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In a recent work, we provided a standardized and exact analytical formalism for computing in the semiclassical and
asymptotic regime, the radiation force experienced by a two-level atom interacting with any number of plane waves
with arbitrary intensities, frequencies, phases, and propagation directions [J. Opt. Soc. Am. B 35, 127 (2018)].
Here, we extend this treatment to the multilevel atom case, where degeneracy of the atomic levels is considered and
polarization of light enters into play. A matrix formalism is developed to this aim. ©2021Optical Society of America

https://doi.org/10.1364/JOSAB.433090

1. INTRODUCTION

The mechanical action of laser light on atoms led to a great
number of spectacular experiments and achievements in atomic
physics during the past decades (see, e.g., Refs. [1–8]). In the
semiclassical regime, where the atomic motion is treated classi-
cally, the resonant laser radiation produces a mechanical force on
the atomic center of mass. Recently, we provided a standardized
exact analytical treatment of the mechanical action induced by
an arbitrary set of plane waves on a two-level atom [9]. In par-
ticular, we showed that the light force always reaches a periodic
regime shortly after establishment of the interaction, and we
provided an exact yet simple expression of all related Fourier
components of the force in this regime. The mean net force
F has been shown to be expressible in all cases (coherent and
incoherent) in the form F=

∑N
j=1 F j , with

F j =
0

2

s j

1+ s
~k j (1)

the force exerted by the j th plane wave in presence of all other
waves. Here, N is the number of plane waves lightening the
atom, 0 is the spontaneous de-excitation rate of the upper level
of the transition, ~k j is the j th plane wave photon momentum,
and s =

∑
j s j , with s j a generalized saturation parameter

s j = Re

[
� j

0/2− iδ j

N∑
l=1

�∗l

0
qml j

]
, (2)

where � j and δ j are the Rabi frequency and the detuning of
plane wave j , and qml j are complex numbers obtained from
the solution of an infinite system of equations [9]. In the

low-intensity and incoherent regime, we showed that Eq. (2)
simplifies to the standard expression of the saturation parameter,
i.e.,

s j =
|� j |

2/2

02/4+ δ2
j

. (3)

One then might naturally bring up the question of how this
formalism extends to the multilevel atom case, where Zeeman
sublevels and arbitrary polarization of light are considered. In
this case, a closed form of the mean net force F is only known
in specific situations. For instance, for an atom with degener-
ate ground and excited states of angular momenta J g and J e ,
respectively, the stationary force exerted by a linearly polarized
plane wave is either 0 (if1J ≡ J e − J g =−1, or1J = 0 with
integer J g ) or reads

F=
0

2

s
b + s

~k, (4)

with ~k the plane wave photon momentum, s the standard
saturation parameter [Eq. (3)], and b a parameter depending on
J g and J e [10]. Other specific cases have also been studied in the
lin⊥lin and σ+-σ− configurations [11–14]. However, no exact
analytical extension of Eq. (4) is known for general atomic and
laser configurations. In practice, purely numerical approaches
are enforced in this case (see, e.g., Refs. [15–23]).

Here, we extend the formalism developed in Ref. [9] to the
multilevel atom case, and we show that an exact analytical
expression of the mechanical force exerted by a set of plane
waves with arbitrary intrinsic properties (intensity, phase,
frequency, polarization, and propagation direction) can be
similarly obtained after a transient regime. A matrix formalism
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is developed to this aim. The paper is organized as follows. In
Section 2, the generalized optical Bloch equation (OBE) formal-
ism is developed, and we extract the sought exact expression of
the radiation pressure force in the most general configuration.
In Section 3, specific regimes where interesting simplifications
occur are investigated, and we draw conclusions in Section 4.
Finally, two appendices close this paper, where we detail the
effect of a reference frame rotation on the OBEs (Appendix A)
and explicit values of specific matrices are given (Appendix B).

