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Abstract
We establish the comprehensive theoretical framework for an exact description
of the open system dynamics of permutationally invariant (PI) states in arbit-
rary N-qudit systems when this dynamics preserves the PI symmetry over time.
Thanks to the powerful Schur–Weyl duality formalism, we unveil the internal
links between the canonical time-local Lindblad-like master equation and the
Markovian or non-Markovian dynamics of each PI degree of freedom (Schur
subspaces). Our approach does not require one to compute the Schur transform
as it operates directly within the restricted PI operator subspace of the Liouville
space, whose dimension only scales polynomially with the number of qudits.
We introduce the concept of 3ν-symbol matrix, where ν here denotes an integer
partition, that proves to be very useful in this context.

Keywords: permutation invariant states, multiqudit systems,
time-local Lindblad-like master equation

1. Introduction

1.1. Background

The ability to efficiently simulate the dynamics of noisy many-body quantum systems such as
noisy intermediate-scale quantum (NISQ) devices is nowadays of primary importance, e.g. in
order to assess whether they can offer a quantum advantage. To this end, it is necessary to
solve a many-body master equation for the density matrix, which is intrinsically more complex
than the Schrödinger equation and involves a number of variables that increases very unfavor-
ably with the number of levels of the constituents (qudits). It is often required to go beyond
Lindblad master equations since they only represent a simplified model that does not fully
account for the non-Markovian nature of realistic environments where memory effects enter
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into play, such as spin-bath interactions in superconducting qubits (see, e.g. [1]). In quantum
science and technologies, while more delicate to handle, multilevel quantum systems have
proven to offer several advantages over conventional two-level entities (qubits) [2, 3]. These
include higher information capacity [3, 4], increased resistance to noise [5, 6], greater secur-
ity in quantum key distribution [7–9], more powerful metrological schemes [10, 11], and an
improved ability for closing the detection loophole in Bell experiments [12], for error correc-
tion [13], or also for quantum machine learning tasks [14]. Several physical platforms can be
used to obtain multiqudit systems. For example, light, with its multiphoton states, is primarily
a multiqubit system where the state of a qubit is encoded in the polarization of a photon or
in two of its spatial modes [15]. It can also embody a multiqudit system by giving photons
access to d> 2 distinct temporal modes or frequency modes [16], or by structuring light to
confer orbital angular momentum to photons [17, 18]. Alternatively, individual neutral atoms,
which are now routinely cooled, trapped in optical lattices and tweezers and internally con-
trolled by laser light, are being used as registers of qubits and qudits [19, 20]. Trapped ions [21,
22], ultracold atomic mixtures [23] (where qudits are encoded in the collective spin of a few
atoms whose number can be varied), superconducting devices [24], nitrogen-vacancy centers
in diamond [25], or even molecules [26, 27] are other physical platforms commonly used
in this context. When the multiqudit system is composed of identical though not necessarily
indistinguishable qudits, a rich variety of collective dynamical behaviors can emerge, such as
superradiance [28, 29], spin-squeezing [30], or also dissipative phase transitions [31] to name
just a few. In this context, it is therefore essential to find efficient methods to describe the
dynamics of the system. Some authors have developed such methods when dissipation acts
only collectively or individually, first for qubits [32–34] and later also for qudits [35–37].
These methods have been applied in various studies [31, 38–42], in particular for the critical
interpretation of experiments on spin-squeezing and other collective atomic phenomena [43],
to quantify the impact of recoil and individual atomic decay processes of indistinguishable
atoms on collective phenomena [44, 45], or to reveal unexpected dissipative phase transitions,
test the validity of mean-field theory, and explore the impact of dephasing on superradiance
transitions in variousmodels [46, 47]. Notably, this approach has been extended to study dissip-
ative all-to-all connected qudit systems [35–37], confirming its utility across diverse quantum
scenarios, including ab initio approaches to x-ray cavity QED [48]. All these methods were
mainly developed to be numerically useful and do not exploit the powerful connection with
group representation theory similarly as in [49] in a thermodynamical context. Here we fill this
gap and establish the general theoretical framework for an exact description of permutation-
ally invariant (PI) processes in open multiqudit systems for both Markovian or non-Markovian
dynamics.

1.2. Permutationally invariant processes

Under fairly general conditions, the dynamics of an open quantum system can be described by
a master equation of the form [50, 51]

d
dt
ρ̂(t) =

i
ℏ

[
ρ̂(t) , ĤS (t)

]
+

ˆ t

0
Ks,t [ρ̂(s)]ds, (1)

where ρ̂(t) is the system density operator, ĤS(t) the system Hamiltonian, and Ks,t is a linear
map that models the effects of the environment on the system. The general master equation (1)
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can often be written in a time-local form

d
dt
ρ̂(t) = L(t) [ρ̂(t)] , (2)

where the so-called Liouvillian superoperator L(t) acts on the Liouville space L (H) (the
space of linear operators on the system Hilbert spaceH) and is such that L(t)[ρ̂] is Hermitian
and traceless for all density operators ρ̂ [52]. The Liouvillian L(t) can always be cast in a
canonical Lindblad-like form [52]

L(t) = V (t)+D (t) , (3)

with

V (t) [ρ̂] =
i
ℏ

[
ρ̂, Ĥ(t)

]
, D (t) [ρ̂] =

∑
k

γk (t)DL̂k(t)
[ρ̂] , (4)

where the Hamiltonian Ĥ(t) may incorporate environment-induced corrections and the sum
over k that contains at most dim(H)2 − 1 terms runs over so-called decoherence channels
characterized with positive or negative decoherence rates γk(t) and jump operators L̂k(t). For
all operators L̂, the superoperator DL̂ reads

DL̂ [ρ̂] = L̂ρ̂L̂† − 1
2

{
L̂†L̂, ρ̂

}
. (5)

When all decoherence rates γk(t) and jump operators L̂k(t) are independent of time and γk(t)>
0,∀k, equation (2) reduces to the well-known memoryless Lindblad master equation [53, 54].
In all other cases, it describes non-Markovian dynamics (see, e.g. [55–61]).

The Liouvillian action (3) is fully determined given the Hamiltonian Ĥ(t), the set of
rates γk(t) and jump operators L̂k(t). It is denoted accordingly LĤ(t),{(γk(t),L̂k(t))} ≡ VĤ(t) +
D{(γk(t),L̂k(t))} if explicit notation is required. In what follows and for the seek of conciseness,
the explicit dependence in time is not written anymore and is considered as implicit.

For an N-qudit system, the state space H identifies to H⊗N
d , with Hd ' Cd the individual

qudit state space [62]. It has dimension dN and scales exponentially with N. Endowed with
the standard Hilbert–Schmidt scalar product, the Liouville space L (H) is itself a Hilbert
space of dimension d2N. This renders the curse of dimensionality already severe for mod-
erate number of qudits. This severity can be significantly downgraded if the system exhibits
large symmetries that constrain its dynamics in a much smaller-dimensional subspace of the
Liouville space. This is in particular the case for so-called PI states ρ̂ [63] as long as the
Liouvillian L preserves the PI symmetry over time. A PI operator ÂPI is an operator that sat-
isfies P̂σÂPIP̂†

σ = ÂPI ⇔ [P̂σ, ÂPI] = 0 for all permutations σ of 1, . . . ,N, where P̂σ denotes
the standard unitary permutation operator associated with σ in H [64]. The vector subspace
of PI operators in L (H) is the so-called commutant LSN(H) of the (unitary) representation
σ 7→ P̂σ on H of the symmetric group SN [65]. The commutant contains the identity operator
and is closed under multiplication of operators and Hermitian conjugation [66]. A superoper-
ator L preserves the PI symmetry if the commutant LSN(H) is L-invariant, i.e. if L[ÂPI] is a PI
operator regardless of the PI operator ÂPI. It is also important that such superoperators avoid
contaminating the commutant from any non-PI components, i.e. that the orthogonal comple-
ment of the commutant be itself L-invariant, which is equivalent to having the commutant
LSN(H) both L- and L†-invariant [67].
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The natural class of superoperators that preserve the PI symmetry and avoid contam-
ination from any non-PI components is given by superoperators L that are themselves PI
in the sense that [Pσ,L] = 0 for all permutations σ, with Pσ the (unitary) superoperator
of permutation Pσ[Â] = P̂σÂP̂†

σ,∀Â ∈ L (H). Indeed, in this case for all PI operators ÂPI,
PσL[ÂPI] = LPσ[ÂPI] = L[ÂPI],∀σ, i.e. L[ÂPI] is PI [68] and the commutant LSN(H) is L-
invariant. It is also L†-invariant since the space of PI superoperators is closed under Hermitian
conjugation.

The superoperators of permutation satisfy Pσ[ÂB̂] = Pσ[Â]Pσ[B̂] and Pσ[Â†] =
Pσ[Â]† [69]. This implies interestingly that Liouvillians of the form of equation (3) obey
PσLĤ,{(γk,L̂k)} = LPσ[Ĥ],{(γk,Pσ[L̂k])}Pσ . If the Hamiltonian Ĥ is PI as well as the set {(γk, L̂k)}
of rates and jump operators as a whole, i.e. {(γk,Pσ[L̂k])}= {(γk, L̂k)},∀σ (which does not
require to have individually (γk,Pσ[L̂k]) = (γk, L̂k),∀k,σ), the Liouvillian LĤ,{(γk,L̂k)} is a
PI superoperator. This is typically the case when the decoherence channels are composed
of identical local jump operators ℓ̂(n) associated with a unique local decoherence rate γloc,
∀n= 1, . . . ,N, and/or a collective jump operator L̂c =

∑N
n=1 L̂

(n) associated with its own deco-
herence rate γc, where the superscript (n) denotes the specific qudit the local operator acts
on [70]. If both contributions are present, the superoperatorD contains a local and a collective
part: D =D(loc)

ℓ̂
+D(col)

L̂
, with

D(loc)

ℓ̂
= γloc

N∑
n=1

Dℓ̂(n) , D(col)
L̂

= γcDL̂c
. (6)

More general PI superoperators D can also be envisaged with, for instance, identical two-
particle jump operators ℓ̂(n,m)2 , ∀n< m= 1, . . . ,N associatedwith a unique decoherence rate γ2,

and/or a collective two-particle jump operator L̂2,c =
∑

n<m L̂
(n,m)
2 associated with a decoher-

ence rate γ2,c, where (n,m) denotes the particle pair the two-particle operators ℓ̂2 and L̂2 act on.

