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Abstract
In Bohmian mechanics, the nodes of the wave function play an important role
in the generation of chaos. However, so far, most of the attention has been on
moving nodes; little is known about the possibility of chaos in the case of
stationary nodes. We address this question by considering stationary states,
which provide the simplest examples of wave functions with stationary nodes.
We provide examples of stationary wave functions for which there is chaos,
as demonstrated by numerical computations, for one particle moving in
three spatial dimensions and for two and three entangled particles in two
dimensions. Our conclusion is that the motion of the nodes is not necessary for
the generation of chaos. What is important is the overall complexity of the
wave function. That is, if the wave function, or rather its phase, has a complex
spatial variation, it will lead to complex Bohmian trajectories and hence to
chaos. Another aspect of our work concerns the average Lyapunov exponent,
which quantifies the overall amount of chaos. Since it is very hard to evaluate
the average Lyapunov exponent analytically, which is often computed
numerically, it is useful to have simple quantities that agree well with the
average Lyapunov exponent. We investigate possible correlations with
quantities such as the participation ratio and different measures of entangle-
ment, for different systems and different families of stationary wave functions.
We find that these quantities often tend to correlate to the amount of chaos.
However, the correlation is not perfect, because, in particular, these measures
do not depend on the form of the basis states used to expand the wave
function, while the amount of chaos does.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A dynamical system is chaotic if it displays high sensitivity to initial conditions. In classical
mechanics, this manifests itself by an exponential divergence of initially nearby trajectories in
phase space. In quantum mechanics, the unitary evolution of the wave function preserves
distances in Hilbert space and therefore prevents high sensitivity to initial conditions, so that
there is no chaos in this sense. Instead, quantum chaos refers to other generic features of
quantum systems, such as energy spectra exhibiting level repulsion or ergodic eigenstates [1].
For example, quantum systems whose classical limit is chaotic display those signatures of
quantum chaos. This paper does not concern quantum chaos, but rather chaos appearing in the
framework of Bohmian mechanics. Bohmian mechanics is an alternative to standard quantum
mechanics which describes actual point-particles moving under the influence of the wave
function [2–5]. Since there are actual trajectories, one can investigate their chaotic properties
in the same way as in classical mechanics, bearing in mind that for Bohmian mechanics the
relevant dynamical space is configuration space instead of phase space [6, 7]. There is a large
body of literature on chaos in Bohmian mechanics, see e.g. [8, 9] for an overview. In
particular, it has been shown that chaos can be obtained for a Bohmian system even though
the corresponding classical system exhibits no chaos [9–12]. This is not so surprising, con-
sidering the fact that in Bohmian mechanics the dynamics is entirely determined by the wave
function. Even though the (quantum) Hamiltonian determines the evolution of the wave
function, the wave function generically leads to a chaotic dynamics for the point-particles.
It has also been shown that Bohmian chaos does not necessarily correspond to quantum
chaos [13, 14]. The study of chaos provides further insight into the nature of the Bohmian
trajectories, which is particularly important in view of the fact that the details of the Bohmian
trajectories can be revealed by experiments [15, 16]. Establishing chaos usually also implies
ergodicity, which means uniqueness of the quantum equilibrium distribution. This adds
further evidence for its use as a measure of typicality [17, 18].

Previous studies have shown that nodes of the wave function (i.e., points where the wave
function is zero) play an important role in the generation of chaos [13, 19–28]. In particular,
the amount of chaos usually tends to increase with the number of nodes [19, 24]. Perhaps the
most detailed study is in [13, 25, 26, 28]. There it was shown that for 2d systems, the presence
of a so-called X-point near the node gives rise to chaos [13, 25, 26]. Most of these works
concern the study of moving nodes. Little is known about the presence of chaos in the case of
stationary nodes.

The aim of the paper is to further investigate the generation of chaos in the case of
stationary nodes. The simplest examples of wave functions with stationary nodes are sta-
tionary states, i.e., wave functions of the form y f= -x t x, e Eti( ) ( ) (since the density y 2∣ ∣ is
stationary the nodes must be stationary as well)4. We show with various examples (con-
cerning different Hamiltonians and wave functions) that motion of the nodes is not necessary
to generate chaos (contrary to what seems to be claimed in [23]). More precisely, we give
examples of stationary wave functions for which numerical simulations show that the Boh-
mian dynamics is chaotic (as quantified by the maximal Lyapunov exponent) for one particle

4 It might be possible to have a non-stationary state which admits stationary nodes. It would be interesting to see if
such states allow for chaotic motion. We have found no example of such a wave function. For this question, we
considered the Coulomb potential for which the excited energy eigenstates all have a node at the origin. However, we
were unable to find a superposition of such states that has no other nodes.
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moving in a harmonic potential in 3 spatial dimensions in section 4, and for two and three
entangled particles in a 2d square box and in a 2d harmonic potential respectively in
sections 5 and 6. This shows that the nodes do not need to move in order to generate chaos.
What is important is the overall complexity of the wave function, or rather its phase. Since the
Bohmian velocity is proportional to the gradient of the phase, a phase which has a complex
variation over space will determine a complex velocity field and hence a complex dynamics,
possibly leading to chaotic motion.

Stationary states were considered before in a number of papers [19, 29, 30]. In [29, 30],
examples of 4d systems were considered (corresponding to two particles in 2d) for which
there is chaos. It was argued that chaos was not possible for a stationary state in 3d [29].
However, as we will explain in section 2, the argument in [29] is not correct. This will also be
illustrated by the examples in section 4. Since a stationary state leads to an autonomous
Bohmian dynamics, the Poincaré–Bendixson theorem5 implies that the lowest possible
dimension for which chaos is possible for a stationary state is three (see section 2). In [19], it
was claimed that a particular stationary state for a particle in 3d yields chaos in certain regions
of configuration space. However, as we explain in section 2, this claim is unfounded as in this
case, there are constants of motion which make the motion regular.

On the other hand, moving nodes are of course no guarantee for chaos either. In
section 3, we give some simple examples.

Another aspect of our work concerns the average Lyapunov exponent, which quantifies
the overall amount of chaos. Since it is very hard to evalute the average Lyapunov exponent
analytically, which is often computed numerically, it is useful to have simple quantities that
agree well with the average Lyapunov exponent. In sections 4 and 6, we compare the average
Lyapunov exponent with the participation ratio (PR). The PR, defined in section 2.4, mea-
sures how much a state is ‘delocalized’ in a given basis, i.e., from how much basis states the
state is made up. Clearly, generically, the more terms in a superposition, the more complex
the Bohmian motion and hence the more possibility of chaos. The PR is a widely used
measure of delocalization of wave functions in the context of quantum chaos [31]. A quantum
chaotic system will typically be characterized by an ergodic wave function with large PR,
increasing linearly with the system size (dimension of the Hilbert space). In section 6, we also
compare the average Lyapunov exponent to different measures of entanglement. We consider
the Meyer–Wallach measure of entanglement, the geometric measure of entanglement and the
three-tangle, which we recall in section 2.4. For separable (i.e., non-entangled) states, the
dynamics of the different particles is decoupled and thus the possibility of chaos is the same
as in the single-particle case. Hence, entanglement usually increases the complexity of the
Bohmian dynamics.

