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The mechanical action of light on atoms is currently a tool used ubiquitously in cold atom physics. In the
semiclassical regime, where atomic motion is treated classically, the computation of the mean force acting on
a two-level atom requires numerical approaches in the most general case. Here we show that this problem
can be tackled in a purely analytical way. We provide an analytical yet simple expression of the mean force that
holds in the most general case, where the atom is simultaneously exposed to an arbitrary number of lasers with
arbitrary intensities, wave vectors, and phases. This yields a novel tool for engineering the mechanical action of
light on single atoms. © 2017 Optical Society of America
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1. INTRODUCTION

With the advent of lasers, the mechanical action of light has
become an extraordinary tool for controlling the motion of
atoms. The first evidence of this control with laser light was
demonstrated in the early 1970s with the deflection of an
atomic beam by resonant laser radiation pressure [1,2]. One
of the most remarkable achievements was made a decade later
when the first cold atomic cloud in a magneto-optical trap was
observed [3]. These initial experiments gave birth to a vast array
of cold atom physics experiments, with each more spectacular
than the last. Regimes (for example, Bose–Einstein condensa-
tion [4]) that were thought to forever remain in the realm of
Gedankenexperiments became reality in labs.

As long as atomic motion can be treated classically, i.e., in
regimes where the atomic wave packets are sufficiently localized
in space, the resonant laser radiation acts mechanically as a force
on the atomic center-of-mass. In a standard two-level approxi-
mation and modeling the laser electromagnetic field as a plane
wave, the mean force F exerted by a single laser, averaged over
its optical period, reaches a stationary regime shortly after
establishment of the laser action, where it takes the well-known
simple expression [5]

F � Γ
2

s
1� s

ℏk: (1)

Here, Γ is the rate of spontaneous decay from the upper level
of the transition, ℏk is the laser photon momentum, and
s � �jΩj2∕2�∕�δ2 � Γ2∕4� is the saturation parameter, where

Ω is the Rabi frequency, and δ � ω − ω0 is the detuning
between the laser and the atomic transition angular frequencies,
ω and ω0, respectively. The maximal force the laser can exert on
the atom is �Γ∕2�ℏk.

The question naturally arises of how Eq. (1) generalizes
when several lasers of arbitrary intensities, wave vectors, and
phases act simultaneously on the atom. Surprisingly, to date
no general exact analytical expression of the resulting force
can be found in the scientific literature, and one is often
reduced to using numerical approaches [6–13]. In the low-
intensity regime, a generalized version of Eq. (1) provides an
approximation of the incoherent action of each laser field.
Each individual laser j (j � 1;…; N with N the total number
of lasers) is characterized by an individual detuning δj, a photon
momentum ℏkj, a Rabi frequency Ωj, and an individual sat-
uration parameter sj � �jΩjj2∕2�∕�δ2j � Γ2∕4�. When all sj
are much smaller than 1, the mean resulting force exerted
incoherently by all lasers on the atom can be approximated
by F � ΣjFj, where

Fj �
Γ
2

sj
1� seff

ℏkj (2)

is the mean force exerted by each individual laser j, and seff �
Σjsj [14]. For larger values of sj, Eq. (2) loses validity, as it is
derived in a rate-equation approximation [14]. It also neglects
any coherent action of the lasers. Coherence effects can lead to
huge forces that vastly exceed the maximal value of �Γ∕2�ℏkj
per laser, as is observed with the stimulated bichromatic
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force [6]. An exact expression of the force, including coherent
effects, that holds at high intensity can be found in the particu-
lar case of a pair of counterpropagating lasers of the same
intensity [15].

In this paper, we solve analytically the most general case and
provide an expression for the force exerted by an arbitrary num-
ber of lasers with arbitrary intensities, phases, detunings, and
directions acting on the same individual two-level atom. We
show how to express this force in strict generality in the form
of Eq. (2), even including coherent effects, with a generalized
definition of the saturation parameter sj. We thus provide a
unified formalism that holds in any configuration of lasers
and enables the engineering of the mechanical action of light
on individual atoms.

The paper is organized as follows: In Section 2, the exact
expression of the radiation pressure force in the most general
configuration is calculated. In Section 3, some specific regimes
are investigated, where some interesting simplifications hold.
Finally, we draw conclusions in Section 4.