Strictly generally we can even consider identical p-particle (p⩽ N) jump operators ℓ̂(n1,...,np)p

associated to a unique decoherence rate γp, ∀n1 < · · ·< np, and also a collective p-particle

jump operator L̂p,c =
∑

n1<···<np
L̂(n1,...,np)p with a decoherence rate γp,c, where (n1, . . . ,np)

denotes the particle p-uple the p-particle operators ℓ̂p and L̂p act on.
The commutant LSN(H) is nothing but the symmetric subspace of the Liouville space

L (H) [71]. Its dimension is thus equal to
(N+d2−1

N

)
[65] and scales only polynomially with N

in O(Nd
2−1) instead of exponentially as for the global Liouville space L (H). This changes

drastically the complexity class of PI systems for which large N studies should remain more
accessible within classical computational resources. In this context, it is therefore highly desir-
able to develop tools that allow one to restrict the master equation treatment in the sole com-
mutant subspace. This requires identifying a natural orthonormal basis of operators inLSN(H)
onto which the master equation can be projected and having explicit expressions of the mat-
rix elements. This was specifically done in [32] for qubit systems (d= 2). For d> 2, nothing
similar is identified, and we fill this gap in this work with the help of the powerful formalism
of Schur–Weyl duality (see, e.g. [65, 72, 73]). The theory is established for arbitrary d and the
results for d= 2 are recovered as a special case.
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2. Results

2.1. Structure of the commutant LSN
(H)

The N-qudit state space H=H⊗N
d is a natural representation space for both the symmetric

group SN and the general linear group GL(d)≡ GL(d,C) of d× d invertible complex matrices
(including its subgroup U(d) of d× d unitary matrices). The standard representation oper-
ator for σ ∈ SN is the unitary permutation operator P̂σ and for A ∈ GL(d) the tensor product
operator Â⊗N, with Â the invertible local operator of representation matrix A in the single-
qudit basis. Both operators P̂σ and Â⊗N commute, so that the product operators P̂σÂ⊗N define
a representation of the direct product group SN×GL(d) on H. For N,d> 1, H is a redu-
cible representation space for both the symmetric and the general linear group, as well as
for the direct product group. As a consequence of the Schur–Weyl duality, the state space
H can be decomposed into irreducible subrepresentations of both SN and GL(d), accord-
ing to the multiplicity-free decomposition of the direct product group representation H'
⊕ν⊢(N,d)Sν ⊗Uν(d), where the direct sum runs over all partitions ν ofN of at most d parts, and
Sν and Uν(d) denote the unitary irreducible representations (irreps) of SN and GL(d) associ-
ated to ν, respectively [74]. The restriction of Uν(d) onto the subgroupU(d) is also irreducible
and can be denoted similarly. We have on the one side H'⊕ν⊢(N,d)Sν⊕dimUν(d), and on the

other sideH'⊕ν⊢(N,d)Uν(d)⊕dimSν

. In this context, a natural basis in the state spaceH is the
orthonormal so-called Schur basis [14, 72] {|ν,Tν ,Wν〉,∀ν ` (N,d),Tν ∈ Tν ,Wν ∈Wν}, with
Tν the set of all standard Young tableaux (SYT) Tν of shape ν andWν the set of all semistand-
ard Young tableaux [also called standard Weyl tableaux (SWT)]Wν of shape ν and of content
among 0, . . . ,d− 1. The cardinalities of the sets Tν andWν are fν = dimSν [75] and fν(d) =
dimUν(d) [76], respectively. The Schur basis vectors |ν,Tν ,Wν〉 belong each to a well defined
chain of irreps of both subgroup chains SN,SN−1, . . . ,S1, andU(d),U(d− 1), . . . ,U(1). The two
chains of irreps are encoded in the SYT Tν for the symmetric group and in the SWTWν for the
unitary group [77]. For all ν ` (N,d) and Wν ∈Wν , Hν(Wν)≡ span{|ν,Tν ,Wν〉,∀Tν ∈ Tν}
is an Sν-equivalent irrep subspace of the symmetric group SN. For all ν ` (N,d) and Tν ∈ Tν ,
Hν(Tν)≡ span{|ν,Tν ,Wν〉,∀Wν ∈Wν} is an Uν(d)-equivalent irrep subspace of U(d). In
each of these irrep subspaces, the orthonormal vectors |ν,Tν ,Wν〉 identify to the unique (up to
global phases) so-called Gel’fand–Tsetlin (GT) basis vectors of the irrep with respect to either
of the above-cited subgroup chains [65, 78].

We can now prove that an operator basis in the commutant LSN(H) is nicely given by the
set of PI operators

F̂(Wν ,W
′
ν)

ν = |ν,Wν〉〈ν,W ′
ν | ≡

1√
fν
∑
Tν∈Tν

|ν,Tν ,Wν〉〈ν,Tν ,W ′
ν |, (7)

∀ν ` (N,d),Wν ,W ′
ν ∈Wν . Indeed, these operators are easily seen to be PI [79] and their action

on the Schur basis states reads F̂(Wν ,W
′
ν)

ν |ν ′,Tν ′ ,W̃ν ′〉= 0 if ν ′ 6= ν and

F̂(Wν ,W
′
ν)

ν |ν,Tν ,W̃ν〉=
1√
fν

|ν,Tν ,Wν〉δW̃ν ,W ′
ν
, (8)

with δ the Kronecker delta. Hence, their range and kernel are given by ran F̂ν(Wν ,W ′
ν) =

Hν(Wν) and ker F̂(Wν ,W
′
ν)

ν =H	Hν(W ′
ν), respectively. Each operator F̂(Wν ,W

′
ν)

ν maps a spe-

cific Sν-equivalent irrep subspace onto an equivalent one: F̂(Wν ,W
′
ν)

ν Hν(W ′
ν) =Hν(Wν). All

this makes the set of operators (7) an operator basis in the commutant LSN(H) [65] (as a

5



J. Phys. A: Math. Theor. 58 (2025) 275301 T Bastin and J Martin

corollary, dimLSN(H) can also be written
∑

ν⊢(N,d) f
ν(d)2 [see appendix A]). In addition,

with respect to the standard Hilbert–Schmidt scalar product between any two linear operators,
this basis is orthonormal:

Tr
(
F̂(Wν ,W

′
ν)†

ν F̂
(W̃ν ′ ,W̃ ′

ν ′ )

ν ′

)
= δν,ν ′δWν ,W̃ν ′ δW′

ν ,W̃
′
ν ′
. (9)

It follows that any PI operator ÂPI admits the expansion

ÂPI =
∑

ν⊢(N,d)

∑
Wν ,W ′

ν∈Wν

Aν,Wν ,W ′
ν
F̂(Wν ,W

′
ν)

ν , (10)

with components Aν,Wν ,W ′
ν
≡ (ÂPI)ν,Wν ,W ′

ν
given by

Aν,Wν ,W ′
ν
= Tr

(
F̂(Wν ,W

′
ν)†

ν ÂPI

)
=

1√
fν
∑
Tν∈Tν

〈ν,Tν ,Wν |ÂPI|ν,Tν ,W ′
ν〉. (11)

The matrix representation of such operators is block diagonal in the Schur basis {|ν,Tν ,Wν〉}
if the basis vectors are sorted first by ν, then by SYT Tν , and finally by SWTWν , i.e. by vector
subspaces Hν(Tν),∀ν,Tν . Blocks are of dimension fν(d)× fν(d) and only depend on ν, but
not on Tν , so that the representation matrix API exhibits a double block-diagonal structure,
with large ‘ν-blocks’, themselves composed of f ν identical blocks A(ν): API =⊕νA(ν)⊕fν .
The elements of a block A(ν) read A(ν)Wν ,W ′

ν
= Aν,Wν ,W ′

ν
/
√
fν . In this representation, the

trace of the PI operator ÂPI reads

Tr
(
ÂPI

)
=

∑
ν⊢(N,d)

∑
Wν∈Wν

√
fνAν,Wν ,Wν

. (12)

The commutant can be decomposed into the direct sum of orthogonal operator subspaces

Lν(H)≡ span{F̂(Wν ,W
′
ν)

ν ,∀Wν ,W ′
ν ∈Wν}:

LSN (H) =
⊕

ν⊢(N,d)

Lν (H) (13)

and a PI operator that specifically belongs to a subspace Lν(H) is hereafter referenced as a
ν-type operator.

The PI orthonormal basis operators F̂(Wν ,W
′
ν)

ν are mutually Hermitian conjugate:

F̂(Wν ,W
′
ν)†

ν = F̂(W ′
ν ,Wν)

ν [80]. They fulfill the multiplication rule [81]

F̂(Wν ,W
′
ν)

ν F̂
(W̃ν ′ ,W̃ ′

ν ′ )

ν ′ =
1√
fν

δν,ν ′δW′
ν ,W̃ν ′ F̂

(Wν ,W̃
′
ν ′ )

ν . (14)

As a result the components of a PI operator Hermitian conjugate are given by (Â†
PI)ν,Wν ,W ′

ν
=

A∗
ν,W ′

ν ,Wν
and those of a PI operator product read

(
ÂPIB̂PI

)
ν,Wν ,W ′

ν

=
1√
fν

∑
W̃ν∈Wν

Aν,Wν ,W̃ν
Bν,W̃ν ,W ′

ν
. (15)

6
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Hence, not only the operator subspaces Lν(H) are closed under multiplication of operators
and Hermitian conjugation [82], but also left- or right-multiplying a PI operator with a ν-
type operator again yields a ν-type operator. More generally, the product of any number of PI
operators is of ν-type as soon as so is one of the operator. Finally, we have the closure relation∑

ν⊢(N,d)

∑
Wν∈Wν

√
fν |ν,Wν〉〈ν,Wν |= 1̂. (16)

2.2. Master equation, 3ν symbols, and general Identity

Let the N-qudit system be initially in a PI state ρ̂PI(0) with a time evolution governed by a PI
Liouvillian L. In this case, the system state is constrained within the commutant LSN(H) and

the PI operators F̂(Wν ,W
′
ν)

ν provide us with a natural orthonormal operator basis onto which the
master equation can be projected. We have, ∀λ ` (N,d),Wλ,W ′

λ ∈Wλ,

ρ̇λ,Wλ,W ′
λ
=

∑
ν⊢(N,d)

∑
Wν ,W ′

ν∈Wν

Lλ,Wλ,W ′
λ;ν,Wν ,W ′

ν
ρν,Wν ,W ′

ν
, (17)

where for any superoperator O

Oλ,Wλ,W ′
λ;ν,Wν ,W ′

ν
≡ Tr

(
F̂(Wλ,W

′
λ)†

λ O
[
F̂(Wν ,W

′
ν)

ν

])
(18)

is the component of operator O[F̂(Wν ,W
′
ν)

ν ] along the commutant basis operator F̂(Wλ,W
′
λ)

λ .

