗ L∗ − L† ⊗ 1. (A3)

Therefore, if kmax = 1, the stacked vector |ρ〉〉 is given by
|ρ〉〉 = (|ρ (0,0)〉〉, |ρ (0,1)〉〉, |ρ (1,0)〉〉)T and

LHEOM(kmax = 1) =

⎛
⎜⎝

D00 −C† C

B1 D01 0

A1 0 D10

⎞
⎟⎠, (A4)

while for kmax = 2, we get |ρ〉〉 =
(|ρ (0,0)〉〉, |ρ (0,1)〉〉, |ρ (0,2)〉〉, |ρ (1,0)〉〉, |ρ (1,1)〉〉, |ρ (2,0)〉〉)T and

LHEOM(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D00 −C† 0 C 0 0

B1 D01 −C† 0 C 0

0 B2 D02 0 0 0

A1 0 0 D10 −C† C

0 A1 0 B1 D11 0

0 0 0 A2 0 D20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A5)

APPENDIX B: PROOFS OF THE SPECTRAL
PROPERTIES OF LHEOM

We provide here the proofs of the properties of the HEOM
Liouvillian. To show that the spectrum of LHEOM is symmet-
ric with respect to the real axis [property (i)], we note that
( dρ (�n, �m)

dt )† = d
dt ρ

( �m,�n) = d
dt (ρ (�n, �m) )†, where we used the prop-

erty (ρ (�n, �m) )† = ρ ( �m,�n) [17], which implies

LHEOM[ρ†] = (LHEOM[ρ])†. (B1)

The trace-preserving property (ii) of LHEOM is immediate
from Eq. (6). This implies that

0 = dTr[ρ (�0,�0)]

dt
= Tr

[
d

dt
ρ (�0,�0)

]
= Tr[1(�0,�0)LHEOM[ρ]]

= 〈〈1(�0,�0)|LHEOM|ρ〉〉∀ρ, (B2)

where we used the Hilbert-Schmidt inner product 〈〈A|B〉〉 ≡
Tr[A†B] and the projector onto the physical state space 1(�0,�0).
Equation (B2) leads to 〈〈1(�0,�0)|LHEOM = 0, meaning that
〈〈1(�0,�0)| is a left eigenvector of LHEOM associated with the
eigenvalue zero. Therefore, the eigenvalue zero is always in
the spectrum of LHEOM [property (iii)], which guarantees the
existence of a stationary state. The fact that all the eigenvalues
must have a negative real part in the limit kmax → +∞ [prop-
erty (iv)] comes from the fact that, in this limit, the solution
of Eq. (6) of the main text in the sector (�0, �0) is exactly the
reduced density operator of the system. Thus, any positive
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FIG. 6. Measures of convergence Ckmax (Sz ) and Skmax (λ(0)
1 ) as de-

fined by Eq. (C1) for the LMG model [Eqs. (42) and (43)] displayed
in logarithmic scale (base 10) as a function of g. For all plots, the
parameters are κ = ω = γ and N = 10 for panels (a) and (c) and
N = 20 for panels (b) and (d).

real part eigenvalues would lead to unphysical matrices in the
sector (�0, �0), therefore contradicting our last statement. Lastly,
to prove that Tr[1(�0,�0)ρi] = 0 if ρi is a right eigenoperator
of LHEOM associated with the eigenvalue λi with Re[λi] �= 0
[property (v)], we note that LHEOM preserves the trace in
the sector (�0, �0) and ρi(t ) = eLHEOMtρi → 0 for t → +∞ if
Re[λi] �= 0 and kmax → +∞.

APPENDIX C: CONVERGENCE ANALYSIS
AND NUMERICAL EFFICIENCY

The only parameter relevant to the convergence analysis of
LHEOM is the truncation order kmax. We introduce the follow-
ing measures of convergence:

Ckmax (O) ≡ |Tr[ρss(kmax)O − ρss(kmax + 1)O]|,
Skmax (λ) ≡ |λ(kmax) − λ(kmax+1)|, (C1)

to assess the convergence ofLHEOM with respect to the steady-
state expectation value of a given operator O or with respect
to one of its eigenvalue λ, such as the HEOM Liouvillian gap.
Here, ρss(kmax) is the steady state of LHEOM(kmax) and simi-
larly λ(kmax) is λ computed with LHEOM(kmax). Note that the
convergence measure Ckmax (O) is a natural choice often cho-
sen to study the convergence of hierarchy of equations [82].
The first part of this section is dedicated to the convergence
analysis of LHEOM(kmax) while the second part sheds light on
the numerical advantage of LHEOM over enlarged Markovian
systems.