2. GENERAL AND EXACT EXPRESSION OF THE
RADIATION PRESSURE FORCE

We consider a two-level atom with levels jei and jgi of energy
Ee and Eg , respectively (Ee > Eg ). We denote the atomic
transition angular frequency �Ee − Eg�∕ℏ by ωeg. The atom
interacts with a classical electromagnetic field E�r; t� resulting
from the superposition of N arbitrary plane waves: E�r; t� �
ΣjEj�r; t�, with Ej�r; t� � �Ej∕2�ei�ωj t−kj ·r�φj� � c:c: Here, ωj,
kj and φj are the angular frequency, the wave vector, and the
phase of the jth plane wave, respectively, and Ej ≡ Ejϵj, with
Ej > 0 and ϵj the normalized polarization vector of the corre-
sponding wave. The quasi-resonance condition is fulfilled for
each plane wave: jδjj ≪ ωeg , ∀j, where δj � ωj − ωeg is the
detuning. We define a weighted mean frequency of the plane
waves by ω � Σjκjωj, with fκjg an a priori arbitrary set of
weighting factors (κj ≥ 0 and Σjκj � 1).

In the electric-dipole approximation and considering spon-
taneous emission in the master equation approach [16], the
atomic density operator ρ̂ obeys

d
d t

ρ̂�t� � 1

iℏ
�Ĥ �t�; ρ̂�t�� �D�ρ̂�t�� (3)

with Ĥ �t� � ℏωejeihej � ℏωg jgihgj − D̂ · E�r; t� and D�ρ̂� �
�Γ∕2���σ̂−; ρ̂σ̂�� � �σ̂−ρ̂; σ̂���, where D̂ is the atomic electric
dipole operator, r is the atom position in the electric field,
Γ is the spontaneous de-excitation rate of the excited state
jei, and σ̂− ≡ jgihej and σ̂� ≡ jeihgj are the atomic lowering
and raising operators, respectively.

The hermiticity and the unit trace of the density operator
make all four matrix elements ρee , ρeg , ρge , and ρgg , with ρkl �
hkjρ̂jli for k; l � e; g dependent variables. We consider here
the vector of real independent variables x � �u; v; w�T , with
u � Re�ρ̃ge�, v � Im�ρ̃ge�, and w��ρee −ρgg�∕2�ρee −1∕2,
where ρ̃ge � ρgee−iωt . In the rotating wave approximation
(RWA), the time evolution of x resulting from Eq. (3) obeys

_x�t� � A�t�x�t� � b (4)

with b � �0; 0; −Γ∕2�T and

A�t� �
0
@ −Γ∕2 δ Im�Ω�t��

−δ −Γ∕2 −Re�Ω�t��
−Im�Ω�t�� Re�Ω�t�� −Γ

1
A; (5)

where δ � ω − ωeg and Ω�t� � ΣjΩjei�ωj−ω�t , with Ωj

(j � 1;…; N ) the complex Rabi frequencies

Ωj � −Dge · Ejei�−kj ·r�φj�∕ℏ ≡ ΩR;jeiϕj ; (6)

where Dge � hgjD̂jei, ΩR;j > 0 denotes the modulus of Ωj,
and ϕj its phase. Without loss of generality, the global phases
of the atomic states jei and jgi can always be chosen so as to
have one Rabi frequency real and positive. This is usually con-
sidered in all studies where a single plane wave interacts with
the atom. However, with N arbitrary plane waves, we cannot
assume without loss of generality that all Rabi frequencies are
real, and their phases cannot be ignored. In the quasi-resonance
condition, the RWA is fully justified as long as ΩR;j∕ωj ≪ 1,
∀ j [17].

Equation (4) constitutes the so-called optical Bloch equa-
tions (OBEs) adapted to the present studied case. Here, because
of the time dependence of A�t�, the solution cannot be
expressed analytically, and the equation must be integrated nu-
merically. However, within an arbitrary accuracy, we can always
assume that the N frequency differences ωj − ω are commen-
surable, i.e., that all ratios �ωj − ω�∕�ωl − ω�, ∀ j; l :ωl ≠ ω, are
rational numbers. Within this assumption, Ω�t� and A�t�
are periodic in time with a period T c � 2π∕ωc , where
ωc � �LCM��ωj − ω�−1;∀ j:ωj ≠ ω��−1, with LCM denoting
the least common multiple conventionally taken as positive.
It also follows that the numbers �ωj − ω�∕ωc , hereafter denoted
by mj, are integer, ∀ j [18]. In the particular case where all
frequencies ωj are identical, A�t� is constant in time, or, equiv-
alently, periodic with an arbitrary value of ωc ≠ 0, and all
integer numbers mj vanish.