For a standard PI Liouvillian L= VĤc
+D(loc)

ℓ̂
+D(col)

L̂
, with Ĥc =

∑
n Ĥ

(n), where Ĥ is a

local (single particle) Hamiltonian and ℓ̂ and L̂ are single-particle jump operators (more gen-
eral PI Liouvillians with p-particle terms in either coherent or dissipative parts are discussed

in appendix D), both operators VĤc
[F̂(Wν ,W

′
ν)

ν ] and D(col)
L̂

[F̂(Wν ,W
′
ν)

ν ] are of ν-type because they

are composed of products of PI operators with the ν-type operator F̂(Wν ,W
′
ν)

ν . Their expansion
in the commutant operator basis follows straightforwardly provided this expansion is expli-
citly known for each of the involved PI operators. More generally all Liouvillian terms can be
expressed with the help of the superoperators KX̂,Ŷ (X̂, Ŷ are any two local operators) defined
as

KX̂,Ŷ

[
Â
]
=

N∑
n=1

X̂(n)ÂŶ(n)†, ∀Â ∈ L (H) . (19)

Indeed, VĤc
= (i/ℏ)(K1̂,Ĥ−KĤ,1̂),

D(loc)

ℓ̂
= γloc

(
Kℓ̂,ℓ̂ −

1
2
Kℓ̂†ℓ̂,1̂ −

1
2
K

1̂,ℓ̂†ℓ̂

)
, (20)

and

D(col)
L̂

[ρ̂] = γc

(
L̂cK1̂,L̂ [ρ̂]−

1
2
L̂†cKL̂,1̂ [ρ̂]−

1
2
K1̂,L̂ [ρ̂] L̂c

)
, (21)

where L̂c can similarly be written asKL̂,1̂[1̂]. The superoperatorsKX̂,Ŷ are PI, so thatKX̂,Ŷ[ÂPI]

is itself a PI operator for any PI operator ÂPI. With respect to Hermitian conjugation, we have
KX̂,Ŷ[Â]

† =KŶ,X̂[Â
†] and K†

X̂,Ŷ
=KX̂†,Ŷ† .

7
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To get explicit expressions of the matrix elements Lλ,Wλ,W ′
λ;ν,Wν ,W ′

ν
, it is therefore enough

to have the expansion in the commutant operator basis of the PI operators KX̂,Ŷ[F̂
(Wν ,W

′
ν)

ν ],

∀X̂, Ŷ,ν,Wν ,W ′
ν . Schur–Weyl duality formalism, trace invariance under cyclic permutations,

and Clebsch–Gordan decomposition of tensorial products of unitary irreducible representa-
tions of the unitary groupU(d) allow one to obtain these expansions. To this aim, we denote for
all ν ∈ Pd (the set of partitions of at most d parts) by ν− [ν+] any partition ∈ Pd obtained by
the removal [addition] of an inner [outer] corner of ν [83]. The actions of removing [adding]
an inner [outer] corner of a partition ν can be combined, so that ν−+ denotes any partition
∈ Pd obtained first by the removal of an inner corner of ν, then by the addition of an outer
corner of the resulting partition at first step.

For every νL,ν,νR ∈ Pd, Wµ ∈Wµ (µ= νL,ν,νR), we also introduce the 3ν symbol(
νL ν νR
WνL Wν WνR

)
as being the square d× d matrix with entries

(
νL ν νR
WνL Wν WνR

)
i,j

= 〈Wν , i |WνL〉〈Wν , j |WνR〉, ∀i, j = 0, . . . ,d− 1, (22)

where 〈Wν , i |WνL〉 and 〈Wν , j |WνR〉 denote Clebsch–Gordan coefficients (CGC’s) of the
tensorial product Uν(d)⊗U (1)(d) for the GT bases (see appendix B). For all µ,ν ∈ Pd,
Wµ ∈Wµ,Wν ∈Wν , k= 0, . . . ,d− 1, a CGC 〈Wµ,k|Wν〉 is zero iff the following two condi-
tions are not simultaneously satisfied (CGC selection rules): µ ∈ {ν−} andWµ ∈W(−k)

µ (Wν),

where W(±k)
µ (Wν) denotes the set of all SWT’s Wµ of shape µ, same content as Wν ± one

box k, and same GT’s pattern as that ofWν ± one triangular shift pattern. The setW(±k)
µ (Wν)

is a subset of the set W̃(±k)
µ (Wν) of all SWT’s of shape µ and same content asWν ± one box

k. Its cardinality is at most (d− 1)!/k! (in particular, 1 if d= 2 or k= d− 1).

It follows from the CGC selection rules that the 3ν-symbol matrix

(
νL ν νR
WνL Wν WνR

)
is necessarily zero if the condition ν ∈ {ν−L }∩ {ν−R } (partition triangle selection rule) is not
satisfied. This condition can only bemet if νL ∈ {ν−+

R } or equivalently νR ∈ {ν−+
L }. We define

the partition triangular delta {νL,ν,νR} to be 1 if the partition triangle selection rule is satisfied
and 0 otherwise. If {νL,ν,νR}= 1, an individual element i, j of the 3ν-symbol matrix is zero
iff Wν /∈W(−i)

ν (WνL)∩W(−j)
ν (WνR). The CGC’s are real and so are the 3ν-symbol matrices.

We thus have (
νL ν νR
WνL Wν WνR

)
=

(
νR ν νL
WνR Wν WνL

)T

. (23)

The 3ν-symbol matrices obey the orthogonality relation (see equation (B.12))∑
Wν∈Wν

Tr

[(
νL ν νR
WνL Wν WνR

)]
= {νL,ν,νR}δνL,νRδWνL ,WνR

(24)

and they represent in the single-qudit basis {|i〉, i = 0, . . . ,d− 1} the single qudit operators

ĝ
(νL,WνL ;νR,WνR )
ν,Wν

= |ϕ(νL,WνL )
ν,Wν

〉〈ϕ(νR,WνR )
ν,Wν

|, (25)

where we defined ∀µ,ν ∈ Pd, Wµ ∈Wµ, and Wν ∈Wν , the unnormalized single-qudit

states |ϕ(ν,Wν)
µ,Wµ

〉=
∑d−1

i=0 〈Wµ, i |Wν〉|i〉. This sum contains at most one term since the CGC

8
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〈Wµ, i |Wν〉 requires Wµ ∈W(−i)
µ (Wν) to be nonzero and this can possibly only happen for

a single index i. Hence, the ĝ
(νL,WνL ;νR,WνR )
ν,Wν

operator is either 0 or a multiple of the dyadic

operator |i〉〈j| for Wν ∈W(−i)
ν (WνL)∩W(−j)

ν (WνR).

If Wµ /∈Wµ for µ= νL, νR, and/or ν, the 3ν-symbol matrix

(
νL ν νR
WνL Wν WνR

)
is not

defined. However, it may be convenient to adopt the convention that it nevertheless exists and
just identifies to the null matrix.

With this stated, we obtain the general Identity (see proof in appendix C)

KX̂,Ŷ

[
F̂(Wν ,W

′
ν)

ν

]
=

∑
λ∈{ν−+}

∑
Wλ,W ′

λ∈Wλ

K(λ,Wλ,W
′
λ;ν,Wν ,W

′
ν)

X̂,Ŷ
F̂(Wλ,W

′
λ)

λ , (26)

where

K(λ,Wλ,W
′
λ;ν,Wν ,W

′
ν)

X̂,Ŷ
=

∑
µ∈{ν−}∩{λ−}

√
rµν r

µ
λTr

[
ĝ(λ,Wλ;ν,Wν)†
µ X̂

]
Tr
[
ĝ(λ,W

′
λ;ν,W

′
ν)†

µ Ŷ
]∗

, (27)

with rµν ≡ Nfµ/fν , ∀ν ` N,µ ∈ {ν−}, and ĝ(λ,Wλ;ν,Wν)
µ the single qudit operator

ĝ(λ,Wλ;ν,Wν)
µ =

∑
Wµ∈Wµ

ĝ(λ,Wλ;ν,Wν)
µ,Wµ

. (28)

This operator vanishes if {λ,µ,ν}= 0. It satisfies ĝ(λ,Wλ;ν,Wν)†
µ = ĝ(ν,Wν ;λ,Wλ)

µ and

Tr
[
ĝ(λ,Wλ;ν,Wν)
µ

]
= {λ,µ,ν}δλ,νδWλ,Wν

. (29)

As a result, ρ̂(ν,Wν)
µ ≡ ĝ(ν,Wν ;ν,Wν)

µ is a trace 1 sum of projection operators, hence positive semi-
definite, and represents a single qudit mixed state for everyµ ∈ {ν−}. The general Identity (26)
states equivalently that the matrix elements of the superoperator KX̂,Ŷ are given by[

KX̂,Ŷ

]
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

= K(λ,Wλ,W
′
λ;ν,Wν ,W

′
ν)

X̂,Ŷ
δλ,{ν−+}, (30)

where we have added here the factor δλ,{ν−+} (1 if λ ∈ {ν−+} and 0 otherwise) for an explicit
reference on when the matrix elements are necessarily zero or not (this is superfluous since the

partition triangle selection rule defined above implies K(λ,Wλ,W
′
λ;ν,Wν ,W

′
ν)

X̂,Ŷ
= 0 if λ /∈ {ν−+}).

We could have equivalently written δν,{λ−+}.
Equation (26) generalizes to arbitrary multiqudit systems and local operators Identity 1 of

[32] that was developed in the specific context of multiqubit systems. The latter was obtained
using an inductive approach non-extendable to multilevel systems. Here, a completely differ-
ent approach based on the powerful Schur–Weyl duality formalism with newly introduced 3ν
symbols was followed to get the sought generalization to arbitrary d.

Thanks to equation (29), the coefficients K(λ,Wλ,W
′
λ;λ,W̃λ,W

′
λ)

X̂,1̂
are independent ofW ′

λ and we
can define

K(λ,Wλ,W̃λ)

X̂
≡ K(λ,Wλ,W

′
λ;λ,W̃λ,W

′
λ)

X̂,1̂
=

∑
µ∈{λ−}

rµλTr
[
ĝ(λ,Wλ;λ,W̃λ)†
µ X̂

]
. (31)

9
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This yields K(λ,Wλ,W
′
λ;ν,Wν ,W

′
ν)

X̂,1̂
= K(λ,Wλ,Wν)

X̂
δλ,νδW′

λ,W
′
ν
and subsequently [84]

KX̂,1̂

[
F̂(Wν ,W

′
ν)

ν

]
=
∑
W̃ν

K(ν,W̃ν ,Wν)

X̂
F̂(W̃ν ,W

′
ν)

ν . (32)

Thanks to the closure relation (16), it follows that any collective operator X̂c =KX̂,1̂[1̂] can be
written

X̂c =
∑

ν⊢(N,d)

∑
Wν ,W ′

ν∈Wν

√
fνK(ν,Wν ,W

′
ν)

X̂
F̂(Wν ,W

′
ν)

ν . (33)

For any local operators X̂ and Ŷ, the coefficients (27) and (31) satisfy the symmetry rela-
tions

K(λ,W ′
λ,Wλ;ν,W

′
ν ,Wν)

X̂,Ŷ
= K(λ,Wλ,W

′
λ;ν,Wν ,W

′
ν)∗

Ŷ,X̂
, K(λ,W̃λ,Wλ)

X̂
= K(λ,Wλ,W̃λ)∗

X̂† . (34)

The matrix elementsLλ,Wλ,W ′
λ;ν,Wν ,W ′

ν
for the LiouvillianL= VĤc

+D(loc)