2. MODEL AND RADIATION PRESSURE FORCE

A. Hamiltonian and Master Equation

We consider a single atom with two degenerate levels of energy
E e ≡ ~ωe and E g ≡ ~ωg (E e > E g ), and of total angular
momenta J e and J g , respectively. The Zeeman sublevels
are denoted |J e ,me 〉 and |J g ,mg 〉. We consider an electric
dipole transition (1J ≡ J e − J g ∈ {0,±1}) with angular
frequency ωe −ωg ≡ωe g . The atom interacts with a classical
electromagnetic field E(r, t), resulting from the superposition
of N arbitrary plane waves, E(r, t)=

∑N
j=1 E j (r, t), with

E j (r, t)= (E j/2)e i(ω j t−k j ·r+ϕ j ) + c.c. Here, ω j , k j , and ϕ j

are the angular frequency, the wave vector, and the phase of
the j th plane wave, respectively, and E j ≡ E j ε j , with E j > 0
and ε j =

∑
q ε j ,q eq the normalized polarization vector of the

corresponding wave written in the upper-index spherical basis
{eq , q = 0,±1} [24]. Nonzero ε j ,0 and ε j ,±1 components
correspond to so-called π and σ± polarization components of
radiation, respectively. Accordingly, the vectors e0, e±1 are also
denoted by π , σ±, respectively. As in our analysis of the two-
level case [9], the quasi-resonance condition is fulfilled for each
plane wave (|δ j | �ωe g , ∀ j , where δ j =ω j −ωe g is the detun-
ing). We also define a weighted mean frequency ω̄=

∑
j κ jω j

of the plane waves together with a weighted mean detuning
δ̄ =

∑
j κ j δ j = ω̄−ωe g , with {κ j } an a priori arbitrary set of

weighting factors (κ j ≥ 0 and
∑

j κ j = 1).
The time evolution of the atomic density operator ρ̂ is

governed by the standard master equation [25]

d
dt
ρ̂(t)=

1

i~

[
Ĥ(t), ρ̂(t)

]
+D(ρ̂(t)) (5)

in which Ĥ(t)= ~ωe P̂e + ~ωg P̂g − D̂ · E(r, t) and

D(ρ̂)=−(0/2)
(

P̂e ρ̂ + ρ̂ P̂e

)
+ 0

∑
q

(
eq ∗
· Ŝ
−
)
ρ̂
(

eq
· Ŝ
+
)

.

(6)
Here, P̂k ≡

∑
mk
|Jk,mk〉〈Jk,mk | (k = e , g ), D̂ is the

atomic electric dipole operator, r is the atom position in the

electric field, and the Ŝ
±

operators are defined according to

eq
· Ŝ
+

|J g ,mg 〉 =C (q)
mg |J e ,mg + q〉, eq

· Ŝ
+

|J e ,me 〉 = 0, and

eq ∗
· Ŝ
−

= (eq
· Ŝ
+

)†, with

C(q)m ≡ 〈J g ,m; 1, q |J e ,m + q〉, (7)

where 〈 j1,m1; j2,m2| j ,m〉 is the Clebsch–Gordan coefficient
corresponding to the coupling of | j1,m1〉 and | j2,m2〉 into
| j ,m〉.

B. Optical Bloch Equations

All matrix elements ρ(Jk ,mk ),(J l ,ml ) ≡ 〈Jk,mk |ρ̂|J l ,ml 〉(k, l =
e , g ) are dependent variables due to hermiticity and unit trace of
ρ̂. We consider here the column vector of real and independent
variables x= (xT

o , xT
ξ )

T , with xo a column vector of optical
coherences and xξ ≡ (xT

p , xT
Z)

T , where xp is a column vector of
populations and xZ a column vector of Zeeman coherences. We
defined

xo =


x(
−(Je+J g ))

o
...

x(
Je+J g )

o

 , with x(1m)
o =



u(1m)

o ,m(1m)
−

v
(1m)

o ,m(1m)
−

...
u(1m)

o ,m(1m)
+

v
(1m)

o ,m(1m)
+


,

(8)
where u(1m)

o ,m ≡ Re(ρ(J g ,m),(Je ,m+1m)e−iω̄t) and v(1m)
o ,m ≡

Im(ρ(J g ,m),(Je ,m+1m)e−iω̄t), with m =m(1m)
− , . . . ,m(1m)

+ ,

m(1m)
± =±min(J g , J g +1J ∓1m), and 1m =
−(J e + J g ), . . . , J e + J g .