1. Convergence analysis of LHEOM(kmax )

In Fig. 6, we show the two measures of convergence
(C1) for the Lipkin-Meshkov-Glick (LMG) model for O =
Sz and λ = λ

(1)
0 . As the hierarchy depth kmax increases,

both measures of convergence Ckmax (Sz ) and Skmax (λ(1)
0 ) glob-

ally decrease, showing that the truncation order kmax can

FIG. 7. Measures of convergence Ckmax (Sz ) and Skmax (λ(k>0)
0 ) as

defined by Eq. (C1) for the U (1)-symmetric Dicke model discussed
in Sec. V and displayed in logarithmic scale (base 10) as a function
of g. For all panels, the parameters are κ = ω = 5ω0 and N = 10 for
panels (a) and (b) and N = 20 for panels (c) and (d).

be used to control the numerical errors inherent to the
LHEOM(kmax) scheme. A comparison of Figs. 6(a) and 6(c)
with Figs. 6(b) and 6(d) indicates that errors scale up
as N increases. We also note that it is numerically more
challenging to extract the spectral quantity λ

(1)
0 than the

steady-state expectation value 〈Sz〉, as indicated by the change
in scale on the y axis between Figs. 6(a) and 6(c) and 6(b)
and 6(d).

These general observations still hold for the U (1)-
symmetric Dicke model, as illustrated in Fig. 7, which is the
analog of Fig. 6 but for the U (1)-symmetric Dicke model.
We note that both Ckmax (Sz ) and Skmax (λ(k>0)

0 ) increase as the
coupling g increases, highlighting the numerical challenge of
the so-called strong-coupling regime. Moreover, this observa-
tion combined with the fact that the computation of λ

(k>0)
0 is

numerically more demanding that of 〈Sz〉 could explain why
a fourth-order Redfield master equation seems to capture the
right steady state but predicts a nonvanishing gap [21]. We
indeed foresee that the spectrum of LHEOM converges faster
for larger eigenvalues.

2. Comparison with enlarged Markovian systems

Let us illustrate the numerical advantage of our method to
characterize DPTs over the standard technique of analyzing
the spectrum of the Liouvillian for the LMG model defined by
Eqs. (42) and (43). For this model, the Markovian Liouvillian
superoperator LM is defined through

ρ̇tot = −i[H, ρtot] + κ (2aρtota
† − {a†a, ρtot}) ≡ LM[ρtot],

(C2)
where H = HLMG + ωa†a + √

γ κ/2N (S−a† + S+a). As the
dimension of LM is infinite, one has to introduce a cutoff in
order to determine the steady state of LM numerically. We de-
note by Nc and L(Nc) the effective dimension of the truncated
Fock space of the pseudomode and the associated truncated
Markovian Liouvillian. To compare LM and LHEOM, we fix
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a threshold of tolerance for the measures of convergence,
namely, ε = 0.0001. We then choose kmax and Nc accordingly:
we take the first value of kmax and Nc that satisfy Ckmax (Sz ) < ε

and

CNc (Sz ) ≡ |tr(ρss(Nc)Sz − ρss(Nc + 1)Sz )| < ε, (C3)

where ρss(Nc) is the steady state associated with LM(Nc). We
then compute the effective dimension of LM and LHEOM for
the truncation parameters kmax and Nc previously determined.
Figure 8(a) shows that the ratio dim(LHEOM)/dim(LM) is
below 0.4 for all g = V/γ and N considered. Moreover, this
ratio decreases with N , which shows that theLHEOM scheme is
more suited for the study of DPTs for which one must consider
the thermodynamic limit N → +∞. Let us finally mention
that the generators LHEOM andLM give the same results at the
chosen tolerance threshold, as illustrated in Fig. 8(b).

FIG. 8. Comparison of the convergence ofLHEOM andLM for the
LMG model [Eqs. (42) and (43)]. (a) Ratio between the dimension of
the HEOM generatorLHEOM and the Markovian oneLM as a function
of g for ε = 0.0001, proving the numerical gain of using LHEOM

instead of LM for the enlarged Markovian system. (b) Differences
in logarithmic scale (base 10) between the steady-state expectation
value 〈Sz〉 computed with LHEOM(kmax) [resp. LM(Nc )] denoted by
〈Sz〉 (kmax) [resp. 〈Sz〉 (Nc )] for ε = 0.0001. The two methods are in
good agreement at the given tolerance.
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