ℓ̂
+D(col)

L̂
imme-

diately follow from this formalism. We have

Lλ,Wλ,W ′
λ;ν,Wν ,W ′

ν
=
[
VĤc

]
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

+
[
D(loc)

ℓ̂

]
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

+
[
D(col)
L̂

]
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

. (35)

The commutator between any PI operator ÂPI and the basis operator F̂
(Wν ,W

′
ν)

ν follows straight-
forwardly from the commutant algebra multiplication rule. We have

[
F̂(Wν ,W

′
ν)

ν , ÂPI

]
=

1√
fν

∑
W̃ ′

ν

Aν,W ′
ν ,W̃

′
ν
F̂(Wν ,W̃

′
ν)

ν −
∑
W̃ν

Aν,W̃ν ,Wν
F̂(W̃ν ,W

′
ν)

ν

 , (36)

so that

[
VĤc

]
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

=
i
ℏ

(
K(ν,W ′

ν ,W
′
λ)

Ĥ
δWλ,Wν

−K(ν,Wλ,Wν)

Ĥ
δW′

λ,W
′
ν

)
δλ,ν , (37)

[D(loc)

ℓ̂
]λ,Wλ,W ′

λ;ν,Wν ,W ′
ν
= γloc

[
K(λ,Wλ,W

′
λ;ν,Wν ,W

′
ν)

ℓ̂,ℓ̂
δλ,{ν−+}

− 1
2

(
K(ν,W ′

ν ,W
′
λ)

ℓ̂†ℓ̂
δWλ,Wν

+K(ν,Wλ,Wν)

ℓ̂†ℓ̂
δW′

λ,W
′
ν

)
δλ,ν

]
, (38)

10
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[D(col)
L̂

]λ,Wλ,W ′
λ;ν,Wν ,W ′

ν
= γc

[
K(ν,Wλ,Wν)

L̂
K(ν,W ′

λ,W
′
ν)∗

L̂

− 1
2

∑
W̃ ′

ν

K(ν,W̃ ′
ν ,W

′
λ)

L̂
K(ν,W̃ ′

ν ,W
′
ν)∗

L̂

δWλ,Wν

− 1
2

∑
W̃ν

K(ν,W̃ν ,Wν)

L̂
K(ν,W̃ν ,Wλ)∗
L̂

δW′
λ,W

′
ν

]
δλ,ν . (39)

If the local operators ℓ̂ and L̂ are Hermitian, then so are the superoperators D(loc)

ℓ̂
and

D(col)
L̂

[85], i.e.[
D(loc)

ℓ̂

]
ν,Wν ,W ′

ν ;λ,Wλ,W ′
λ

=
[
D(loc)

ℓ̂

]∗
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

,[
D(col)
L̂

]
ν,Wν ,W ′

ν ;λ,Wλ,W ′
λ

=
[
D(col)
L̂

]∗
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

.
(40)

In addition, thanks to the symmetry relations (34), the following symmetry relation holds
for any local operators ℓ̂ and L̂:[

D(loc)

ℓ̂

]
λ,W ′

λ,Wλ;ν,W ′
ν ,Wν

=
[
D(loc)

ℓ̂

]∗
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

,[
D(col)
L̂

]
λ,W ′

λ,Wλ;ν,W ′
ν ,Wν

=
[
D(col)
L̂

]∗
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

.
(41)

3. Application to qubit systems

In this section, we exemplify our formalism for the qubit case and we show how Identity 1 of
[32] is directly recovered from the very general equation (26) in the specific case d= 2. Qubit
systems were handled in [32] using a long inductive approach not extendable to multilevel
systems.

For d= 2, the commutant basis operators F̂(Wν ,W
′
ν)

ν are indexed with partitions ν ≡
(ν1,ν2) ∈ P2 (ν1 > 0,ν2 ⩾ 0). In this case, the set {ν−} is only composed of the valid par-
titions among the two partitions ν−1 ≡ (ν1 − 1,ν2) and ν−2 ≡ (ν1,ν2 − 1), so that {ν−+} is
in turn only composed of the valid partitions among the three partitions νa ≡ ν, νb ≡ ν1→2 =

(ν1 − 1,ν2 + 1), and νc ≡ ν2→1 = (ν1 + 1,ν2 − 1) [74]. The cardinality of the setsW(±j)
µ (Wν)

and W̃(±j)
µ (Wν) is at most 1. Indeed, for d= 2 the content of the SWT boxes is either a 0 or a 1

and there is a unique SWTWn0
ν of shape ν with prescribed admissible content of n0 boxes 0 and

n1 = |ν| − n0 boxes 1 (the boxes 0 have no other option than being located at the beginning of
the first row of the SWT and the boxes 1 only on the rest). For all j ∈ {0,1}, ν ∈ P2,µ ∈ {ν±},
and SWT Wn0

ν , we have W(±j)
µ (Wn0

ν ) = W̃(±j)
µ (Wn0

ν ) = {Wn0±(1−j)
µ } or ∅ (if Wn0±(1−j)

µ is not

a valid SWT). As a result, ∀λ,µ,ν : {λ,µ,ν}= 1, i, j ∈ {0,1}, W(−i)
µ (Wñ0

λ )∩W(−j)
µ (Wn0

ν ) =
{Wñ0+i−1

µ }∩ {Wn0+j−1
µ } and this set is not empty only if the two singletons coincide with a

valid SWT, which at least requires ñ0 = n0 +( j− i). In addition to the generic vanishing con-

dition {λ,µ,ν}= 0, the single qubit operator ĝ
(λ,W

ñ0
λ ;ν,W

n0
ν )

µ is necessarily zero if |ñ0 − n0|> 1.

Setting n0(q) = n0 − q, the only possibly nonzero ĝ
(λ,W

n0(q)
λ ;ν,W

n0
ν )

µ operators are obtained

for q= 0,±1 (they can vanish within this condition for specific λ, µ, ν, Wn0(q)
λ , and Wn0

ν ).

11
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Table 1. Only possibly nonzero operators ĝ
(λ,Wn0(q)

λ
;ν,Wn0

ν )
µ (q= 0,±1) for a given ν ≡ (ν1,ν2) ∈ P2 and

Wn0
ν ∈Wν .

λ µ [g
(λ,Wn0(q)

λ
;ν,Wn0

ν )
µ ]i,j ĝ

(λ,Wn0(±1)
λ

;ν,Wn0
ν )

µ ĝ
(λ,Wn0(0)

λ
;ν,Wn0

ν )
µ Tr[ĝ

(λ,Wn0(q′)
λ

;ν,Wn0
ν )†

µ ŝq]

ν ν−1 ζ
ν,n0(q)
i1 ζν,n0j1 δq,i−j

Aν,n0±1

∆ν
ŝ±1

∑1
k=0[ζ

ν,n0
k1 ]2|k⟩⟨k| Aν,n0q

∆ν
δq,q ′

ν−2 ζ
ν,n0(q)
i2 ζν,n0j2 δq,i−j −

Aν,n0±1

∆ν+2 ŝ±1
∑1

k=0[ζ
ν,n0
k2 ]2|k⟩⟨k| − Aν,n0q

∆ν+2δq,q ′

νb ν−1 = ν−2
b ζ

νb,n0(q)
i2 ζν,n0j1 δq,i−j

Bν,n0±1

∆ν
ŝ±1 2

Bν,n00
∆ν

ŝ0
Bν,n0q

∆ν
δq,q ′

νc ν−2 = ν−1
c ζ

νc,n0(q)
i1 ζν,n0j2 δq,i−j

Dν,n0
±1

∆ν+2 ŝ±1 2
Dν,n0

0
∆ν+2 ŝ0

Dν,n0
q

∆ν+2δq,q ′

They are listed in table 1, along with their matrix elements, explicit expression, and a relevant
trace property they fulfill. To this aim, we defined ζν,n0kτ ≡ 〈Wn0+k−1

ν−τ ,k|Wn0
ν 〉 (k= 0,1, τ = 1,2),

ŝ+1 = |1〉〈0|, ŝ−1 = |0〉〈1|, ŝ0 = (|1〉〈1| − |0〉〈0|)/2, and

Aν,n0
q =


√
(ν1 − n0 + 1)(n0 − ν2) for q= 1

(ν1 + ν2 − 2n0)/2 q= 0√
(ν1 − n0)(n0 + 1− ν2) q=−1

, (42)

Bν,n0
q =


√
(n0 − ν2)(n0 − ν2 − 1) for q= 1√
(ν1 − n0)(n0 − ν2) q= 0

−
√

(ν1 − n0 − 1)(ν1 − n0) q=−1
, (43)

Dν,n0
q =


−
√
(ν1 − n0 + 1)(ν1 − n0 + 2) for q= 1√

(ν1 − n0 + 1)(n0 − ν2 + 1) q= 0√
(n0 − ν2 + 1)(n0 − ν2 + 2) q=−1

. (44)

TheKronecker delta in the third column of table 1 accounts for the necessary condition n0(q) =
n0 + j − i for thematrix elements to be nonzero. The operator expressions in the fourth and fifth
columns directly follow from the explicit expressions of the CGC’s ζν,n0kτ for all ν = (ν1,ν2) ∈
P2, i.e. (see equation (B.10) with d= 2),

ζν,n001 =

√
n0 − ν2
∆ν

, ζν,n011 =

√
ν1 − n0
∆ν

,

ζν,n002 =−
√

ν1 + 1− n0
∆ν+ 2

, ζν,n012 =

√
n0 − ν2 + 1
∆ν+ 2

,

(45)

where∆ν ≡ ν1 − ν2. The trace property in the sixth columnmerely stems from the elementary
relations Tr[ŝq] = 0, Tr[ŝ†±1ŝq] = δq,±1, and Tr[ŝ†0 ŝq] = δq,0/2, ∀q= 0,±1.

Finally, we have for all ν ≡ (ν1,ν2) ` (N,2) [75]

fν =
∆ν+ 1
ν1 + 1

(
N
ν2

)
, (46)

12
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so that

rν
−1

ν =
∆ν

∆ν+ 1
(ν1 + 1) , rν

−2

ν =
∆ν+ 2
∆ν+ 1

ν2 (47)

and

fν

fνb
=

(ν2 + 1)(∆ν+ 1)
(ν1 + 1)(∆ν− 1)

,
fν

fνc
=

(ν1 + 2)(∆ν+ 1)
ν2 (∆ν+ 3)

. (48)

As a result, for X̂= ŝq and Ŷ= ŝr (q,r= 0,±1) the general Identity (26) straightforwardly
simplifies to

N∑
n=1

ŝ(n)q |ν,Wn0
ν 〉〈ν,W

n′0
ν |ŝ(n)†r =

ν1 + ν2 + 2
∆ν (∆ν+ 2)

Aν,n0
q A

ν,n ′
0

r |ν,Wn0(q)
ν 〉〈ν,Wn′0(r)

ν |

+
ν1 + 1

∆ν (∆ν+ 1)
Bν,n0
q B

ν,n ′
0

r

√
fν

fνb
|νb,Wn0(q)

νb 〉〈νb,W
n′0(r)
νb |

+
ν2

(∆ν+ 1)(∆ν+ 2)
Dν,n0
q D

ν,n ′
0

r

√
fν

fνc
|νc,Wn0(q)

νc 〉〈νc,W
n′0(r)
νc |.