We defined xp ≡ (xT
pe
, xT

pg
)T , with (k = e , g )

xpk =

wk,−Jk+δk,g
...

wk,Jk

 , (9)

where wk,mk = ρ(Jk ,mk ),(Jk ,mk ) − N−1
J , with mk =−Jk +

δk,g , . . . , Jk , and NJ ≡ 2(J e + J g + 1).
We finally defined xZ ≡ (xT

Ze
, xT

Zg
)T , with (k = e , g )

xZk =


x(1)Zk

...
x(2Jk )

Zk

 , with x(1m)
Zk
=


u(1m)

Zk ,−Jk

v
(1m)
Zk ,−Jk

...
u(1m)

Zk ,Jk−1m

v
(1m)
Zk ,Jk−1m

, (10)

where u(1m)
Zk ,mk
= Re(ρ(Jk ,mk ),(Jk ,mk+1m)) and v

(1m)
Zk ,mk
=

Im(ρ(Jk ,mk ),(Jk ,mk+1m)), with mk =−Jk, . . . , Jk −1m,
and1m = 1, . . . , 2Jk .

In the standard rotating wave approximation, the time evo-
lution of the independent internal degrees of freedom x directly
results from master Eq. (5) and can be written in the form of
generalized optical Bloch equations

d
dt

x(t)= A(t)x(t)+ b, (11)

with A(t) and b a square matrix and a column vector,
respectively, as detailed hereafter.

1. A(t)Matrix

The A(t)matrix reads

A(t)=−0A0 + Im (�(t) · eC ) , (12)
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where A0 is a time-independent matrix with scalar entries
(independent of any reference frame) detailed hereafter,�(t)=∑

j � j (t)≡
∑

q �q (t)eq , with � j (t)=� j e i(ω j−ω̄)tε j ,
where

� j =−
E j e i(−k j ·r+ϕ j )

~
〈J e‖D‖J g 〉

∗

√
2J e + 1

, (13)

in which 〈J e‖D‖J g 〉 denotes the so-called reduced matrix ele-
ment associated to D̂, and eC is the (unnormalized) basis vector
of matrices eC =

∑
q C (q)eq , with contravariant components

C (q) as described hereafter and where eq = eq ∗ (q = 0,±1) are
the lower-index spherical basis vectors (eC is said a basis vector in
that it rotates similarly with the spherical basis in case of a basis
change, so that �(t) · eC =

∑
q �q (t)C (q) does not define a

matrix of scalars; see Appendix A).
The A0 matrix reads A0 = diag(Aoo , Aξξ ), with matrix

blocks Aoo =⊕
(dim xo )/21(1/2) and Aξξ = diag(A pp , AZ Z),

where

1(z)=
(

z −δ/0

δ/0 z

)
, ∀z ∈C, (14)

and Aζ ζ (ζ = p, Z) are blocks of dimension dim xζ × dim xζ ,
themselves structured into subblocks according to

Aζ ζ =
(

1ζe 0
Aζg ζe 0ζg

)
, (15)

with, for any symbol α, 1α [0α] the identity [zero] matrix
of dimension dim xα × dim xα . The A pg pe subblock
is of dimension dim xpg × dim xpe and of elements

(A pg pe )mg me =−(C
(me−mg )
mg )2, with mk =−Jk + δk,g , . . . , Jk

(k = e , g ) [here and throughout the paper, we adopt the con-
vention not to index the matrix elements from (1, 1) but with
indices directly linked to the magnetic sublevels]. The AZg Ze

subblock is of dimension dim xZg × dim xZe and is itself struc-
tured into vertically and horizontally ordered subsubblocks

A
(1mg ,1me )

Zg Ze
of dimension dim x

(1mg )

Zg
× dim x(1me )

Ze
, with

respective indices 1mg = 1, . . . , 2J g and 1me = 1, . . . , 2J e .
The only a priori nonzero of these subsubblocks are for
1mg =1me ≡1m, of elements A(1m,1m)

Zg Ze
= Ã(1m,1m)

Zg Ze
⊗ 12,

with ( Ã(1m,1m)
Zg Ze

)mg me =−C
(me−mg )
mg C(me−mg )

mg+1m , where
mk =−Jk, . . . , Jk −1m (k = e , g ).