We find that these measures often tend to relate to the amount of chaos. However, there
are shortcomings of these measures. For starters, these measures do not depend on the form of
the basis states used to expand the wave function, while the amount of chaos does. In
addition, the PR does not depend on the relative phases that appear in the coefficients of the
expansion terms in that basis.

In appendix A, we give details about how we quantify chaos as well as how we compute
the Lyapunov exponent. In appendix B, we recall the energy eigenstates for the considered
systems.

5 The Poincaré–Bendixson theorem states that if a trajectory is confined to a closed, bounded region of the plane,
with no fixed points, then it must approach a closed orbit, hence it cannot be chaotic.
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2. General considerations

For simplicity, we put the masses and charges of the particles as well as ÿ equal to one.

2.1. Bohmian mechanics

Bohmian mechanics describes actual point-particles moving under the influence of the wave
function [2–5]. Denoting the particle positions by xk , k = 1,K, n, and the configuration by
=x x x,..., n1( ), the dynamics is given by the guidance equation

= yx

t
v x t

d

d
, , 1( ) ( )

where the velocity field = ¼y y yv v v, , n1( ) is given by

⎛
⎝⎜

⎞
⎠⎟I

 y
y

 = =y x t
m

x t

x t m
S x tv ,

,

,
, , 2k

k

k

k
k( ) ( )

( )
( ) ( )

with y y= e Si∣ ∣ and mk the mass of the kth particle. The wave function ψ satisfies the usual
Schrödinger equation. This theory reproduces the predictions of standard quantum theory
provided that for an ensemble of systems all with the same wave function, the particle
configuration is distributed according to y x, 0 2∣ ( )∣ . This will be the case for typical initial
configurations of the Universe [4, 5].

2.2. Stationary states

If the spectrum is non-degenerate then the energy eigenstates can be chosen real and the
Bohmian particles do not move (since then S = 0). So in order to allow for chaos we need to
consider a degenerate spectrum. We will consider stationary superpositions of the form

åy f f= =- -tx x x, e e , 3Et Et

i
i

i i( ) ( ) ( ) ( )

where the energy eigenstates fi are eigenstates of a complete set of commuting observables so
that they constitute an orthonormal basis of the Hilbert space.

We will consider two types of states fi. The first type is of the form

f = f x g y h zx , 4( ) ( ) ( ) ( ) ( )
with = x y zx , ,( ) and f, g and h real functions. Such states will be considered for the 3d
harmonic oscillator (fn n n, ,

3d
x y z

). We will also consider systems in 2d such as the particle in a 2d-

box (fn n,
box

x y
) and the 2d harmonic oscillator (fn n,

2d
x y

). In that case the z-coordinate should be
dropped. The second type is of the form

f q= jf r gx e , 5mi( ) ( ) ( ) ( )
where q jr, ,( ) are spherical coordinates, with θ the polar angle and j the azimuthal angle,
and f and g real. These states are eigenstates of the angular momentum operator = - ¶fL iz

with eigenvalue m. Such states will be considered for the 3d harmonic oscillator (fk l m, ,
sph ). The

explicit expressions of the states are given in appendix B. In terms of spherical coordinates
the guidance equation reads

q
q

j
q j

=
¶
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For systems in two dimensions and using polar coordinates jr,( ), one should put q p= 2,
like for the 2d harmonic oscillator (fn n,

pol
r l

).

2.3. Constants of motion

For chaotic motion to be possible, the number of dimensions needs to be at least 3. This
follows from the Poincaré–Bendixson theorem [32]. For a non-stationary dynamics this
number needs to be at least 2 (since such a dynamics is equivalent to a stationary one by
introducing an independent variable τ, treating time as a dependent variable tt ( ) and intro-
ducing the equation of motion t =td d 1). For a stationary wave function the velocity field is
stationary too. Hence for such a state we need at least 3 spatial dimensions for chaos to be
possible.

Constants of motion reduce the effective number of degrees of freedom. For example, for
states of the form (5), the phase does not depend on r and θ and hence the guidance
equation (6) implies that r and θ are constant. The only effective degree of freedom is j. The
possible trajectories are circles [3] and there is no chaos.

There are a couple of types of constant of motion that we will encounter. The first type
arises for a superposition of the form

y c c¼ = ¼ + ¼x x t f x g x x x t f x g x x x t, , , , , , , , , , 7n n n1 1 1 1 2 1 3 2 1 2 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

with ¼x x, , n1 Cartesian coordinates, and where fi and gi, i = 1, 2, are real. For such a wave
function, the guidance equations for x1 and x2 are of the form

I I* *c c

y

c c

y
= ¶ - ¶ = ¶ - ¶

x

t
f f f f g g

x

t
g g g g f f

d

d
,

d

d
. 8x x x x

1
1 2 2 1 1 2

1 2
2

2
1 2 2 1 1 2

1 2
21 1 2 2

( )
( )
∣ ∣

( )
( )
∣ ∣

( )

Dividing these velocity components and separating the variables x1 and x2, we obtain

=f x
x

t
g x

x

t

d

d

d

d
, 91

1
2

2( ) ( ) ( )

with

=
¶ - ¶

=
¶ - ¶

f
f f

f f f f
g

g g

g g g g
, . 10

x x x x

1 2

1 2 2 1

1 2

1 2 2 11 1 2 2

( )

Integration over time yields the constant of motion

= -C x x F x G x, , 111 2 1 2( ) ( ) ( ) ( )
with =F x x f xd d1 1 1( ) ( ) and =G x x g xd d2 2 2( ) ( ).

In [19], two energy eigenstates of the form f f+ in n n n n n, ,
box

, ,
box

x y z y z x
where considered for a

particle in a square box. It was claimed that for =n n n, , 3, 2, 1x y z( ) ( ), the dynamics was
regular, while for =n n n, , 103, 102, 101x y z( ) ( ), the dynamics was chaotic in certain
regions. However, there are two independent constants of motion of the form (11) which
depend on different pairs of coordinates, so that there is only one effective degree of freedom
and there cannot be chaos, regardless of the choice of quantum numbers n n n, ,x y z( ).

For spherical coordinates, we can have similar constants of motion (examples are found
in [33]). For example, consider a superposition of the form

y q j q j q c j q c j¼ = ¼ + ¼r r t f r g t f r g t, , , , , , , , , , , , 12n n n1 1 1 1 1 1 1 1 1 2 1 2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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where fi and gi are real, i = 1, 2. The guidance equations for r1 and q1 are of the form

I I* *c c

y
q c c

y
= ¶ - ¶ = ¶ - ¶q q

r

t
f f f f g g

t r
g g g g f f

d

d
,

d

d

1
.