(49)

For d= 2, the Schur basis states |ν,Tν ,Wν〉 are nothing but the standard Clebsch–Gordan
basis states |J,M, i〉, according to the correspondence J=∆ν/2,M= N/2− n0 (equivalently
ν1 = N/2+ J, ν2 = N/2− J, and n0 = N/2−M), and where i is indexed by the distinct SYT’s
Tν , hence from 1 to fν =

( N
N/2−J

)
(2J+ 1)/(J+ 1+N/2)≡ dJN. Equation (49) is just Identity

1 of [32] expressed in the Schur–Weyl duality language. For (ν,Wn0
ν )≡ (J,M), (ν,Wn0(q)

ν ) =

(J,Mq), (νb,W
n0(q)
νb ) = (J− 1,Mq) and (νc,W

n0(q)
νc ) = (J+ 1,Mq), with Mq =M+ q.

4. Conclusion

In this paper, we established the general theoretical framework that allows for an exact descrip-
tion of the open system dynamics of PI states in arbitrary N-qudit systems (d⩾ 2) when con-
strained within the commutant LSN(H) (the subspace of PI operators in the global Liouville
space of operators acting in the system Hilbert space). Thanks to Schur–Weyl duality powerful
results, we identified a natural orthonormal basis of operators in the commutant onto which
the master equation can be projected and provided the exact expansion coefficients in the most
general case (arbitrary dynamics, N and d). While we here specifically focused on general
time-local Markovian or non-Markovian master equations, our formalism can also be applied
to more general master equations that would make use of any PI linear maps of the form of
equation (19) for which we identified the exact matrix elements in the natural orthonormal
basis of the commutant. The formalism does not require one to compute the Schur transform
and allows to remain completely restricted within the commutant subspace, whose dimension
only scales polynomially with the number N of qudits instead of exponentially, as is the case
for the whole Liouville space of operators.We introduced the concept of 3ν-symbolmatrix that
proves to be particularly useful in this context. We finally showed how our theoretical frame-
work particularizes for qubit systems (d= 2) and how previously known results are recovered
for this specific case. Being exact and focused on the commutant subspace, our formalism

13
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should make it possible to simulate the dynamics of open many-body quantum systems with
a large number of constituents more efficiently than is possible today.

The versatility of our formalism opens up a broad spectrum of potential applications across
various domains, establishing it as a flexible tool for exploring novel quantum phenomena,
some of which may be specific to ensemble of qudits. It enables the exploration of the inter-
play between quantum driving, collective dissipation, and individual dissipation, which could
provide insights into the essential factors contributing to the emergence of dissipative time
crystals [86, 87]. It is particularly suited to examining the impact of individual losses, ubiquit-
ous in experimental setups, on collective systems of qudits [88]. Models based on two-level
systems can find experimental realization in configurations that involve individual quantum
systems with more than two levels, as seen in cases such as trapped ions. Consequently, there
is significant interest in evaluating the losses from these additional levels. Our formalism is dis-
tinct in its group-theoretic analytical treatment of dissipative dynamics and in the exact results
it yields, which could be particularly relevant in the context of quantum thermodynamics [49].
It complements numerous other methods relying e.g. on stochastic quantum trajectories or
different ansatzes for the density operator entering the Lindblad-like master equation, such
as in cluster mean-field approaches [89], variational neural-network ansatz [90–92] or tensor-
network techniques. Furthermore, our formalism finds relevance in studying the impact of
noise on quantum circuits utilizing qudits, which is particularly useful for advancing progress
in NISQ devices [93] or in quantum metrology by analyzing spin squeezing in ensembles of
spin-s particles and the consequences of imperfect preparation of the initial state, as was done
for two-level systems [94]. It also provides a powerful tool for exploring the strong coupling
of cavity modes to collective excitations in ensembles of quantum emitters, accounting for the
discrete multilevel spectrum of molecular systems beyond the Tavis-Cummings model. This
consideration is crucial for understanding the complex interplay of molecular electronic and
nuclear degrees of freedom, particularly in the context of light-matter hybrid states known as
polaritons [95, 96]. Additionally, our formalism is well-suited for investigating measurement-
induced phase transitions in systems with more than two-level quantum components, which
arises from the competition between quantum measurements and coherent dynamics [97].
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Appendix A. Dimension of the commutant LSN(H)

The commutant LSN(H) coincides with the symmetric subspace of the Liouville space

L (H) [71] and its dimension thus reads f(N)(d2) =
(N+d2−1

N

)
. On the other hand, as a res-

ult of the Schur–Weyl duality, this dimension also identifies to
∑

ν⊢(N,d) f
ν(d)2, with fν(d)

14
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the dimension of the Uν(d) irrep of the general linear group GL(d) (and of the unitary group
U(d)). Both expressions must of course coincide and this can be easily seen as follows.

We first observe that
∑

ν⊢(N,d) f
ν(d)2 can also be written

∑
ν⊢(N,d) sν(1, . . . ,1)

2, where
(1, . . . ,1) is a d-uple and sν(x1, . . . ,xd) is the Schur’s polynomial in the d variables x1, . . . ,xd
associated to partition ν (this is an homogeneous symmetric polynomial of degree N in the
variables x1, . . . ,xd—see [76]). For all x≡ (x1, . . . ,xd) and y≡ (y1, . . . ,yd), Cauchy’s identity
states that

∞∑
N=0

∑
ν⊢(N,d)

sν (x)sν (y) =
d∏

i,j=1

(1− xi yj)
−1

, (A.1)

which for x= y= (t, . . . , t) particularizes to

∞∑
N=0

∑
ν⊢(N,d)

sν (t, . . . , t)
2
=
(
1− t2

)−d2
. (A.2)

On the one hand, sν(t, . . . , t) is a multiple of tN for all ν ` (N,d), so that∑
ν⊢(N,d)

sν (t, . . . , t)
2
= αN,dt

2N, ∀t, (A.3)

with αN,d a real constant that depends on N and d. On the other hand, (1− t2)−d2 admits for

−1< t< 1 the series expansion
∑∞

N=0

(N+d2−1
N

)
t2N. As a result, equation (A.2) can be written

for −1< t< 1

∞∑
N=0

αN,dt
2N =

∞∑
N=0

(
N+ d2 − 1

N

)
t2N (A.4)

and αN,d must identify to
(N+d2−1

N

)
,∀N,d. It then follows from equation (A.3) that

∑
ν⊢(N,d)

sν (1, . . . ,1)
2
=

(
N+ d2 − 1

N

)
. (A.5)

Appendix B. Clebsch-Gordan coefficients of tensor products of unitary group
irreps in the context of qudit systems

In this appendix, the CGC’s of tensor products of unitary group irreps are explicitly detailed
in the specific contexts of qudit systems with d levels denoted by |0〉, . . . , |d− 1〉 (to comply
with the standard qubit level notation |0〉 and |1〉 if d= 2).

The tensor product of two (unitary) irreps Uµ(d) and Uν(d) of the unitary group U(d)
(µ,ν ∈ Pd) decomposes into a direct sum of irreducible components according to [98]

Uµ(d)⊗Uν(d) =
⊕
λ∈Pd

cλµν⊕
r=1

Uλ(d)r, (B.1)

with cλµν the so-called Littlewood–Richardson coefficients and Uλ(d)r (λ ∈ Pd,r=
1, . . . ,cλµν) equivalent Uλ(d)-irreps of U(d). The index r is omitted if it only takes value 1.
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The CGC’s of the tensor product Uµ(d)⊗Uν(d) for the GT basis are the expansion coeffi-
cients 〈Wµ,Wν |Wλ〉r of the GT-basis vectors |Wλ〉r of Uλ(d)r in the basis formed by the tensor
products of the GT-basis vectors |Wµ〉 of Uµ(d) with the GT-basis vectors |Wν〉 of Uν(d):

|Wλ〉r =
∑

Wµ,Wν

〈Wµ,Wν |Wλ〉r|Wµ〉⊗ |Wν〉, ∀λ ∈ Pd,Wλ ∈Wλ,r. (B.2)

The decomposition (B.1) is not unique as soon as any of the Littlewood–Richardson coeffi-
cients cλµν exceeds 1, in which case the CGC’s are neither univocally defined.

For ν = (1), equation (B.1) specifically reads

Uµ(d)⊗U (1)(d) =
⊕

λ∈{µ+}

Uλ(d) (B.3)

and the CGC’s are univocally determined. The d-dimensional representation U (1)(d) can
always be chosen to have each unitary matrix U ∈ U(d) be represented by a unitary operator
having its representation matrix in the orthonormal basis |0〉, . . . , |d− 1〉 of U (1)(d) given by
U (standard representation of U(d) on the single qudit state space Hd

∼= U (1)(d)). If we view
the U(d) subgroups U(k) (1⩽ k< d) as the groups of d× d unitary matrices Uk⊕ (1)⊕(d−k)

(Uk k× k unitary subblocks) that leave fixed the basis vectors |k〉, . . . , |d− 1〉 in the repres-
entation U (1)(d), the GT-basis vectors |W(1)〉 of U (1)(d) merely identify to the orthonormal
basis vectors |j〉 (j = 0, . . . ,d− 1) and the CGC’s 〈Wµ,W(1)|Wλ〉 can be accordingly denoted
by 〈Wµ, j |Wλ〉:

|Wλ〉=
d−1∑
j=0

∑
Wµ∈Wµ

〈Wµ, j |Wλ〉|Wµ〉⊗ |j〉, ∀λ ∈
{
µ+
}
,Wλ ∈Wλ. (B.4)

The CGC’s 〈Wµ, j |Wλ〉 are expressed in terms of the GT patterns of the SWT’s Wµ [78,
99]. For all ν ∈ Pd, the GT pattern G(Wν) of a SWTWν is the d-row tableau listing in a one
row-one partition format all partitions ν(k) (k= 1, . . . ,d) of shapes of Wν where only boxes
0, . . . ,k− 1 are kept. The partitions are listed in the reversed order k= d, . . . ,1. Each ν(k) is a
partition of at most k parts, denoted standardly by the numbersmi,k, i = 1, . . . ,k, set to 0 for all
i that exceed the length of partition ν(k). The form of a GT pattern only depends on d and is
an inverse triangular pattern of d numbers on the first line, d− 1 on the second, . . ., and finally
1 on the last dth line, whatever the partition ν ∈ Pd and the SWT Wν :

G(Wν)≡


m1,d m2,d . . . md−1,d md,d

m1,d−1 . . . . . . md−1,d−1

. . .
m1,2 m2,2

m1,1

 . (B.5)