The C (q) matrices read

C (q)
=

(
0 C (q)

oξ ⊗ (1,−i)T

C (q)
ξo ⊗ (1,−i) 0

)
, (16)

with C (q)
oξ = (C

(q)
o p ,C (q)

o Z ) and C (q)
ξo = (C

(q)
po

T
,C (q)

Zo

T
)T ,

where C (q)
o p = (C

(q)
o pe ,C (q)

o pg ), C (q)
po = (C

(q)
pe o

T
,C (q)

pg o
T
)T ,

C (q)
o Z = (C

(q)
o Ze
,C (q)

o Zg
), and C (q)

Zo = (C
(q)
Ze o

T
,C (q)

Zg o

T
)T . The

C (q)
o pk , C (q)

pk o , C (q)
o Zk

, and C (q)
Zk o (k = e , g ) blocks exclusively

contain Clebsch–Gordan coefficients and are detailed
below. In addition, for ζ = ξ, pe , pg , p, Ze , Zg , Z, the
C (q)

oζ [C (q)
ζ o ] blocks are of dimensions (dim xo/2)× dim xζ

[dim xζ × (dim xo/2)].

In accordance with Eq. (8), the C (q)
o pk blocks are struc-

tured into vertically ordered subblocks indexed with
1m =−(J g + J e ), . . . , J g + J e and of dimension
(dim x(1m)

o /2)× dim xpk . The only a priori nonzero of these
subblocks is for 1m = q , and we denote it by C̃ (q)

o pk . Its ele-
ments read (C̃ (q)

o pk )m,mk = C(q)m (δm,−J g + ñkδmk ,m+nkq )/2,

with nk = δe ,k and ñk = 2nk − 1, where m =m(q)
− , . . . ,m(q)

+

and mk =−Jk + δk,g , . . . , Jk . In a same way, the C (q)
pk o blocks

are structured into horizontally ordered subblocks indexed
with 1m =−(J g + J e ), . . . , J g + J e and of dimensions
dim xpk × (dim x(1m)

o /2). Again, the only a priori nonzero
of these subblocks is for 1m = q , and it is denoted by C̃ (q)

pk o .
Its elements read (C̃ (q)

pk o )mk ,m =−ñkC(q)m δm,mk−nkq , where
mk =−Jk + δk,g , . . . , Jk and m =m(q)

− , . . . ,m(q)
+ .

Finally, C (q)
Zk o =−C (q)T

o Zk
and C (q)

o Zk
=
∑

ε=±1 C (q)
o Zk ,ε
⊗

(1, εi), where, in accordance with Eqs. (8) and (10), C (q)
o Zk ,ε

is
structured into vertically and horizontally ordered subblocks,
with respective indices 1m =−(J g + J e ), . . . , J g + J e

and 1mk = 1, . . . , 2Jk . These subblocks are of dimen-
sions (dim x(1m)

o /2)× (dim x(1mk )
Zk

/2). The only a priori
nonzeros of them are for 1m − ε1mk = q , and they are
denoted by C̃ (q)(1mk )

o Zk ,ε
. Their elements read (C̃ (q)(1mk )

o Zk ,ε
)m,mk =

(ñk/2)C(q)m−ε(nk−1)1mk
δmk ,m+nkq−(1−ε)1mk/2, where

m =m(1m)
− , . . . ,m(1m)

+ and mk =−Jk, . . . , Jk −1mk .