13

r r
1

1 2 2 1 1 2
1 2

2
1

1
2 1 2 2 1 1 2

1 2
21 1 1 1

( )
( )
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( )
( )
∣ ∣

( )

In this case, there is the constant of motion

q q= -C r F r G, , 141 1 1 1( ) ( ) ( ) ( )

with =F r r f rd d1 1 1( ) ( ) and q q q=G gd d1 1 1( ) ( ), and

=
¶ - ¶

=
¶ - ¶q q

f
r

f f

f f f f
g

g g

g g g g

1
, . 15

r r1
2

1 2

1 2 2 1

1 2

1 2 2 11 1 1 1

( )

Finally, consider a superposition of the form

y c
c
c

¼ = ¼
+ ¼
+ ¼

x x t f x f x f x x x t

f x f x f x x x t

f x f x f x x x t

, , , , , ,

, , ,

, , , , 16

n n

n

n

1 1 1 2 2 2 3 1 4

2 1 1 2 2 3 2 4

2 1 2 2 1 3 3 4

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

with ¼x x, , n1 Cartesian coordinates, and where f1 and f2, are real. One can show similarly as
above that there is the constant of motion

= + +C x x x F x F x F x, , , 171 2 3 1 2 3( ) ( ) ( ) ( ) ( )

with =F x x f xd d( ) ( ) and

=
¶ - ¶

f
f f

f f f f
. 18

x x

1 2

1 2 2 1

( )

It is often reported that for a stationary state, the energy of the Bohmian particles

 å= + +
y

x t
x t

V x Q x t
v

,
,

2
, 19

k

k
2

( )
∣ ( )∣

( ) ( ) ( )

is a constant of motion, see e.g. [29, 30]. The quantity V is the usual potential energy and Q is
the quantum potential, defined as y y= -å Q 2k k

2∣ ∣ ∣ ∣. It appears as an extra potential in
Newtonʼs equation

= - +
t

V Q
xd

d
, 20k

k

2

2
( ) ( )

which follows from taking the time derivative of the guidance equation. Along a trajectory,
we have that  = ¶ ¶t Q td d , so that  is generically not conserved. For a stationary state
y f= -x t x, e Eti( ) ( ) it is conserved, since y∣ ∣ and hence Q are time-independent. However,
we also have that  takes the same value for all possible trajectories, namely  = E . Hence
this is a trivial constant of motion and it does not reduce the effective number of degrees of
freedom. Therefore the Poincaré–Bendixson theorem does not exclude the possibility of
chaos. In section 4, we will provide some examples of stationary states in 3d that lead to
chaos.
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2.4. Participation ratio and measures of entanglement

In this section, we present simple quantities which we will compare to the average Lyapunov
exponent later on.

First, given a decomposition y f= å = ci
N

i i1 in an orthonormal basis fi, i = 1,K,N, the
participation ratio (PR) [34] is defined by

å å
y

f y
= =

= =
c

PR
1 1

. 21

i

N
i i

N
i1

4
1

4
( )

∣⟨ ∣ ⟩∣ ∣ ∣
( )

It quantifies the number of basis states on which the state ψ is delocalized. The PR is equal to
1 when ψ is a basis element fi and takes the maximum value N when ψ is an equally weighted
superposition of all the basis states.

For many-particle systems, entanglement will couple the dynamics of the different
particles. So the entanglement will generically play a role in the generation of chaos. Here, we
will consider three measures of entanglement: the Meyer–Wallach measure (Q), the geometric
measure (EG) and the three-tangle (t3). For 3-qubit states, the Meyer–Wallach measure of
entanglement y ÎQ 0, 1( ) [ ] is defined as [35]

åy r= -
=

Q
1

3
2 1 tr , 22

k
k

1

3
2( ) ( ) ( )

with rk the reduced density matrix for the kth qubit. It is the average of the linear entropies
r- 2 1 tr k

2( ) of each qubit [35].
The geometric measure of entanglement y ÎE 0, 1G ( ) [ [ is defined as [36]:

y f y= -
f

E 1 max , 23G
sep.

2( ) ∣⟨ ∣ ⟩∣ ( )
∣ ⟩

where the maximum is taken over all possible separable (i.e. non-entangled) states. It can be
interpreted as the distance of a state y∣ ⟩ to the set of separable states.

For a three-qubit state

åy =
=

c ijk , 24
i j k

ijk
, , 0,1

∣ ⟩ ∣ ⟩ ( )

with ijk∣ ⟩ the basis states, the three-tangle is defined as [37]:

t y = - +d d d4 2 4 , 253 1 2 3( ) ∣ ∣ ( )

with

= + + +
= + +

+ + +
= +

d c c c c c c c c
d c c c c c c c c c c c c

c c c c c c c c c c c c
d c c c c c c c c

,

,
.

1 000
2

111
2

001
2

110
2

010
2

101
2

100
2

011
2

2 000 111 011 100 000 111 101 010 000 111 110 001

011 100 101 010 011 100 110 001 101 010 110 001

3 000 110 101 011 111 001 010 100

It can be interpreted as the amount of entanglement between one qubit and the remaining two
qubits not accounted for by the amount of entanglement between pairs of qubits. All these
entanglement measures vanish if the state ψ is separable. Conversely, when the measure
vanishes this implies that the state ψ is separable in the case of the first two measures, but not
in the case of the three-tangle.
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3. States with moving nodes and no chaos

As we will show in the next section, one can have wave functions with stationary nodes that
give rise to chaotic Bohmian trajectories. Conversely, having (arbitrarily many) moving
nodes is no guarantee for chaos, as we will illustrate here with some examples. A more
complex mechanism is required, as for example discussed in [25, 26] for two-dimensional
systems.

In one spatial dimension, a non-stationary state will generically have moving nodes, but
the Bohmian motion will not be chaotic due to the Poincaré–Bendixson theorem.

For two or three dimensions, consider the superposition of two stationary states of the
form

y f f= +- -t c cx x x, e e , 26E t E t
1

i
1 2

i
2

1 2( ) ( ) ( ) ( )

where the ci, i = 1, 2, are complex numbers and where the fi are of the form (4), i.e. a real
function that is separable in the Cartesian coordinates. Such states generically have moving
nodes (considering states fi with different energies). However, there are two constants
of motion of the type (11) in the case of three dimensions and one in the case of two-
dimensions. These constants of motion reduce the effective number of degrees of freedom so
that, again as a consequence of the Poincaré–Bendixson theorem, the Bohmian motion can
not be chaotic.

For the final example, consider again superpositions of the form(26), but now with the fi
of the form (5), i.e., f q j q= jr f r, , , ei i

mi i( ) ( ) , with the fi real. The number of nodes of the
functions fi grows with the energy. As such, we could construct states with an arbitrary
number of moving nodes. These nodes move in circles around the z-axis with a constant
angular velocity. This is because the state becomes stationary in a rotating frame, with angular
frequency

w =
-
-

E E

m m
. 271 2

2 1
( )

Namely, if we introduce the variable j j w¢ = + t, then the state (26) reads

y q j y q j q q= ¢ ¢ = +w j j- + + ¢ ¢ -r r t c f r c f r, , , , , e , , e . 28E m t m m mi i
1 1 2 2

i1 1 1 2 1( ) ( ) ( ( ) ( ) ) ( )( ) ( )

So in the rotating frame the state is stationary and the Bohmian motion reduces to the
autonomous dynamics

q
q

j
q j

w=
¶ ¢
¶

=
¶ ¢
¶

¢
=

¶ ¢
¶ ¢

+
r

t

S

r t r

S

t r

Sd

d
,

d

d

1
,

d

d

1

sin
, 29

2 2 2
( )

where ¢S is the phase of y¢. In two dimensions this implies that the Bohmian motion can not
be chaotic because of the Poincaré–Bendixson theorem (as was noted before in [38]). The
same conclusion holds for three dimensions since in this case there is also a constant of
motion of the form (14) for r and θ.