The numbers mi,d (i = 1, . . . ,d) on the top line merely identify to the parts ν i of the partition
ν of the SWT Wν , possibly completed with zeroes if the partition length is lower than d. The
GT pattern G(Wν) is either denoted accordingly by

(
ν
m

)
, or also merely by (m). For all k=

1, . . . ,d, the number αk = |mk| − |mk−1|, with |mk| ≡
∑k

i=1mi,k andm0 ≡ 0, yields the number
nk−1 of boxes (k− 1) in the SWT Wν . In particular n0 = m1,1. The numbers mi,k satisfy the
betweenness condition: mi,k−1 ∈ [mi+1,k,mi,k], ∀k= 2, . . . ,d; i = 1, . . . ,k− 1. Any triangular
pattern satisfying the betweenness condition is by definition a GT pattern. For all partition ν,
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there is a one to one correspondence between the set of all GT patterns
(
ν
m

)
and the set of all

SWT’s Wν , so that the knowledge of all numbers mi,k uniquely identify a SWT. In particular,
for d= 2, the GT pattern for any SWT Wν≡(ν1,ν2) merely reads

G(Wν) =

(
ν1 ν2

n0

)
. (B.6)

For all i, τ = 1, . . . ,d, a triangular shift pattern (i, τ), ∆i(τ,τd−1, . . . , τi), is a pattern of d
rows containing only 0’s and 1’s according to

∆(τ,τd−1, . . . , τi) =


eτ
eτd−1

...
eτi

(0)i−1

 , (B.7)

where, ∀k= i, . . . ,d− 1, 1⩽ τk ⩽ k, eτk is a unit row vector of length k with 1 at position τ k
and 0 elsewhere, and (0)i−1 denotes a triangular array of zeroes with i− 1 rows. The set of all
triangular shift patterns (i, τ) for all possible values of τd−1, . . . , τi is denoted by ∆i(τ). It is
composed of (d− 1)!/(i− 1)! elements. For d= 2 or also i= d, this is therefore a singleton.

We define the difference of two GT patterns (m) and (m ′) by the triangular pattern of ele-
ments mi,k−m ′

i,k. If Wµ and Wν are two SWT’s such that

G(Wν)−G(Wµ) ∈∆i (τ) , (B.8)

then ν = µ+τ (equivalently µ= ν−τ ) [100] and bothWµ andWν have globally identical con-
tent up to one more box (i− 1) in Wν . Indeed, setting G(Wµ)≡ (m) and G(Wν)≡ (m ′),
we then have |m ′

k|= |mk|+ 1,∀k⩾ i and |m ′
k|= |mk|,∀k< i, so that α ′

k = αk, ∀k 6= i and
α ′
i = αi + 1. For all µ,ν ∈ Pd : ν ∈ {µ+} (⇔ µ ∈ {ν−}), j = 0, . . . ,d− 1, and SWT Wµ,

we denote accordingly by W(+j)
ν (Wµ) the set of all SWT’s Wν of shape ν that fulfill con-

dition (B.8) with i = j + 1 and τ = τν/µ [101]. This is a subset of the set W̃(+j)
ν (Wµ) of all

SWT’s of shape ν and same content as Wµ plus one box j. Similarly, for all SWT Wν , we

denote by W(−j)
µ (Wν) the set of all SWT’s Wµ of shape µ that fulfill condition (B.8) with

i = j + 1 and τ = τµ/ν . This is a subset of the set W̃(−j)
µ (Wν) of all SWT’s of shape µ and

same content as Wν minus one box j. The subset is empty if Wν does not contain any box j.
We have

Wν ∈W(+j)
ν (Wµ) ⇔ Wµ ∈W(−j)

µ (Wν) . (B.9)

The cardinality of the subsets W(+j)
ν (Wµ) and W(−j)

µ (Wν) is identical and at most
∆j+1(τν/µ)’s one, i.e. (d− 1)!/j! (1 for d= 2 or j = d− 1).

The CGC’s 〈Wµ, j |Wλ〉 in equation (B.4) are zero if G(Wλ)−G(Wµ) /∈∆j+1(τλ/µ), and
otherwise

〈Wµ, j |Wλ〉=



j∏
k=1

(
pτj+1,j+1 − pk,j

)
j+1∏
k=1

k̸=τj+1

(
pτj+1,j+1 − pk,j+1

)



1/2

d∏
l=j+2

Aτl−1,τl , (B.10)

17



J. Phys. A: Math. Theor. 58 (2025) 275301 T Bastin and J Martin

where we setG(Wλ)−G(Wµ)≡∆(τd, τd−1, . . . , τj+1) (with τd = τλ/µ),G(Wµ)≡ (m), pi,k =
mi,k+ k− i, and where

Aτl−1,τl = sgn(τl−1 − τl)

 l∏
k=1
k ̸=τl

pτl−1,l−1 − pk,l+ 1

pτl,l− pk,l

l−1∏
k=1

k̸=τl−1

pτl,l− pk,l−1

pτl−1,l−1−pk,l−1+1


1/2

, (B.11)

with sgn the sign function with sgn(0) = 1. The CGC’s are real and obey for all µ ∈ {λ−}∩
{ν−} the orthogonality relation [78]

d−1∑
j=0

∑
Wµ∈Wµ

〈Wµ, j |Wλ〉〈Wµ, j |Wν〉= δλ,νδWλ,Wν
. (B.12)

Equation (B.4) can be accordingly refined to

|Wλ〉=
d−1∑
j=0

∑
Wµ∈W(−j)

µ (Wλ)

〈Wµ, j |Wλ〉|Wµ〉⊗ |j〉, ∀λ ∈
{
µ+
}
,Wλ ∈Wλ. (B.13)

Appendix C. Proof of general Identity (equation (26))

For any local operators X̂ and Ŷ,KX̂,Ŷ[F̂
(Wν ,W

′
ν)

ν ] is a PI operator and can be expanded according
to

KX̂,Ŷ

[
F̂(Wν ,W

′
ν)

ν

]
=

∑
λ⊢(N,d)

∑
Wλ,W ′

λ∈Wλ

Tr
(
F̂(Wλ,W

′
λ)†

λ KX̂,Ŷ

[
F̂(Wν ,W

′
ν)

ν

])
F̂(Wλ,W

′
λ)

λ . (C.1)

We first observe that for any PI operator ÂPI and any operator B̂ we have Tr(Â†
PIPσ[B̂]) =

Tr(Â†
PIB̂),∀σ ∈ SN [102]. As a result and since Pσ[X̂(n)ÂPIŶ(n)†] = X̂(σ(n))ÂPIŶ(σ(n))†, ∀n,σ,

Tr(F̂(Wλ,W
′
λ)†

λ X̂(n)ÂPIŶ(n)†) is independent of n and we have

Tr
(
F̂(Wλ,W

′
λ)†

λ KX̂,Ŷ

[
F̂(Wν ,W

′
ν)

ν

])
= NTr

(
F̂(Wλ,W

′
λ)†

λ X̂(N)F̂(Wν ,W
′
ν)

ν Ŷ(N)†
)

=
N√
fλfν

∑
Tλ,Tν

〈λ,Tλ,Wλ|X̂(N)|ν,Tν ,Wν〉〈λ,Tλ,W ′
λ|Ŷ(N)|ν,Tν ,W ′

ν〉∗. (C.2)

The N-qudit system state space can be structured alongH= (⊗N−1
i Hi)⊗HN. This global

structure can further be refined thanks to the specific properties of the Schur basis states.
According to Pieri’s rule for the unitary group irreducible representations (equation (B.3))
and considering the chain of irreps of SN, . . . ,S1 each Schur–Weyl basis state belongs to (here,
Sk (1⩽ k< N) denotes the SN subgroup that fixes each j ∈ {k+ 1, . . . ,N} and only permutes
{1, . . . ,k}), we get that, for all ν ` (N,d) and Tν ∈ Tν ,Hν(Tν)' Uν(d) is an irreducible com-
ponent of Hν(N−1)(Tν(N−1))⊗HN ' Uν(N−1)(d)⊗U (1)(d), with ν(N− 1) the shape of Tν
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without box N and Tν(N−1) the SYT Tν without box N. This implies

|ν,Tν ,Wν〉=
d−1∑
j=0

∑
Wν(N−1) ∈

W(−j)
ν(N−1)(Wν)

〈Wν(N−1), j |Wν〉|ν (N− 1) ,Tν(N−1),Wν(N−1)〉⊗ |j〉N, (C.3)

where the coefficients 〈Wν(N−1), j |Wν〉 are the (real) CGC’s of the tensor product
Uν(N−1)(d)⊗U (1)(d) for the GT bases. These coefficients are zero iff Wν(N−1) /∈
W(−j)

ν(N−1)(Wν), so that the sum in equation (C.3) can be formally extended to the whole set
Wν(N−1). Proceeding similarly for expanding the state |λ,Tλ,Wλ〉, we get

〈λ,Tλ,Wλ|X̂(N)|ν,Tν ,Wν〉

=
d−1∑
i,j=0

∑
Wν(N−1)

∈ Wν(N−1)

(
λ ν (N− 1) ν
Wλ Wν(N−1) Wν

)
i,j

〈i |X̂|j〉δλ(N−1),ν(N−1)δTλ(N−1),Tν(N−1)

= Tr
[
ĝ(λ,Wλ;ν,Wν)†
ν(N−1) X̂

]
δλ(N−1),ν(N−1)δTλ(N−1),Tν(N−1)

. (C.4)

Inserting this result into equation (C.2) and observing that
∑

Tλ
=
∑

λ−
∑

Tλ−
and similarly

for the sum over Tν , the general Identity (26) is directly obtained. Interestingly, equation (C.4)
also shows that

〈X̂(N)〉|ν,Tν ,Wν⟩ = 〈X̂〉
ρ̂
(ν,Wν )

ν(N−1)
, ∀X̂. (C.5)

Appendix D. Generalization to PI Liouvillians with p-particle terms

We consider here the generalized case where the PI Liouvillian contains p-particle terms, i.e. is
of the form

L=
∑
p

(
VĤp,c

+D(loc)

ℓ̂p
+D(col)

L̂p

)
, (D.1)

where the sum over p only runs for values between 1 and N for which either of
the three Liouvillian p-particle terms is nonzero, Ĥp,c =

∑N
n1<···<np=1 Ĥ

(n1,...,np)
p , D(loc)

ℓ̂p
=

γp
∑N

n1<···<np=1Dℓ̂
(n1,...,np)
p

, and D(col)
L̂p

= γp,cDL̂p,c
, with L̂p,c =

∑N
n1<···<np=1 L̂

(n1,...,np)
p . Here,

Ĥp is a p-particle Hamiltonian, ℓ̂p and L̂p are p-particle jump operators, and (n1, . . . ,np) denotes

the particle p-uple these p-particle operators act on. These operators satisfy X̂(n1,...,np)
p =

X̂
(nπ(1),...,nπ(p))
p , for all n1 6= . . . 6= np and permutations π ∈ Sp.
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All Liouvillian terms can again be expressed with the help of generic superoperators,
namely KX̂p,Ŷp

(X̂p, Ŷp any two p-particle operators) that act according to

KX̂p,Ŷp
[Â] =

N∑
n1<···<np=1

X̂(n1,...,np)
p ÂŶ(n1,...,np)†p , ∀Â ∈ L (H) . (D.2)

Indeed, VĤp,c
= (i/ℏ)(K1̂,Ĥp

−KĤp,1̂
), D(loc)

ℓ̂p
= γp(Kℓ̂p,ℓ̂p

− (Kℓ̂†p ℓ̂p,1̂
+K

1̂,ℓ̂†p ℓ̂p
)/2), and

D(col)
L̂p

[ρ̂] = γp,c(L̂p,cK1̂,L̂p
[ρ̂]− (L̂†p,cKL̂p,1̂

[ρ̂] +K1̂,L̂p
[ρ̂]L̂p,c)/2), where L̂p,c can similarly

be written as KL̂p,1̂
[1̂]. The superoperators KX̂p,Ŷp

are PI, so that KX̂p,Ŷp
[ÂPI] is itself a

PI operator for any PI operator ÂPI. With respect to Hermitian conjugation, we have
KX̂p,Ŷp

[Â]† =KŶp,X̂p
[Â†].