2. bColumnVector

With the convention of using a ζ index to denote a dim xζ col-
umn vector, the b column vector reads b=−0N−1

J (bT
o , bT

ξ )
T ,

with bo = 0 and bξ = Aξξuξ . Here, uξ = (uT
p , uT

Z)
T , with

uZ = 0 and up = (uT
pe
, uT

pg
)T , where upg = 0, and upe is a

column vector only composed of 1.

C. Periodic Regime

The OBEs [Eq. (11)] cannot be solved analytically and
require numerical integration in the most general case.
However, within the commensurability assumption (all
ω j − ω̄ commensurable), the �(t) and A(t) quantities are
periodic in time with the repetition period Tc = 2π/ωc ,
where ωc = (LCM[(ω j − ω̄)

−1, ∀ j :ω j 6= ω̄])
−1, and all

m j = (ω j − ω̄)/ωc numbers are integer numbers. In this case,
the OBEs admit in all circumstances a Tc -periodic solution since
x(t) is bounded [26,27]. This solution is unique if the real parts
λ of the Floquet exponents are all strictly negative, in which case
the system necessarily converges to it (and reaches a so-called
periodic regime) from any initial state x(t0) after a transient of
characteristic time |λm |

−1, with λm the greatest λ [26]. For two-
level atoms, −0 ≤ λ≤−0/2, and the transient characteristic
time remains limited to at most 20−1 [9]. This is not the case
anymore for multilevel atoms where greater damping times can
be observed. It might even happen that λ= 0, in which case
several Tc -periodic solutions might exist (the Floquet exponents
must be computed numerically, and we only observed λ= 0
in specific configurations with 1J =−1). The case λ> 0
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can never happen, since this would correspond to unphysical
unbounded x(t).

Any Tc -periodic solution x(t) can be expanded according to

x(t)=
+∞∑

n=−∞

x(n)e inωc t , (17)

with Fourier components x(n). The variable x(t) is real,
continuous, and differentiable, so that x(−n)

= x(n)
∗

and∑
n |x

(n)
|
2 <∞. For ζ = o , ξ, p, Z, pe , pg , Ze , Zg , we

denote by x(n)ζ the Fourier components related to the periodic
variable xζ (t). Inserting Eq. (17) into (11) yields the infinite
system of equations

x(n)o = A(n)oo

∑
q , j

(
Č (q)∗

oξ

�∗j ,q

0
x(

n+m j)
ξ − Č (q)

oξ

� j ,q

0
x(

n−m j)
ξ

)
, ∀n,

(18)
with � j ,q =� j ε j ,q , A(n)oo =−2i02τ+n τ

−
n 1dim xo /2 ⊗

1(−inωc/0 − 1/2), and Č (q)
oξ =C (q)

oξ ⊗ (1,−i)T [see
Eq. (16)], where we defined τ±n = 1/[0 + 2i(nωc ± δ̄)], and

x(n)ξ +
∑

m∈M0

W (n,m)
ξξ x(n+m)

ξ = dξδn,0, ∀n. (19)

In the latter, δn,0 denotes the Kronecker symbol,
M0 is the set of all distinct nonzero integer numbers
ml j ≡ml −m j ( j , l = 1, . . . , N), and we defined W (n,m)

ξξ =

(A(n)ξξ + B (n,0)ξξ )−1 B (n,m)ξξ and dξ=−N−1
J (Aξξ+s̃ ξξ )−1Aξξuξ ,

where we set A(n)ξξ =Aξξ + (inωc/0)1ξ , B (n,m)ξξ =∑
j ,l :ml j=m

∑
q ,q ′(� j ,q�

∗

l ,q ′/0)(τ
−

n−m j
(Cξξ )

q
q ′ + τ

+

n+ml
(Cξξ )

q ′
q
∗

)

with (Cξξ )
q
q ′ ≡−C (q)

ξo C (q ′)∗
oξ , and s̃ξξ =

∑
j s̃ξξ, j with

s̃ξξ, j = Re

∑
q ,q ′

N∑
l=1

l :ml j=0

� j ,q�
∗

l ,q ′/0

0/2− iδ j
(Cξξ )

q
q ′

 . (20)

We have τ±−n = τ
∓∗
n , A(−n)

ξξ = A(n)∗ξξ , B (−n,−m)
ξξ = B (n,m)∗ξξ ,

andW (−n,−m)
ξξ =W (n,m)∗

ξξ [28].