Within the commensurability assumption where A�t� is
T c-periodic and given initial conditions x�t0� � x0, the
OBEs admit the unique solution (Floquet’s theorem; see,
e.g., Ref. [19])

x�t� � PI �t�eR�t−t0��x0 − xp�t0�� � xp�t�; (7)

where R is a logarithm of the OBE monodromy matrix divided
by T c [20], PI �t� is an invertible T c-periodic matrix equal to
X I �t�e−R�t−t0� for t ∈ �t0; t0 � T c �, with X I �t� the matriciant of
the OBEs [20], and xp�t� is an arbitrary particular solution
of the OBEs. The real parts of the eigenvalues of the matrix R,
the so-called Floquet exponents, belong to the interval
�R T c

0 λmin�t�dt∕T c;
R T c
0 λmax�t�dt∕T c � with λmin�t� and λmax�t�

the minimal and maximal eigenvalues of the matrix
�A�t� � A†�t��∕2, respectively [21]. Here, this matrix reads
diag�−Γ∕2; −Γ∕2; −Γ�, and the real parts of the Floquet expo-
nents are thus necessarily comprised between −Γ and −Γ∕2,
hence, strictly negative. This implies, first, that the matrix
eR�t−t0� tends to zero with a characteristic time not shorter than
Γ−1 and not longer than 2Γ−1. At long times (t − t0 ≫ 2Γ−1)
x�t� ≃ xp�t�. Second, the OBEs are ensured to admit a unique
T c-periodic solution [19] that the particular solution xp�t� can
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be set to. This certifies that at long times the solution of the
OBEs is necessarily periodic (periodic regime).

The unique T c-periodic solution of the OBEs can be
expressed using the Fourier expansion

x�t� �
X�∞

n�−∞
xneinωc t ; (8)

with xn ≡ �un; vn; wn�T the Fourier components of x�t�. Since
x�t� is real, x−n � x�n , and since it is continuous and differen-
tiable, Σnjxnj2 < ∞. Inserting Eq. (8) into the OBEs yields an
infinite system of equations connecting all un, vn and wn com-
ponents. The system can be rearranged so as to express all un
and vn as a function of the wn components. Proceeding in this
way yields, ∀ n,

un � −i

 
τ�n
XN
j�1

Ωjwn−mj
− τ−n

XN
j�1

Ω�
j wn�mj

!
;

vn � −

 
τ�n
XN
j�1

Ωjwn−mj
� τ−n

XN
j�1

Ω�
j wn�mj

!
; (9)

with τ	n � 1∕�Γ� 2i�nωc 	 δ�� and

wn �
X
m∈M 0

Wn;mwn�m � −1

2�1� s̃� δn;0: (10)

Here, δn;0 denotes the Kronecker symbol, M 0 is the set of
all distinct nonzero integers mlj ≡ ml − mj ( j; l � 1;…; N ),
Wn;m � βn;m∕�αn � βn;0� (m ∈ Z), with αn � Γ� inωc
and βn;m � Σj;l :mlj�mΩjΩ�

l �τ�n�ml
� τ−n−mj

�, and s̃ � Σj s̃j, with

s̃j � Re

2
4 Ωj

Γ∕2 − iδj

XN
l�1
l :δl�δj

Ω�
l

Γ

3
5: (11)

We have τ	−n � τ
�
n , α−n � α�n , β−n;−m � β�n;m, and

W−n;−m � W�
n;m.