To get explicit expressions of the matrix elements Lλ,Wλ,W ′
λ;ν,Wν ,W ′

ν
, it is therefore again

completely enough to have the expansion in the commutant operator basis of the PI operators

KX̂p,Ŷp
[F̂(Wν ,W

′
ν)

ν ], ∀X̂p, Ŷp,ν,Wν ,W ′
ν . This expansion reads

KX̂p,Ŷp

[
F̂(Wν ,W

′
ν)

ν

]
=

∑
λ⊢(N,d)

∑
Wλ,W ′

λ∈Wλ

Tr
(
F̂(Wλ,W

′
λ)†

λ KX̂p,Ŷp

[
F̂(Wν ,W

′
ν)

ν

])
F̂(Wλ,W

′
λ)

λ . (D.3)

Since Pσ[X̂
(n1,...,np)
p ÂPIŶ

(n1,...,np)†
p ] = X̂(σ(n1),...,σ(np))

p ÂPIŶ(σ(n1),...,σ(np))†, for all n1 6= · · · 6=
np and permutations σ ∈ SN, Tr(F̂

(Wλ,W
′
λ)†

λ X̂(n1,...,np)
p ÂPIŶ

(n1,...,np)†
p ) is independent of the p-uple

(n1, . . . ,np) and we get

Tr
(
F̂
(Wλ,W ′

λ)†
λ KX̂p,Ŷp

[
F̂
(Wν ,W ′

ν)
ν

])
=

(
N
p

)
Tr
(
F̂
(Wλ,W ′

λ)†
λ X̂(N−p+1,...,N)

p F̂
(Wν ,W ′

ν)
ν Ŷ(N−p+1,...,N)†

p

)
=

(
N
p

)
1√
fλfν

∑
Tλ,Tν

⟨λ,Tλ,Wλ|X̂(N−p+1,...,N)
p |ν,Tν ,Wν⟩

× ⟨λ,Tλ,W ′
λ|Ŷ(N−p+1,...,N)

p |ν,Tν ,W ′
ν⟩∗. (D.4)

Applying successively p times equation (28) first to isolate theNth qudit, then the (N− 1)th,
and so on until the (N− p+ 1)th, we get in similar notations
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|ν,Tν ,Wν⟩=
d−1∑
jp=0

∑
Wν(N−1)

∈ Wν(N−1)

⟨Wν(N−1), jp|Wν⟩|ν (N− 1) ,Tν(N−1),Wν(N−1)⟩⊗ |jp⟩N

=

d−1∑
jp−1,jp=0

∑
Wν(N−1)

∈ Wν(N−1)

∑
Wν(N−2)

∈ Wν(N−2)

⟨Wν(N−1), jp|Wν⟩⟨Wν(N−2), jp−1|Wν(N−1)⟩

|ν (N− 2) ,Tν(N−2),Wν(N−2)⟩⊗ |jp−1, jp⟩N−1,N

...

=

d−1∑
j1,...,jp=0

∑
Wν(N−1)

∈ Wν(N−1)

. . .
∑

Wν(N−p)

∈ Wν(N−p)

⟨Wν(N−1), jp|Wν⟩ · · · ⟨Wν(N−p), j1|Wν(N−p+1)⟩

|ν (N− p) ,Tν(N−p),Wν(N−p)⟩⊗ |j1, . . . , jp⟩N−p+1,...,N,

(D.5)

with, ∀k= 1, . . . ,p, ν(N− k) the shape of Tν without boxes N, . . . ,N− k+ 1, and Tν(N−k) the
SYT Tν without these k boxes.

For every νL,νR ∈ Pd, Wµ ∈Wµ (µ= νL,νR), ν ≡ (νl,p−1, . . . ,νl,1,νc,νr,1, . . . ,νr,p−1) ∈
P2p−1

d (i.e. ν is a vector of 2p− 1 partitions of at most d parts), Wν ≡
(Wνl,p−1 , . . . ,Wνl,1 ,Wνc ,Wνr,1 , . . . ,Wνr,p−1), with Wµ ∈Wµ (µ= νl,p−1, . . . ,νr,p−1), we define

the generalized 3ν symbol

(
νL ν νR
WνL Wν WνR

)
as being the square dp× dp matrix with

entries

(
νL ν νR
WνL Wν WνR

)
i,j
=

p∏
k=1

〈Wνl,k−1 , ik|Wνl,k〉〈Wνr,k−1 , jk|Wνr,k〉, (D.6)

where i≡ (i1, . . . , ip), j≡ ( j1, . . . , jp), ik, jk = 0, . . . ,d− 1 for k= 1, . . . ,p, and where we set
νl,0 = νr,0 ≡ νc, νl,p ≡ νL, and νr,p ≡ νR.

The generalized 3ν-symbol matrix

(
νL ν νR
WνL Wν WνR

)
is necessarily zero if the con-

dition νl,k−1 ∈ {ν−l,k} and νr,k−1 ∈ {ν−r,k}, ∀k= 1, . . . ,p (generalized partition triangle selec-

tion rule) is not satisfied. This condition can only be met if νL ∈ {ν−
p+p

R } or equivalently
νR ∈ {ν−

p+p

L }, where the superscript −p
[+

p
] denotes the action of removing [adding] suc-

cessively p inner [outer] corners to the partition it applies. We define the generalized partition
triangular delta {νL,ν,νR} to be 1 if the generalized partition triangle selection rule is satisfied
and 0 otherwise.

Since the CGC’s are real, we have

(
νL ν νR
WνL Wν WνR

)
=

(
νR ν̃ νL
WνR Wν̃ WνL

)T

, (D.7)

where ν̃ is the vector of partitions ν listed in reversed order: ν̃ ≡ (νr,p−1, . . . ,νr,1,νc,νl,1, . . . ,
νl,p−1). The generalized 3ν-symbol matrices obey the generalized orthogonality relation
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(see appendix B)

∑
Wν

Tr

[(
νL ν νR
WνL Wν WνR

)]
= {νL,ν,νR}δνL,νRδWνL ,WνR

δν,ν̃ , (D.8)

with
∑

Wν
≡
∑

Wνl,p−1
. . .
∑

Wνl,1

∑
Wνc

∑
Wνr,1

. . .
∑

Wνr,p−1
, and they are the representation

matrices in the computational basis of the p-qudit product operators

ĝ
(νL,WνL ;νR,WνR )

ν,Wν
=

p⊗
k=1

∣∣∣ϕ(νl,k,Wνl,k )

νl,k−1,Wνl,k−1

〉〈
ϕ
(νr,k,Wνr,k )

νr,k−1,Wνr,k−1

∣∣∣ . (D.9)

We also define the p-qudit operators

ĝ
(νL,WνL ;νR,WνR )
ν =

∑
Wν

ĝ
(νL,WνL ;νR,WνR )

ν,Wν
. (D.10)

These operators vanish if {νL,ν,νR}= 0 and they satisfy ĝ
(νL,WνL ;νR,WνR )†
ν = ĝ

(νR,WνR ;νL,WνL )

ν̃

and

Tr
[
ĝ
(νL,WνL ;νR,WνR )
ν

]
= {νL,ν,νR}δνL,νRδWνL ,WνR

δν,ν̃ . (D.11)

As a result, ∀ν ∈ Pd, Wν ∈Wν , µ ∈ P2p−1
d : µ= µ̃ and {ν,µ,ν}= 1, ρ̂

(ν,Wν)
µ ≡

ĝ(ν,Wν ;ν,Wν)
µ is a trace 1 positive semidefinite operator and represents a separable p-qudit

mixed state.
With this stated and expanding |λ,Tλ,Wλ〉 similarly as |ν,Tν ,Wν〉 in equation (D.5), we

directly obtain

〈λ,Tλ,Wλ|X̂(N−p+1,...,N)
p |ν,Tν ,Wν〉

=
∑
i,j

∑
Wµ(Tλ,Tν )p

(
λ µ(Tλ,Tν)p ν

Wλ Wµ(Tλ,Tν )p
Wν

)
i,j

〈i|X̂p|j〉δλ(N−p),ν(N−p)δTλ(N−p),Tν(N−p)

= Tr
[
ĝ(λ,Wλ;ν,Wν)†
µ(Tλ,Tν )p

X̂p
]
δλ(N−p),ν(N−p)δTλ(N−p),Tν(N−p)

, (D.12)

with µ(Tλ,Tν)p = (λ(N− 1), . . . ,λ(N− p+ 1),λ(N− p),ν(N− p+ 1), . . . ,ν(N− 1)).
Interestingly, this also implies that

〈X̂(N−p+1,...,N)
p 〉|ν,Tν ,Wν⟩ = 〈X̂p〉ρ̂(ν,Wν )

µ(Tν )p

, ∀X̂p, (D.13)

with µ(Tν)p ≡ µ(Tν ,Tν)p .
Inserting equation (D.12) into equation (D.4) and observing that

∑
Tλ

=
∑

λ−
∑

Tλ−
=∑

λ−
∑

(λ−)−
∑

T(λ−)−
= · · · (so on p times) and similarly for the sum over Tν , we immedi-

ately get

KX̂p,Ŷp

[
F̂(Wν ,W

′
ν)

ν

]
=

∑
λ∈{ν−p+p}

∑
Wλ,W ′

λ∈Wλ

K(λ,Wλ,W
′
λ;ν,Wν ,W

′
ν)

X̂p,Ŷp
F̂(Wλ,W

′
λ)

λ , (D.14)
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with

K
(λ,Wλ,W

′
λ;ν,Wν ,W

′
ν)

X̂p,Ŷp
=

∑
µ ∈ P2p−1

d :

{λ,µ,ν} = 1

√
rµc
λ r

µc
ν Tr

[
ĝ(λ,Wλ;ν,Wν)†
µ X̂p

]
Tr
[
ĝ(λ,W

′
λ;ν,W

′
ν)†

µ Ŷp
]∗

,

(D.15)

where we defined rµν ≡
(N
p

)
fµ/fν , ∀ν ` N,µ ∈ {ν−p}. Identity (D.14) states that the matrix

elements of the superoperator KX̂p,Ŷp
are merely given by[

KX̂p,Ŷp

]
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

= K
(λ,Wλ,W

′
λ;ν,Wν ,W

′
ν)

X̂p,Ŷp
δλ,{ν−p+p}, (D.16)

where we have added here the factor δλ,{ν−p+p} (1 if λ ∈ {ν−p+p} and 0 otherwise) for an
explicit reference on when the matrix elements are necessarily zero or not (this factor is
superfluous since the generalized partition triangle selection rule discussed above implies

K(λ,Wλ,W
′
λ;ν,Wν ,W

′
ν)

X̂,Ŷ
= 0 if λ /∈ {ν−p+p}).