If we define y= (. . . , x(−1)
ξ

T
, x(0)ξ

T
, x(1)ξ

T
, . . .)T , the infinite

column vector of all x(n)ξ components, as well as

W =



. . .
...

...
... . .
.

. . . W (−1,−1)
ξξ W (−1,0)

ξξ W (−1,1)
ξξ . . .

. . . W (0,−1)
ξξ W (0,0)

ξξ W (0,1)
ξξ . . .

. . . W (1,−1)
ξξ W (1,0)

ξξ W (1,1)
ξξ . . .

. .
. ...

...
...

. . .


, (21)

the infinite matrix structured into the subblocks W (n,n′)
ξξ =∑

m∈M0
W (n,m)

ξξ δn′,n+m (n, n′ ranging from−∞ to+∞), then
Eq. (19) yields the complex inhomogeneous infinite system of
equations

(I +W)y= c, (22)

with c= (. . . , c(−1)
ξ

T
, c(0)ξ

T
, c(1)ξ

T
, . . .)T the infinite column

vector of subblocks c(n)ξ = dξδn,0 (n ranging from−∞ to+∞)

and I the infinite identity matrix. We directly have W (n,n)
ξξ = 0,

∀n. The solution of the system in Eq. (22) necessarily yields
x(0)ξ 6= 0; otherwise, all other x(n)ξ components would solve a
homogeneous system of equations and thus vanish, in which
case the equation for n = 0 could not be satisfied. This allows
us to define the matrices Q(n)

ξξ that map the x(0)ξ vector onto x(n)ξ ,

∀n: Q(n)
ξξ x(0)ξ = x(n)ξ . The Q(n)

ξξ matrices are a priori not unique

[29]. Inserting x(n)ξ = Q(n)
ξξ x(0)ξ into Eq. (19) for n = 0 yields

x(0)ξ =−
1

NJ

Aξξ
Aξξ + sξξ

uξ , (23)

where
Aξξ

Aξξ+sξξ
≡ (Aξξ + sξξ )−1 Aξξ and sξξ =

∑
j sξξ, j , with

s ξξ, j = Re

∑
q ,q ′

N∑
l=1

� j ,q�
∗

l ,q ′/0

0/2− iδ j
(Cξξ )

q
q ′Q

(ml j )

ξξ

 . (24)

Equation (24) is the generalization of Eq. (15) of Ref. [9] to
the degenerate two-level atom case.

D. General and Exact Expression of the Radiation
Force

Proceeding along the same lines as in Ref. [9], the total mean
power absorbed from all plane waves and the mean net force
exerted on the atom can be expressed as P (t)=

∑
j P j (t) and

F(t)=
∑

j F j (t), respectively, with P j (t)= R j (t)~ω̄ and
F j (t)= R j (t)~k j , where

R j (t)= Im
[
� j (t) · χ o (t)

]
, (25)

with χ o (t)≡
∑

q χ
(q)
o (t)eq the three-dimensional vector of

contravariant components

χ (q)o (t)=−

m(q)
+∑

m=m(q)
−

C(q)m

(
u(q)o ,m(t)− iv(q)o ,m(t)

)
. (26)

The vector χ o (t) is a true polar vector (see Appendix A), so
that obviously � j (t) · χ o (t) is a scalar quantity. As a reminder
[9], R j (t) merely yields in the quasi-resonance condition, the
mean photon absorption rate, 〈d N/dt〉 j (t), induced by plane
wave j .