4. Single particle in 3d

We have already mentioned that for a stationary state in 2d, the motion can not be chaotic.
Therefore we need to consider at least three dimensions. We will consider stationary
superpositions y f f= = å- -e eEt Et

i i
i i of three and four orthogonal degenerate energy

eigenstates fi of the form (4) or (5). As shown in the previous section, there is no chaos for
superpositions of only two such states.
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4.1. Superposition of three eigenstates: examples of chaotic motion

For the harmonic oscillator we can consider the complete set of energy eigenstates
f x y z, ,n n n, ,

3d
x y z

( ), see(65), or f q jr, ,k l m, ,
sph ( ), see(67). These states are respectively of the

form (4) and (5). For each choice, we will consider a superposition of three states that gives
rise to chaotic Bohmian motion.

As a first example, consider the superposition

f q j f q j f q j f q j= + +p pr r r r, , , , e , , e , , 30sph
0,3,1
sph i 3

0,3,0
sph i 7

1,1,0
sph( ) ( ) ( ) ( ) ( )

with energy 9/2. This state has nodal lines, which are however difficult to find analytically.
Figure 1 illustrates a typical Bohmian trajectory for this wave function. The trajectory starting
outside the bulk of the wave packet moves towards it and eventually moves inside it. The
Poincaré section in the plane z = 0 shown on the middle panel of figure 1 indicates that the
dynamics is not regular. This is confirmed by the Lyapunov exponent »h 0.06 (see the right
panel of figure 1).

Figure 1. (a) Bohmian trajectory for a particle with wave function (30) and initial
position q j = -r, , 6.6969, 2.386 96, 0.249 865( ) ( ). (b) Poincaré section in the plane
z = 0. (c) Evolution of h Tx ,0( ) as a function of time for the trajectory depicted in a( ).

Figure 2. (a) Bohmian trajectory for a particle with wave function (31) and initial
position º = - -x y zx , , 2.212 756, 1.974 66, 0.179 9630 ( ) ( ). It spirals around the
nodal lines, which are plotted in red (gray in grayscale). (b) Poincaré section in the
plane z = 0. (c) z-component of the trajectories starting at x0 (black) and

+ -x 0, 10 , 00
6( ) (red dashed). The divergence is exponential. However, since the

Lyapunov exponent is 0.06, this becomes visible to the naked eye only at
around t = 300.
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As a second example, consider now the stationary state

f f f f= + +p px y z x y z x y z x y z, , , , e , , e , , , 313d
1,1,1
3d i 3

3,0,0
3d i 7

1,2,0
3d( ) ( ) ( ) ( ) ( )

which also has energy 9/2. In this case there is a nodal plane at x = 0. In the limit of x going
to zero, the velocity does not blow up but rather becomes tangential to the plane x = 0. The
Bohmian trajectories do not cross this plane, they tend to be repelled by it. The other nodal
lines are given by

⎜ ⎟ ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭

p p

p
p

p p

=  + - ¹

+
=

- -

x y z x y y

y z
y

y

, , :
3

2
sin

7
2 sin

7
, 0,

1

2

3 2 sin 7

sin 7
,

1 2 3 cos 7 3 sin 7

6 2
. 32

2

2

( )

∣ ∣ ( )
( )

( )[ ( ) ( )] ( )

These nodal lines end in the plane x = 0. A typical Bohmian trajectory for this system is
illustrated in figure 2. The trajectory first spirals around a nodal line. When the particle arrives
at the end of the nodal line, the trajectory continues freely until it reaches the vicinity of
another nodal line. Such behavior has been reported before [19, 22]. Most of the Poincaré
section in the plane z = 0 is composed of regions where the points look randomly distributed
which constitutes a strong clue that the motion is chaotic. This is confirmed by the calculated
Lyapunov exponent which is again approximately equal to 0.06. The right panel of figure 2
illustrates the exponential divergence of two initially close trajectories.

4.2. Chaos and participation ratio

We have shown that the Bohmian trajectories of 3d systems with stationary states may be
chaotic. We now study the effect of the particular form of the wave function on the amount of
chaos. We will consider the harmonic oscillator and stationary wave functions of the form

åf a b a b f=
=

cx x; , , , 33
i

i k l m
1

4

, ,
sph

i i i
( ) ( ) ( ) ( )

where a b a= c bc c, ei i
i i( ) ∣ ( )∣ ( ), so that the amplitude and the phase of the coefficients ci are

functions of respectively α and β. The quantum numbers k l m, ,i i i are chosen such that
f a bx; ,( ) is a stationary state. We also assume the states to be normalized (i.e.,å =c 1i i

2∣ ∣ ).
While this does not affect the Bohmian velocity field, it will be important when considering
the PR. In order to quantify the amount of chaos, we compute the average Lyapunov
exponent h̄ over 150 different initial positions, uniformly distributed in a cube of edge length
10 centered around the origin. The trajectories used in the determination of the Lyapunov
exponent were computed from t = 0 to = ´t 5 104.

Consider first the states

f a b a a f a f

a f a f

= +

+ +

b p

p b p b p

+

+
-

- +

x x x

x x

; , cos e sin

e cos e sin , 34

1,3,0
sph i 3

1,3,1
sph

i 2 cos 5 2
2,1, 1
sph i 2 7 2

2,1,0
sph

( ) ( )[ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )] ( )

( )

( ( ) ) ( )

with a pÎ 0, 2[ ], b pÎ 0, 2[ ] and  a( ) a normalization constant. The energy of these
states is 13/2.
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Taking b = 0, so that the phases of the coefficients are fixed, we have

f a a a f a f

a f a f

= +

+ +

p

p p
-

x x x

x x

; , 0 cos e sin

e cos e sin . 35

1,3,0
sph i 3

1,3,1
sph

i 5 2
2,1, 1
sph i 7 2

2,1,0
sph

( ) ( )[ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )] ( )

Figure 3(a) shows the average Lyapunov exponent as a function of α. For a = 0 and
a p= 2, f ax; , 0( ) is a superposition of only two eigenstates and thus the Bohmian
trajectories are regular, see section 2.3. This agrees with the calculated value of h̄ which is
zero. h̄ is maximum around a p= 10 and then decreases as α increases.

In order to investigate the effect of the choice of eigenstates in f a bx; ,( ) on the chaotic
behavior of the Bohmian trajectories, we also compute the average Lyapunov exponent for
the stationary state

Figure 3. (a) and (b) Average Lyapunov exponent h̄ as a function of α for Bohmian
trajectories for respectively the states f ax; , 0( ) of energy 13/2 and f a¢ x; , 0( ) of
energy 17/2. The average h̄ is performed over 150 initial positions. The error bars
correspond to the standard deviation of the Lyapunov exponent over different
trajectories. (c) h̄ as a function of β for the state f p bx; 4,( ). (d) Participation ratio as
a function of α for the states f ax; , 0( ) and f a¢ x; , 0( ).
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f a a a f a f

a f a f

¢ = +

+ +

p

p p

-x x x

x x

; , 0 cos e sin

e cos e sin , 36

2,3,2
sph i 3

2,3, 1
sph

i 5 2
3,1,1
sph i 7 2

3,1,0
sph

( ) ( )[ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )] ( )

which has energy 17/2. This state differs from f ax; , 0( ) only in the quantum numbers of
the four eigenstates in terms of which it is constructed. Figure 3(b) shows the average
Lyapunov exponent for some values of α. Just as before, for a = 0 and a p= 2, h̄ should
vanish. For f a¢ x; , 0( ), h̄ reaches the maximal value approximately equal to 0.2
near a p= 4.