Thanks to equation (D.11), the coefficients K(λ,Wλ,W
′
λ;λ,W̃λ,W

′
λ)

X̂p,1̂p
, with 1̂p the p-particle iden-

tity, are independent of W ′
λ and we can define

K
(λ,Wλ,W̃λ)
X̂p

≡ K
(λ,Wλ,W

′
λ;λ,W̃λ,W

′
λ)

X̂p,1̂p
=

∑
µ ∈ P2p−1

d :

{λ,µ,λ} = 1&µ = µ̃

rµc
λ Tr

[
ĝ
(λ,Wλ;λ,W̃λ)†
µ X̂p

]
. (D.17)

This yields

K(λ,Wλ,W
′
λ;ν,Wν ,W

′
ν)

X̂p,1̂p
= K(λ,Wλ,Wν)

X̂p
δλ,νδW′

λ,W
′
ν

(D.18)

and subsequently KX̂p,1̂p
[F̂(Wν ,W

′
ν)

ν ] =
∑

W̃ν
K(ν,W̃ν ,Wν)

X̂p
F̂(W̃ν ,W

′
ν)

ν and X̂p,c =
∑

ν,Wν ,W ′
ν√

fνK(ν,Wν ,W
′
ν)

X̂p
F̂(Wν ,W

′
ν)

ν , so that the master equation matrix elements merely generalizes

in presence of p-particle operators according to[
VĤp,c

]
λ,Wλ,W ′

λ;ν,Wν ,W ′
ν

=
i
ℏ

(
K(ν,W ′

ν ,W
′
λ)

Ĥp
δWλ,Wν

−K(ν,Wλ,Wν)

Ĥp
δW′

λ,W
′
ν

)
δλ,ν , (D.19)

[D(loc)

ℓ̂p
]λ,Wλ,W ′

λ;ν,Wν ,W ′
ν
= γp

[
K(λ,Wλ,W

′
λ;ν,Wν ,W

′
ν)

ℓ̂p,ℓ̂p
δλ,{ν−p+p}

− 1
2

(
K(ν,W ′

ν ,W
′
λ)

ℓ̂†p ℓ̂p
δWλ,Wν

+K(ν,Wλ,Wν)

ℓ̂†p ℓ̂p
δW′

λ,W
′
ν

)
δλ,ν

]
, (D.20)

[D(col)
L̂p

]λ,Wλ,W ′
λ;ν,Wν ,W ′

ν
= γp,c

[
K(ν,Wλ,Wν)

L̂p
K(ν,W ′

λ,W
′
ν)∗

L̂p

− 1
2

∑
W̃ ′

ν

K(ν,W̃ ′
ν ,W

′
λ)

L̂p
K(ν,W̃ ′

ν ,W
′
ν)∗

L̂p

δWλ,Wν

− 1
2

∑
W̃ν

K(ν,W̃ν ,Wν)

L̂p
K(ν,W̃ν ,Wλ)∗
L̂p

δW′
λ,W

′
ν

]
δλ,ν . (D.21)
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For p= 1, all results of this appendix just particularize to the standard formalism of the main
manuscript.
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a partition ν with l(ν)≤ d. We write in this case ν ⊢ (N,d). The case N= 0 is particular and
only counts the so-called empty partition of length 0. The irreducible representations of the
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general linear group GL(d) are indexed by so-called highest weights ν ≡ (ν1, . . . ,νd), with
ν1 ≥ ·· · ≥ νd and νi (i = 1, . . . ,d) positive or negative integers. In the context of the Schur-
Weyl duality, only GL(d) irreps of highest weights ν with positive parts play a role, in which
case ν identifies to a partition of at most d parts (including the empty partition of length 0). The
irreducible representations of the unitary group U(d) are indexed similarly.

[75] The dimension of the irreducible representation Sν is given by the elegant hook length formula:
fν = N!/

∏
(i,j)∈ν h(i,j), where the product runs over the hook length h(i,j) of each box (i, j) of the

diagram ν [103]. The historical Frobenius–Young determinantal formula [104, 105] can also be
used instead: for ν ≡ (ν1, . . . ,νl), f

ν = N!
∏

i<j(li − lj)/
∏

i li!with li = νi + l(ν)− i and l(ν)
the length of partition ν. In particular, for ν = (N), fν = 1, and for ν ≡ (ν1,ν2) ⊢ (N,2), fν =

(ν1 − ν2 + 1)
(N
ν2

)
/(ν1 + 1). This also allows one to express the ratio [100] rν

−τ

ν ≡ Nfν
−τ

/fν

in the form rν
−τ

ν = lτ
∏

i ̸=τ (li − lτ + 1)/(li − lτ )
[76] The dimension of the irreducible representation Uν(d) reads fν(d) =

∏
1⩽i<j⩽d(νi − νj+ j −

i)/( j − i), with νi ≡ 0,∀i > l(νi) (Weyl dimension formula). In particular, f(.)(d) = 1 [(.)
is the empty partition of length 0 and U (.)(d) is the trivial representation], f(1)(d) = d, and
f(N)(d) =

(N+d−1
N

)
,∀N> 0. The number fν(d) can also be expressed in the form fν(d) =

sν(1, . . . ,1), where (1, . . . ,1) is a d-uple and sν(x1, . . . ,xd) is the Schur’s polynomial in the d
variables x1, . . . ,xd associated to partition ν (an homogeneous symmetric polynomial of degree
|ν|, with |ν| the weight of ν) [65]

[77] The irreps of the subgroups Si (1⩽ i < N) a Schur basis vector |ν,Tν ,Wν⟩ belongs to are given by
the shapes of the SYT Tν restricted to only boxes 1 to i. Similarly, the irreps of the subgroups
U(k) (1⩽ k< d) the vector |ν,Tν ,Wν⟩ belongs to are given by the shapes of the SWT Wν

restricted to only boxes 0 to k− 1
[78] Vilenkin N J and Klimyk A U 1992 Representation of Lie Groups and Special Functions vol

1–3 (Kluwer Academic Publishers)

[79]
√
fνPσ[F̂

(Wν ,W ′
ν)

ν ] =
∑

λ,Tλ,Wλ

∑
λ′,T ′

λ′,W
′
λ′

∑
Tν

|λ,Tλ,Wλ⟩⟨λ,Tλ,Wλ|P̂σ|ν,Tν ,Wν⟩

⟨ν,Tν ,W ′
ν |P̂†

σ|λ′,T ′
λ′ ,W

′
λ′⟩⟨λ′,T ′

λ′ ,W
′
λ′ |=

∑
ν,Tν ,T ′

ν ,Tν
|ν,Tν ,Wν⟩⟨Tν |σ̂|Tν⟩⟨Tν |σ̂†|T ′

ν⟩

⟨ν,T ′
ν ,W

′
ν |=

√
fν F̂

(Wν ,W ′
ν)

ν , with σ̂ and |Tν⟩ the representation operators and GT-basis states
in the Sν -irrep of the symmetric group SN, respectively

[80] Hence, replacing F̂
(Wν ,W ′

ν)
ν and F̂

(W ′
ν ,Wν)

ν by (F̂
(Wν ,W ′

ν)
ν + F̂

(W ′
ν ,Wν)

ν )/
√
2 and i(F̂

(Wν ,W ′
ν)

ν −
F̂
(W ′

ν ,Wν)
ν )/

√
2, ∀ν ⊢ (N,d), Wν ,W ′

ν ∈Wν :Wν ̸=W ′
ν , yields together with the operators

F̂(Wν ,Wν)
ν an orthonormal basis of PI Hermitian operators in the commutant LSN(H). In addi-

tion, having Tr[F̂
(Wν ,W ′

ν)
ν ] =

√
fνδWν ,W ′

ν
, an orthogonal basis in the subspace of traceless PI

Hermitian operators is straightfowardly obtained by further replacing all but one operators
F̂(Wν ,Wν)
ν by traceless linear combinations of them

[81] The structure constant of the commutant operator algebra follows immediately:

F̂
(Wλ,W ′

λ)

λ F̂
(Wµ,W ′

µ)
µ =

∑
ν,Wν ,W ′

ν
c
ν,Wν ,W ′

ν

λ,Wλ,W ′
λ
;µ,Wµ,W ′

µ
F̂
(Wν ,W ′

ν)
ν , with

√
fλc

ν,Wν ,W ′
ν

λ,Wλ,W ′
λ
;µ,Wµ,W ′

µ
=

δλ,µδλ,νδW′
λ
,Wµ

δWλ,Wν δW′
µ,W ′

ν

[82] The product of two ν-type operators is a ν-type operator and so is the Hermitian conjugate of a ν-
type operator: each operator subspaceLν(H) is a ∗-algebra of operators onH and a subalgebra
of the commutant LSN(H)

[83] The diagram or shape of a partition ν ≡ (ν1, . . . ,νl) ⊢ N is an array of N boxes arranged on l left-
justified rows, with row i (1⩽ i ⩽ l) containing ν i boxes. The shape of a partition ν is usually
denoted by the same symbol ν. An inner corner of a shape ν is a box ∈ ν whose removal leaves
us with a valid partition shape. An outer corner of ν is a box /∈ ν whose addition produces a
valid partition shape

[84] Having
∑

λ− fλ
−
= fλ, we get in particular K(λ,Wλ,W̃λ)

1̂
= NδWλ,W̃λ

, so that equation (32)

yields as expected from definition K1̂,1̂[F̂
(Wν ,W ′

ν)
ν ] = NF̂

(Wν ,W ′
ν)

ν . A similar expression as

equation (32) is also directly obtained for the operator K1̂,Ŷ[F̂
(Wν ,W ′

ν)
ν ] using the equality

K1̂,Ŷ[F̂
(Wν ,W ′

ν)
ν ] =KŶ,1̂[F̂

(W ′
ν ,Wν)

ν ]†
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2 L̂
†L̂ρ̂− 1

2 ρ̂L̂
†L̂, so that if L̂ is Hermitian, then D†

L̂
=DL̂
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