If we define the vector of all wn components for n ranging
from −∞ to�∞, w � �…; w−1; w0; w1;…�T , and the infinite
matrix W of elements W n;n 0 � Σm∈M 0

Wn;mδn 0 ;n�m (n; n 0

ranging from −∞ to �∞), Eq. (10) yields the complex inho-
mogeneous infinite system of equations

�I �W �w � c; (12)

with I the infinite identity matrix and c the infinite vector of
elements cn � −δn;0∕�2�1� s̃ ��. W is an infinite centrohermi-
tian band-diagonal matrix with as many bands as the cardinality
of M 0. Its main diagonal is zero. Since the OBEs admit a
unique T c-periodic solution, the infinite system admits a
unique solution w with the property Σnjwnj2 < ∞. In these
conditions and observing that Σnjcnj2 < ∞ and that the series
Σn;n 0W n;n 0 � ΣnΣm∈M 0

Wn;m is absolutely convergent whatever
the values of the Rabi frequencies Ωj, the detunings δj, and the
de-excitation rate Γ, the infinite system [Eq. (12)] can be solved
via finite larger and larger truncations, whose solutions are
ensured to converge in all cases to the unique sought solution
w [22]. This solution is necessarily such that w0 ≠ 0; other-
wise, all other coefficients wn would solve a homogeneous sys-
tem of equations and vanish, in which case the equation for
n � 0 could not be satisfied. This allows us to define the ratios

qn � wn∕w0, ∀ n. In particular q0 � 1, and the reality condi-
tion yields q−n � q�n . We have (Cramer’s rule)

qn � lim
k→∞

Δ�n�
k

Δ�0�
k

; (13)

with Δ�n�
k the determinant of the I �W matrix truncated to

the lines and columns −k;…; k and where the n-indexed col-
umn is replaced by the vector c, correspondingly truncated. As
argued above, the limit is ensured to exist in all cases [23].
Inserting wm � qmw0 in Eq. (10) for n � 0 allows for express-
ing w0 in the form

w0 � −
1

2

1

1� seff
; (14)

where seff � Σjsj, with newly defined parameters sj as

sj � Re

"
Ωj

Γ∕2 − iδj

XN
l�1

Ω�
l

Γ
qmlj

#
: (15)

According to the Ehrenfest theorem, the mean power
absorbed by the atom from the jth plane wave, Pj�t�≡
ℏωjhdN∕d tij�t�, with hdN∕dtij�t� the mean number of
photons absorbed per unit of time by the atom from that wave,
is given by Pj�t� � Ej�r; t� · d hD̂i�t�∕d t. Similarly, the mean
force Fj�t� exerted by the jth plane wave on the atom reads
Fj�t� � Σi�x;y;zhD̂ii�t�∇rEj;i�r; t�, with hD̂ii and Ej;i�r; t�
the ith components (i � x; y; z) of hD̂i and Ej�r; t�, respec-
tively (see, e.g., Refs. [24,25]). Of course, each plane wave does
not act independently of each other on the atom, since the
mean value of the atomic electric dipole moment is at any time
determined by the atomic state ρ̂�t�, which in turn is fully de-
termined by the simultaneous action of all plane waves through
the OBEs [Eq. (4)]. The total mean power absorbed from all
plane waves and the net force exerted on the atom are then
given by P�t� � ΣjPj�t� and F�t� � ΣjFj�t�, respectively.
In the RWA approximation, where one neglects the fast oscil-
lating terms, we immediately get Pj�t� � Rj�t�ℏω and
Fj�t� � Rj�t�ℏkj, with

Rj�t� � Re�Ωj�v�t� � iu�t��ei�ωj−ω�t �: (16)

It also follows that hdN∕d tij�t� � �ω∕ωj�Rj�t�. In the
quasi-resonance condition, where ωj ≃ ω, ∀ j, we can clearly
consider hdN∕dtij�t� ≃ Rj�t�.

Within the commensurability assumption, ωj − ω � mjωc ,
∀ j. In the periodic regime, u�t� and v�t� are in addition
T c-periodic, and thus so are Rj�t�, Pj�t�, and Fj�t�. In this
regime, the Fourier components of Rj�t� ≡

P�∞
n�−∞ Rj;neinωc t

are easily obtained by inserting the Fourier expansion [Eq. (8)]
into Eq. (16). By using further Eq. (9) and wn � qnw0 with w0

as in Eq. (14), we get

Rj;n �
Γ
2

sj;n
1� seff

(17)

with sj;n � �σj;n � σ�j;−n�∕2, where
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σj;n �
Ωj

Γ∕2� i�nωc − δj�
XN
l�1

Ω�
l

Γ
qn�mlj

: (18)