Although the states f ax; , 0( ) and f a¢ x; , 0( ) have the same coefficients in their
decomposition in the basis of eigenstates of the harmonic oscillator, the evolution of the
average Lyapunov exponent is significantly different. For both wave functions, h̄ takes a
maximum value of around 0.2 but for a different value of α. So, in particular, a small increase
of the energy of the wave function does not necessarily lead to a greater amount of chaos in
the Bohmian trajectories. For instance, one can see by comparing figures 3(a) and (b) that for
a p= 10, h̄ is more than twice as high for f ax;( ) as for f a¢ x; , 0( ), even though the
energy of the latter wave function is higher. When a p= 4 this situation is reversed.

In order to bring to light the effect of the choice of phases of the coefficients, we consider
the states f p bx; 4,( ), where the amplitudes of the coefficients are fixed and the phases may
vary. Figure 3(c) illustrates the average Lyapunov exponent for some values of the parameter
β. The average Lyapunov exponent takes values between 0.07 and 0.16. Thus, h̄ is quite
sensitive to the choice of the relative phase of the coefficients. The dependence on β also
looks rather complicated.

Let us now compare the average Lyapunov exponent with the PR(21). It is immediately
clear that the PR has two shortcomings, which make that it can not agree perfectly with the
average Lyapunov exponent. First, the PR does not depend on the particular form of the basis
states. Therefore, it takes the same value for the wave functions f ax; , 0( ) and f a¢ x; , 0( )
(see (34) and (36)). Figure 3(d) shows the PR for these states as a function of α. The PR
shows a good qualitative agreement with the average Lyapunov exponent h̄ for the wave
function f a¢ x; , 0( ), but a bit less so for f ax; , 0( ). For both f ax; , 0( ) and f a¢ x; , 0( ), the
PR reaches a minimum for a = 0 and a p= 2, just as h̄ (whose theoretical value is zero).
The PR has a maximum at a p= 4 as does the average Lyapunov exponent for the wave
function f a¢ x; , 0( ). However, for the wave function f ax; , 0( ) the maxima of h̄ and the PR
do not coincide. And while the PR is symmetric around a p= 4, like h̄ for f a¢ x; , 0( ), h̄ for
f ax; , 0( ) is not.

The second shortcoming of the PR is that it does not depend on the phases of the
coefficients ci. As we have seen, with the wave functions f p bx; 4,( ), the amount of chaos
strongly depends on the value of the phases, see figure 3(c).

Therefore, in order to characterize the amount of chaos in Bohmian trajectories, a simple
measure of superposition such as the PR is not enough. One needs to take into account the
particular form of the eigenstates that appear in the superposition as well as their relative
phases, since both influence the complexity of the wave function. Nevertheless, generically,
the PR gives the general trend of the value of the Lyapunov exponent.

5. Two-particle systems

In this section we study the Bohmian trajectories of systems of two particles whose wave
functions are stationary entangled states. We focus our attention on 2d systems. Our interest
lies of course with entangled states, since for such states the motion of one particle depends
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on the position of the other particle, unlike for a separable state. We give three examples of
wave functions for which there is chaotic motion.

5.1. Superpositions with two single-particle basis states

Using two single-particle basis states f1 and f2, the most general two-particle state reads

f f f f f f f f f= + + +c c c cx x x x x x x x x x, 372
2p

1 2 1 1 1 1 2 2 1 1 2 2 3 2 1 1 2 4 2 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

where the superscript denotes the number of particles and the subscript the number of single-
particle basis states involved in the superposition. For states f x y,i ( ) of the form(4) there are
two constants of motion of the form (11) (even for a non-stationary superposition)6, so that
the effective number of degrees of freedom is 2 and no chaos is possible.

Consider states of the form (37), but now with the f jr,i ( ) of the form(5)). Unlike the
case where they are of the form (4), such states generically do not seem to yield constants of
motion, so that chaotic motion may be possible. As an example, consider the harmonic
oscillator with single-particle energy eigenstates f jr,n n,

pol
r l

( ), see(61), and the wave function

f f f f f

f f f f

= +

+ +

p

p p

x x x x x x

x x x x

, e

e e . 40

2
2p

1 2 1,1
pol

1 1,1
pol

2
i 3

1,1
pol

1 2,0
pol

2

i 5
2,0
pol

1 1,1
pol

2
i 7

2,0
pol

1 2,0
pol

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Figure 4 illustrates a typical set of trajectories for this system. The Lyapunov exponent takes a
value »h 0.17, which indicates chaos.

Figure 4. (a) Bohmian trajectories for a system of two particles for the entangled
wave function (40) and initial configuration = -x y x y, , , 2.371 66, 0.374 916,1 1 2 2( ) (
-0.522 219, 2.998 93). The black dashed curve corresponds to the trajectory of particle
1 and the red curve to that of particle 2. (b) Evolution of h Tx ,0( ) as a function of time
for the trajectory depicted in a( ).

6 This follows from the fact that one can write f2
2p in two different ways in the form (7), namely

f f f f f f f= + + +c c c cx x x x x x x x, 382
2p

1 2 1 1 1 1 2 2 2 2 2 1 3 1 2 4 2 2( ) ( )( ( ) ( )) ( )( ( ) ( )) ( )
and

f f f f f f f= + + +c c c cx x x x x x x x, . 392
2p

1 2 1 2 1 1 1 3 2 1 2 2 2 1 1 4 2 1( ) ( )( ( ) ( )) ( )( ( ) ( )) ( )
Since the f x y,i ( ) are of the form (4), there are two constants of motion of the form (11) for x y,1 1( ) and x y,2 2( ).
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5.2. Superpositions with 3 single-particle basis states

As we have seen in the previous section, stationary superpositions of only two single-particle
basis states f x y,i ( ) of the form(4) cannot give rise to chaos. For superpositions using three
such states, we show that chaos is possible. We give two examples for states of the form

f f f f f f f= + +c c cx x x x x x x x, , 413
2p

1 2 1 1 1 1 2 2 2 1 2 2 3 3 1 3 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

one for the harmonic oscillator and one for the square box. Generically such states do not
yield constants of motion.

As a first example, we consider the state

f f f f f f f= + +p pe e 423
2p

1,1
2d

1,1
2d i 3

2,0
2d

2,0
2d i 7

0,2
2d

0,2
2d ( )

for the 2d harmonic oscillator with the energy eigenstates fn n,
2d

x y
given in(59). Figure 5(a)

illustrates a typical pair of Bohmian trajectories for this system. Again, the trajectories start
outside the bulk of the wave packet move towards it and eventually move inside it. The
Lyapunov exponent is »h 0.08, so that the motion is chaotic.

As a second example, we consider the state

f f f f f f f= + +p pe e 433
2p

7,1
box

7,1
box i 3

1,7
box

1,7
box i 7

5,5
box

5,5
box ( )

for the 2d square box with the eigenstates fn n,
box

x y
given in(56). Figure 5(b) shows a typical set

of Bohmian trajectories for this system. We obtain the rather large value of around 25 for the
Lyapunov exponent. This example also illustrates the non-local character of Bohmian
mechanics. Although the particles are always in different regions of the box, their trajectories
strongly influence each other which allows chaotic motion (remember that for a 2d system
with stationary wave function, the Bohmian trajectories are always regular). Actually, the
amount of chaos would not change if we moved one particle in a box arbitrarily far away.