In particular, the temporal mean value Rj of Rj�t� in the
periodic regime is given by the Fourier component Rj;0,
and observing that sj;0 is nothing but the parameter sj of
Eq. (15), we get Rj � �Γ∕2�sj∕�1� seff �. The Fourier compo-
nents of the force Fj�t� ≡

P�∞
n�−∞ Fj;neinωc t in the periodic

regime are then given by Fj;n � Rj;nℏkj [26], and the mean
force in this regime reads, consequently,

Fj �
Γ
2

sj
1� seff

ℏkj ; (19)

in support of our introductory claim. Here, nevertheless, in
contrast to the saturation parameter sj of Eq. (2), the newly
defined parameter sj in Eq. (15) can be negative depending
on the different phases of Ω�

l qmlj
with respect to Ωj. This

accounts for two important physical effects. First, it can make
Rj negative, in which case the atom acts as a net mean photon
emitter in the jth plane wave (stimulated emission) and the
force exerted by that wave is directed opposite to kj (the atom
is pushed in the direction opposite to the direction of the in-
cident photons). Second, the ratio jsj∕�1� seff �j can exceed 1,
and the force exerted by the individual laser j can exceed the
maximal spontaneous force �Γ∕2�ℏkj, as is expected for coher-
ent forces such as the stimulated bichromatic force [6,27].

We illustrate our formalism with the calculation of the
stimulated bichromatic force in a standard four traveling-wave
configuration [6]. This force is subtle, since it relies on both
coherent and high-intensity effects. Except for some rough
approximations, it has so far only been modeled numerically
[7–12]. We consider a detuning δ � 10Γ, a Rabi frequency
amplitude of

ffiffiffiffiffiffiffiffi
3∕2

p
δ, and a phase shift of π∕2 for one of

the waves. We show in Fig. 1 the amplitude of the resulting
bichromatic force (averaged over the 2π range of the spatially
varying relative phase between the opposite waves) acting on a
moving atom as a function of its velocity v. As expected, the
peak value of the bichromatic force is of the order of

�2∕π��δ∕Γ� (in units of ℏkΓ∕2 ) and spans a velocity range
of the order of δ∕Γ (in units of Γ∕k ) [28,29]. The narrow peaks
are due to velocity-tuned “Doppleron” resonances [6]. A direct
numerical integration of the OBEs completed with a numerical
average in the periodic regime yields identical results.

3. SPECIFIC REGIMES

At low intensity, i.e., for Ω 0
T ≡ ΣjΩR;j∕Γ ≪ 1, we have js̃j ≪ 1

and Σn 0 jW n;n 0 j ≲ 2Ω 02
T ≪ 1, ∀ n. It implies that the resolvent

RW ;−1 ≡ �I �W �−1 identifies to I �P∞
k�1 �−W �k, and the

solution w of the infinite system [Eq. (12)] is such that w0 ≃
−1∕�2�1� s̃�� ≃ −1∕2 and jwnj ≲ 2Ω 02

T , ∀ n ≠ 0. Hence, for
mlj ≠ 0, jqmlj

j ≲ 4Ω 02
T ≪ 1, and it follows that sj ≃ s̃j. If all

plane waves have different frequencies, the sum over l in
Eq. (11) only contains the single term l � j and thus

sj ≃
jΩjj2∕2

δ2j � Γ2∕4
: (20)

If, in contrast, some plane waves have identical frequencies,
coherent effects can be observed. However, if we are only in-
terested in the incoherent action of the plane waves, an average
h·iφ over all phase differences must be performed. In the
low-intensity regime, the statistical delta method [30] yields
Rinc
j ≡ hRjiφ ≃ �Γ∕2�hs̃jiφ∕�1� hs̃iφ�. Since the average hs̃jiφ

is simply the sj of Eq. (20), we get again Rinc
j ≃ �Γ∕2�sj∕

�1� seff � with sj as in Eq. (20). In all cases, the incoherent
and low-intensity limit of our newly defined parameter sj in
Eq. (15) reduces to the standard expression (20), known to
hold in this regime [14].

If all plane waves have the same frequency, we get ∀ j
sj � Re��Ωj∕�Γ∕2 − iδ���Ω�∕Γ��, with Ω � ΣlΩl and δ ≡ δj.
For N � 1, this reduces to the standard expression (20) of
the saturation parameter. For two counterpropagating plane
waves of identical intensity and polarization, the mean net
resulting force F � �Γ∕2��s1 − s2�∕�1� s1 � s2�ℏk1 reduces
to the well-known phase-dependent dipole force in a
stationary monochromatic wave F � �4Ω2

Rδ sin�Δϕ��∕�Γ2�
4δ2 � 8Ω2

R cos
2�Δϕ∕2��ℏk1, with Δϕ � ϕ2 − ϕ1, and ΩR ≡

ΩR;1 � ΩR;2 [5].
Very generally, in a configuration with two plane waves of

different frequencies, the required solution of the infinite
system [Eq. (12)] can be obtained in a continued fraction ap-
proach (see also Ref. [15] for the particular case of two waves of
identical intensity and polarization in a counterpropagating
configuration). For N � 2 and ω1 ≠ ω2, the commensurabil-
ity assumption implies that n2κ1 � n1κ2, with n1 and n2 two
positive coprime integers. It follows that ωc � jω1 − ω2j∕ns
with ns�n1�n2, m1� sgn�ω1−ω2�n2, m2� sgn�ω2−ω1�n1,
m12 � sgn�ω1 − ω2�ns, and M 0 � f	nsg. The infinite system
[Eq. (10)] reads in this case, ∀ n,

wn �Wn;nswn�ns �Wn;−nswn−ns �
−1

2�1� s̃� δn;0: (21)

The system only couples together the Fourier components
wn with n � kns (k ∈ Z). All other components are totally de-
coupled from these former components and thus vanish, since
they satisfy a homogeneous system. Hence, the only a priori

Fig. 1. Stimulated bichromatic force F as a function of the atomic
velocity v computed via our formalism for a detuning δ � 10Γ, a Rabi
frequency of

ffiffiffiffiffiffiffiffi
3∕2

p
δ, and a phase shift of π∕2 for one laser.
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nonvanishing ratios qn and Fourier components Rj;n and Fj;n
are for these specific values of n, and the periodic regime is
rather characterized by the beat period T c∕ns � 2π∕jω1 − ω2j.
For n ≠ 0, Eq. (21) implies wn∕wn−ns � −W�

−n;ns∕�1�
Wn;ns �wn�ns∕wn��. Applying recursively this relation for
n � ns; 2ns; 3ns;… yields qns � −W�

−ns ;ns∕�1�K∞
k�1�pk∕1��,

with pk � −Wkns ;nsW
�
−�k�1�ns ;ns and K

∞
k�1�pk∕1� the continued

fraction p1∕�1� p2∕�1� p3∕…��. Dividing further Eq. (21)
for n � kns (k > 0) by w0 yields the recurrence relation
q�k�1�ns � −�qkns �W�

−kns ;ns
q�k−1�ns �∕Wkns ;ns , which allows for

computing all remaining qkns with k > 1, and hence along with
qns all nonzero Fourier components Rj;kns and Fj;kns (k ≥ 0).
The set fWkns ;ns ; k ∈ Zg proves to be independent of the actual
value of ns, and thus, so is the set of numbers fqkns ; k ∈ Zg.
The continued fraction and, as expected, all Fourier compo-
nents with respect to the beat periodicity are independent of
the arbitrary choice of the weighting factors κ1 and κ2 that
set ns.

4. CONCLUSION

In conclusion, we have provided a unified and exact formalism
to calculate within the usual RWA the mechanical action of a
set of arbitrary plane waves acting simultaneously on a single
two-level atom. We have shown how to write the steady mean
light forces acting in strict generality in the form of Eq. (2),
including coherent and high-intensity effects, with a general-
ized definition of the parameter sj [Eq. (15)]. We have provided
within a commensurable assumption similar expressions for all
Fourier components of the light forces in the steady periodic
regime that is established after a transient. These results provide
a novel tool for engineering the mechanical action of lasers on
individual atoms. They can offer an alternative to purely
numerical approaches, where the extraction of the mean force
and their Fourier components can be subjected to instabilities,
especially when the forces vary very slowly. Our results always
converge to the exact values. In the case of two lasers, we have
shown in strict generality how to convert the limit of Eq. (13)
into a continued fraction computable straightforwardly. This
work admits a natural extension where multilevel atoms are
instead considered to account for the Zeeman degeneracy of
the atomic levels.
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