Figure 5. (a) and (b) Bohmian trajectories for a system of two particles respectively for
the entangled wave functions (42) and (43), and with initial configuration respectively
(x1, y1, x2, y2)=(3.298 67, 3.975 17, 3.156 79, −3.756 62) and (x1, y1, x2,
y2)= (0.666 891, 0.584 026, 0.193 745, 0.747 208). The black dashed curve
corresponds to the trajectory of particle 1 and the red curve to that of particle 2.
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6. Three-particle systems

In this section, we consider 3-particle systems in 2d and investigate the amount of chaos for
different entangled states.

6.1. Superpositions with 2 single-particle basis states

First we consider superpositions formed using two different single-particle states fi. These
states can be seen as three-qubit states. We focus our attention on the states

f f f f f f f= +c cx x x x x x x x x, , , 44GHZ
3p

1 2 3 1 1 1 1 2 1 3 2 2 1 2 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

f f f f f f f f f f= + +c c cx x x x x x x x x x x x, , ,

45
W
3p

1 2 3 1 1 1 2 2 2 3 2 2 1 1 2 2 3 3 2 1 2 2 1 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

which belong respectively to the Greenberger–Horne–Zeilinger (GHZ) and the W
entanglement classes [39].

For states f x y,i ( ) of the form (4), there are 5 independent constants of motion of the
form (11), for fGHZ

3p . The states fW
3p lead to 3 constants of motion of the form (11) for x y,1 1( ),

x y,2 2( ) and x y,3 3( ), and 2 of the form (17) for x x x, ,1 2 3( ) and y y y, ,1 2 3( ). In both cases, the
constants of motion make that there is no chaos, despite the entanglement. This remains true
even if the states are non-stationary (and thus have moving nodes).

For states f jr,i ( ) of the form (5), the state fGHZ
3p gives two independent constants of

motion of the form (11) for r r,1 2( ) and r r,2 3( ). If we introduce the variable
j j j j= + +1 2 3, then the wave function depends on this variable and r1, r2 and r3. So in
terms of the variables j j j r r r, , , , ,2 3 1 2 3, the Bohmian dynamics for j r r r, , ,1 2 3 is inde-
pendent ofj2 andj3. The two constants of motion imply that the dynamics forj r r r, , ,1 2 3 is
regular. Furthermore, the dynamics of j2 and j3 only depends on j r r r, , ,1 2 3, and therefore
there is no chaos.

Figure 6. Bohmian trajectories for a system of three particles in a 2d harmonic potential
for the entangled wave function (46) and initial configuration x0≡(x1, y1, x2, y2, x3,
y3)= (1.408 02, −3.0515, 0.977 66, 1.330 25, −1.971 814, 1.649 45). The black
dashed curve corresponds to the trajectory of particle 1, the red curve to that of particle
2 and the blue one to that of particle 3. (b) x3-component of the trajectories starting at
x0 (black) and + - -x 0, 10 , 10 , 0, 0, 0 20

6 6( ) (red dashed).
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For states f jr,i ( ) of the form (5), the state fW
3p leads to one constant of motion of the

type(17) for r r r, ,1 2 3( ) and trajectories can be chaotic. Indeed, consider the harmonic
oscillator and the state

f f f f f f f f f f= + +p pe e . 46W
3p

3,1
pol

4,0
pol

4,0
pol i 3

4,0
pol

3,1
pol

4,0
pol i 7

4,0
pol

4,0
pol

3,1
pol ( )

The Lyapunov exponent is approximately equal to 0.12, which indicates chaos. A particular
set of trajectories is shown in figure 6.

6.2. Superpositions with 3 single-particle basis states

In the previous section we have seen that the states (44) and (45) do not lead to chaos for
states using two states f x y,i ( ) of the form (4). Chaos is possible for states that are formed
using three such states. More precisely, we consider the states

f f f f f f f f f f= + +c c cx x x x x x x x x x x x, , .

47
3
3p

1 2 3 1 1 1 1 2 1 3 2 2 1 2 2 2 3 3 3 1 3 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

In the case of the harmonic oscillator, we consider

f f f f f f f f f f= + +p pe e . 483
3p

3,1
2d

3,1
2d

3,1
2d i 3

4,0
2d

4,0
2d

4,0
2d i 7

2,2
2d

2,2
2d

2,2
2d ( )

The Lyapunov exponent is approximately 0.19, so that there is chaos. Figure 7(a) shows a
particular set of trajectories for this system.

As a second example, consider the square box and the state

f f f f f f f f f f= + +p pe e 493
3p

5,5
box

5,5
box

5,5
box i 3

7,1
box

7,1
box

7,1
box i 7

1,7
box

1,7
box

1,7
box ( )

which has the same coefficients as the state (48). A typical set of Bohmian trajectories is
shown in figure 7(b). Just as in the two-particle case, the particles move in different quadrants
of the box. The Lyapunov exponent is approximately 25, so that there is chaos.

Figure 7. (a) and (b) Bohmian trajectories for a system of three particles respectively
for the entangled wave functions (48) and (49), and with initial configuration
respectively (x1, y1, x2, y2, x3, y3)= (−2.982 81, −1.927 32, 2.841 68, −0.128 71,
−2.435 47, −0.292 984) and (x1, y1, x2, y2, x3, y3)= (0.383 739, 0.882 733, 0.464 473,
0.481 246, 0.616 311, 0.586 823). The black dashed curve corresponds to the trajectory
of particle 1, the red curve to that of particle 2 and the blue one to that of particle 3.
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6.3. Chaos and entanglement

In this section we explore the relation between the average Lyapunov exponent and entan-
glement measures. Here, we consider three measures of multipartite entanglement: the
Meyer–Wallach measure Q(22), the geometric measure EG(23) and the three-tangle t3 (25).
These entanglement measures vanish if the state ψ is separable. In that case, the motion of the
Bohmian particles is uncorrelated. Conversely, when the measure vanishes this implies that
the state ψ is separable in the case of the first two measures, but not in the case of the three-
tangle.

These measures will not fully agree with the average Lyapunov exponent, as they do not
depend on the choice of the basis states 0∣ ⟩ and 1∣ ⟩ (just like the PR), while this influences the
possibility of chaos, as we have seen before. In addition, note that entanglement is not
sufficient to imply chaos. As a simple example, consider real wave functions. The wave
function can be arbitrarily much entangled, but the Bohmian configuration is static, so that
there is no chaos.

In the following, we will consider stationary states belonging to the W entanglement
class, i.e. states that are related by an invertible local operation to the W state

= + +W 001 010 100 3∣ ⟩ (∣ ⟩ ∣ ⟩ ∣ ⟩) . These states can be parametrized as follows

= + + + - + +W a b c a b c a b c, , 001 010 100 1 000 , 50∣ ( )⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( ) ∣ ⟩ ( )
where a b c, , 0, + +a b c 1, and 0∣ ⟩ and 1∣ ⟩ are single-particle basis states [39]. We
will take x 0⟨ ∣ ⟩ and x 1⟨ ∣ ⟩ to be the eigenstates f jr,n n,

pol
r l

( ) of the 2d harmonic oscillator. For
these states, the three-tangle vanishes for all values of a b, and c. Since the amount of chaos
generically varies with the choice of coefficients, this measure will not correlate with the
amount of chaos.

We consider first the following one-parameter family of states

- = + - +W a a a a, 1 2 , 1 2 001 1 2 010 1 2 100 , 51∣ ( )⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )

with f=x x0 4,0
pol⟨ ∣ ⟩ ( ) and f=x x1 3,1

pol⟨ ∣ ⟩ ( ) and Îa 0, 1 2[ ], which have energy 15. Figure 8
shows from left to right the average Lyapunov exponent h̄ (computed from 300 trajectories),
the Meyer–Wallach and geometric measure of entanglement and the PR as a function of the
parameter a. For the states (51), the three-tangle and the geometric measure of entanglement
are independent of a; they have the value of 0 and 1/2 respectively. The average Lyapunov

Figure 8. Plots for the state (51). (a) Average Lyapunov exponent h̄ as a function of a.
(b) Meyer–Wallach measure of entanglement (Q) (black) and geometric measure of
entanglement (EG) (red dashed) as a function of a. (c) Participation ratio for these states
as a function of a.
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exponent h̄ varies with a, is maximal at =a 1 4 and minimal at a = 0 and =a 1 2. Both the
PR and the Meyer–Wallach measure of entanglement have the same general behavior as h̄
with respect to a. This agreement in behavior can be understood by noticing that the states
001∣ ⟩, 010∣ ⟩ and 100∣ ⟩ from which -W a a, 1 2 , 1 2∣ ( )⟩ is constructed have similar spatial
variations. For a = 0 and =a 1 2, -W a a, 1 2 , 1 2∣ ( )⟩ has only two terms, with one
particle decoupling from the others, which explains why the Lyapunov exponent is minimal
for these values.

Now consider the other one-parameter family of stationary states

= + + + -W a a a, 1 4, 1 4 001 1 4 010 1 4 100 1 2 000 , 52∣ ( )⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( ) ∣ ⟩ ( )

with again f=x x0 4,0
pol⟨ ∣ ⟩ ( ) and f=x x1 3,1

pol⟨ ∣ ⟩ ( ) and Îa 0, 1 2[ ], which have energy 15.
Figure 9(a) shows h̄, (c) the Meyer–Wallach and geometric measures of entanglement and (d)
the PR as a function of a. The lower value of h̄ for a = 0 may originate from the fact that the
third particle decouples from the other ones. The lower value of h̄ for =a 1 2 may come
from the fact that then the state is of the form (45) and as mentioned before admits then one
constant of motion. These properties do not exclude chaos but reduce the possible amount of

Figure 9. (a) and (b) respectively display the Lyapunov exponent h̄ for the states
W a, 1 4, 1 4∣ ( )⟩ of energy 15 and ¢W a, 1 4, 1 4∣ ( )⟩ of energy 21 given by
equation (52). (c) Meyer–Wallach measure of entanglement (Q) (black) and geometric
measure of entanglement (EG) (red dashed) as a function of a. (d) Participation ratio for
these states as a function of a. Q, EG and PR are equal for both states.
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chaos. The agreement of h̄ with the Meyer–Wallach and geometric measures of entanglement
or the PR is not as good as in the previous example. The Meyer–Wallach measure and the
geometric measure of entanglement are monotonously increasing functions of a, unlike h̄
which has a maximum. The PR reaches a maximum, just like h̄, but its maximum is reached
for a different value of a. The discrepancy between the Lyapunov exponent and the measures
of complexity of the wave function originates from the fact that the former depends on the
particular form of the terms in the superposition, while the latter do not. In this case, unlike in
the previous example, not all terms have the same form due to the presence of the term
proportional to 000∣ ⟩.

As a last example, we consider the state (52) with f=x x0 4,2
pol⟨ ∣ ⟩ ( ) and f=x x1 3,3

pol⟨ ∣ ⟩ ( ),
Îa 0, 1 2[ ]. We denote this state as ¢W a, 1 4, 1 4∣ ( )⟩. It has energy 21, which is higher

than the energy of W a, 1 4, 1 4∣ ( )⟩. The Lyapunov exponent h̄ for this state, plotted in
figure 9(b), qualitatively displays the same behavior as in the case of W a, 1 4, 1 4∣ ( )⟩.
However, it is interesting to see that for most values of a, W a, 1 4, 1 4∣ ( )⟩ gives higher
values of h̄, despite the fact that this state has lower energy than ¢W a, 1 4, 1 4∣ ( )⟩. So, just
as we have already seen before in section 4.2, increasing the energy of the system does not
necessarily lead to a higher amount of chaos in the Bohmian trajectories. Similar fluctuations
as a funtion of the mean energy where observed in [24].

In summary, not all measures of entanglement lead to a reasonable agreement with
the amount of chaos. For the family of states (50), the three-tangle vanishes whereas the
Bohmian trajectories display variable amount of chaos as a function of the parameters.
Similarly, the geometric measure of entanglement of the states (51) is constant while
the Lyapounov exponent varies as a function of the parameter a. The best agreement is
obtained for the Meyer–Wallach measure of entanglement. However, even this measure
will not always be suitable. For example, for the state fGHZ

3p (see equation (44)),
f = - -Q c c2 1GHZ

3p
1

4
2

4( ) ( ∣ ∣ ∣ ∣ ), while the Bohmian trajectories are regular for any c c,1 2 as
shown in section 6.1. (Actually, also the three-tangle is non-zero in this
case: t f = c c43 GHZ

3p
1

2
2

2( ) ∣ ∣ ∣ ∣ .)

7. Conclusion

We considered stationary states for a single particle in a 3d harmonic potential and two and
three entangled particles in a 2d harmonic potential and 2d box for which there is chaotic
Bohmian motion. This shows that moving nodes are not necessary for chaos. Rather the
overall complexity of the wave function is important. As such, this provides strong evidence
that Bohmian trajectories are typically chaotic, whether the nodes are stationary or not.

We also studied how well the amount of chaos, as measured by the average Lyapunov
exponent, correlates with the PR and different measures of entanglement (three-tangle,
geometric measure of entanglement and Meyer–Wallach measure of entanglement). We
found that these quantities often tend to correlate to the amount of chaos. However, they do
not depend on the form of the basis states used to expand the wave function. In addition, the
PR does not depend on the relative phases of the expansion coefficients of the state in the
chosen basis. Since the amount of chaos does depend on these factors, there cannot be full
agreement between these measures and the amount of chaos.
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Appendix A. Quantifying chaos

Many tools have been developed in order to probe and quantify chaos of a dynamical system
[40]. Here, we explain the methods used in this paper for a 3d Bohmian system. Chaos means
that the trajectories are highly sensitive to the initial position [32]. More precisely, there will
be chaos if trajectories exponentially diverge within small times. That is, if for initial positions
x0 and x0˜ , initially separated by a small distance d0, we have

º - = t t t d h td x x x xe , , 1, 53h tx x
0

,
0 00 0∣ ( )∣ ∣ ( ) ˜( )∣ ( ˜ ) ( )( ˜ )

with >h x x, 00 0( ˜ ) .
The amount of chaos is quantified by the Lyapunov exponents [32], given by

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟=

¥ 
h

t

t

d
x e

d
, lim lim

1
ln , 54

t d
0 0

0 00

( ) ∣ ( )∣ ( )

where d0 is the initial distance between two trajectories starting at =tx x0 0( ) and
= +t dx x e0 0 0 0˜( ) with e0 a unit vector and td∣ ( )∣ is the distance between these two positions

as a function of time. While this quantity depends on e0, it can attain at most three different
values (which corresponds to the number of dimensions of the configuration space). It can be
shown that for almost all directions, i.e. almost all e0, the maximal value is obtained [32].

In order to numerically compute the Lyapunov exponent, we use the procedure [32, 41]
illustrated in figure 10. Starting from two initial positions x0 and x0˜ at time t0 separated by a
distance d0, we numerically integrate the trajectories up to some time + Dt t0 to obtain

+ D = + D - + Dt t t t t td x x0 0 0( ) ˜( ) ( ). Then we repeat the procedure with initial positions
+ Dt tx 0( ) and + D + + Dt t d t tx e0 0 0( ) ( ), where + Dt te 0( ) is the unit vector in the

direction of + Dt td 0( ). So the separation between these positions is rescaled to d0 everyDt.
We repeat this N times. For large total time = DT N t, the maximal Lyapunov exponent is
then in good approximation given by

Figure 10. In order to numerically compute the Lyapunov exponent, the distance
between two initially close trajectories is rescaled every Dt .
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0
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A positive value of h x0( ) indicates that the dynamics is (strongly) chaotic, while h x 00( )
indicates that the trajectories stay close together in the sense that they do not diverge
exponentially.

The Lyapunov exponent defined in(54) quantifies the amount of chaos for particular
trajectories. In order to probe the amount of chaos for an ensemble of trajectories all with the
same wave function, one has to sample the initial position and, for every point, compute the
Lyapunov exponent. Then one can either plot a map of these exponents or compute the spatial
average. The former method may distinguish regions in space that lead to chaotic motion and
regions that do not. However, for simplicity we just presented averages in this work.

While the discussion was so far restricted to a three-dimensional system, it straightfor-
wardly generalizes to a many-particle system whose configuration space is n-dimensional.

We benchmarked this method of computation of the Lyapunov exponent by computing
h x0( ) for the Hénon–Heiles Hamiltonian, as was also done in [41]. We also computed the
Lyapunov exponent of Bohmian trajectories for the systems studied in [23, 24]. In both cases,
our results were in good agreement. In order to assess the validity of our results, we checked
the agreement between the Lyapunov exponents computed for different values of d0, e0

and Dt.
There is another way to qualitatively probe the chaotic behavior of a dynamical system

which consists in computing a Poincaré section, also called a section of surface [32]. The
Poincaré section is obtained by considering the points of intersection of an n-d trajectory x(t)
with a hyperplane of dimension -n 1. Regions in the Poincaré section that display a regular
pattern of points indicate a regular part of the trajectory. Regions where the points are densely
and randomly distributed, indicate a chaotic part of the trajectory.

Appendix B. Energy eigenstates for the considered systems

In this appendix, we recall the energy eigenstates and eigenvalues for the potentials we
consider in the paper. In the 2d case these are the harmonic oscillator potential and the square
box potential. In the 3d case this is the harmonic oscillator potential.

B.1. 2d systems

B.1.1. Square box potential. For a particle moving in a square box with sides of length one
[42], the energy eigenstates are

f p p=x y n x n y, 2 sin sin 56n n x y,
box

x y
( ) ( ) ( ) ( )

with the =n 1, 2, ...i =i x y,( ) and have energy

p
= +E n n

2
. 57n n x y,

2
2 2

x y
( ) ( )

These eigenstates are real. There is some degeneracy. States fn n,1 2
and fn n,2 1

have the same

energy. Moreover, there may be some accidental degeneracy as for example for the states f5,5
box

and f7,1
box, or f7,4

box and f8,1
box.

B.1.2. Harmonic oscillator potential. For the harmonic oscillator [23, 42], the Hamiltonian is
given by
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= + + +   H p p x y
1

2

1

2
, 58x y2d

2 2 2 2( ) ( ) ( )

which simply corresponds to the sum of the Hamiltonians of two 1d harmonic oscillators with
the same frequency in the x and y direction.

The eigenstates of H2d can be constructed as products of eigenstates of the 1d harmonic
oscillator and are given by

f
p

=
+

- +x y
n n

H x H y,
1

2
e , 59n n n n

x y

x y
n n,

2d 2
x y x y

x y

2 2( )
! !

( ) ( ) ( )( )

where Hn(x) are the Hermite polynomials. These states have energy

= + +E n n 1, 60n n x y,
2d
x y

( )

which is + +n n 1x y( )-fold degenerate. The states f x y,n n,
2d

x y
( ) are real.

Alternatively, one can use energy eigenstates that are also eigenstates of the z-component
of angular momentum Lz [42, 43]. In polar coordinates, the common eigenstates of H2d and Lz

are given by

f j = j- - - -r r L r, e e , 61n n n n
n n r

n
n n n n

,
pol

,
2 2 i

r l r l
r l r l r l

2( ) ( ) ( )∣ ∣ ∣ ∣ ( )

with


p

=
+ -

n

n n n
62n n

r l
,r l

!
( ∣ ∣)!

( )

and with =n n nmin ,l r( ). The energy eigenvalue is

= + +E n n 1 63n n r l,
pol
r l

( )

and the Lz eigenvalue is -n nr l( ) with =n 0, 1, 2, ...i =i r l,( ). Again, the energy En n,
pol
r l

is
+ +n n 1r l( )-fold degenerate.

B.2. 3d systems

B.2.1. Harmonic oscillator. The Hamiltonian corresponding to a particle in a 3d isotropic
harmonic potential is

= + + + + +     H p p p x y z
1

2

1

2
, 64x y z3d

2 2 2 2 2 2( ) ( ) ( )

which corresponds to the sum of the Hamiltonians of three 1d harmonic oscillators with the
same frequency in the x, y and z direction.

The eigenstates of H3d are simply product of eigenstate of the 1d harmonic oscillator [42]

f
p

=
- + +

+ +
x y z

H x H y H z

n n n
, ,

e

2
65n n n

x y z
n n n

n n n
x y z

, ,
3d

2

x y z

x y z

x y z

2 2 2

( )
( ) ( ) ( )

! ! !
( )

( )

where Hn(x) are the Hermite polynomials. These states have energy

= + + +E n n n
3

2
. 66n n n x y z, ,

3d
x y z

( )

The energy En n n, ,
3d
x y z

is + +n n1 2 2( )( ) -fold degenerate, with = + +n n n nx y z. The states

f x y z, ,n n n, ,
3d

x y z
( ) are real.
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Alternatively, one can use states that are also eigenstates of L2
and Lz:

⎛
⎝⎜

⎞
⎠⎟f q j q j= - +r

r
L r Y, ,

2
e , , 67k l m k l

l
r

k
l

l
m

, ,
sph

,
2 1 2 22( ) ( ) ( ) ( )

with


p

=
+ +

+ + k

k l

1

4

2

2 2 1
. 68k l

k kl

,

2 2 3 !
( )!!

( )

The energy is

= +E n
3

2
, 69k l,

sph ( )

where = +n k l2 . The l quantum number can take the value = ¼ -l n n0, 2, , 2, if n is
even and = ¼ -l n n1, 3, , 2, if n is odd, and = - - + ¼ -m l l l l, 1, , 1, [44].
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