In a periodic regime, R j (t) can be expanded according to∑
+∞

n=−∞ R (n)j e inωc t , with Fourier components R (n)j . When this
regime is unique, these components are obtained by inserting
Eq. (18) into Eq. (25) and considering Q(n)

ξξ x(0)ξ = x(n)ξ , along

with x(0)ξ as given by Eq. (23). This yields

R (n)j =
0

NJ
uT
ξ s (n)ξξ, j

Aξξ
Aξξ + s ξξ

uξ =−0uT
ξ s (n)ξξ, j x

(0)
ξ , (27)

where s (n)ξξ, j = (σ
(n)
ξξ, j + σ

(−n)
ξξ, j
∗

)/2, with

σ
(n)
ξξ, j =

∑
q ,q ′

N∑
l=1

� j ,q�
∗

l ,q ′/0

0/2+ i(nωc − δ j )
(Cξξ )

q
q ′Q

(n+ml j )

ξξ . (28)
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In particular, observing that s (0)ξξ, j = s ξξ, j [Eq. (24)], the

temporal mean value R̄ j ≡ R (0)j of R j (t) in the unique periodic
regime reads

R̄ j =
0

NJ
uT
ξ s ξξ, j

Aξξ
Aξξ + s ξξ

uξ , (29)

and the corresponding mean force similarly reads

F̄ j =
0

NJ

(
uT
ξ s ξξ, j

Aξξ
Aξξ + s ξξ

uξ

)
~k j . (30)

Equation (30) is a natural extension of Eq. (19) of Ref. [9].
Interestingly, the two-level atom case is also covered within
the present formalism. To this aim, it is enough to consider
J g = J e = 0 and to open artificially the forbidden 0-0 transition
by forcing C(0)0 to 1. All equations above then merely simplify to
the two-level atom formalism of Ref. [9].

To illustrate our formalism, we show how the stimulated
bichromatic force in a standard four traveling-wave configu-
ration [30] compares between the two-level [9] and multilevel
atom cases for several atomic structures. Light with pure π
polarization (ε j = π , ∀ j ) was considered for the comparison.
We show in Fig. 1 the value of the resulting bichromatic force
(averaged over the 2π range of the spatially varying relative
phase between the opposite waves) acting in the direction of the
phased wave on a moving atom as a function of its velocity v for
1J = 1 with J g = 1/2, 1, . . . , 4. Figure 1 shows that the π
polarization case yields poorer results than the ideal two-level
atom case.

3. SPECIFIC REGIMES

The general expression of the mean photon absorption rate
[Eq. (29)] can be interestingly simplified in several specific
regimes. We investigate some emblematic cases in the next
subsections.

A. Low-Intensity Regime

We define the low-intensity regime as the regime where∑
j |� j |/0� 1 (this requires that the sum of field inten-

sities be much smaller than the transition saturation intensity

Fig. 1. Stimulated bichromatic force F as a function of the atomic
velocity v computed via our formalism for a detuning δ = 100, a Rabi
frequency of

√
3/2δ, a phase shift of π/2 for one wave, ε j = π , ∀ j ,

and J g = 1/2, 1, ... , 4 with1J = 1.

[31]). In this regime, and provided the matrices W (n,m)
ξξ remain

small enough [32], we have s ξξ, j ' s̃ ξξ, j and R̄ j can be directly
computed without solving the infinite system in Eq. (22) [33].
With all distinct frequencies, this implies [see Eq. (20)]

s ξξ, j ' Re

∑
q ,q ′

(
� j ,q�

∗

j ,q ′/0

0/2− iδ j

)
(Cξξ )

q
q ′

 . (31)

Otherwise, coherent effects can be observed. The
only incoherent contribution is obtained with an aver-
aging 〈·〉ϕ over all phase differences. For N = 2 with
ε1 = σ

+ and ε2 = σ
−, we get in particular R̄ inc

j ≡ 〈R̄ j 〉ϕ '

0N−1
J uT

ξ 〈s̃ ξξ, j 〉ϕ(Aξξ +
∑

i 〈s̃ ξξ,i 〉ϕ)
−1 Aξξuξ . For such

polarization vectors, we further have 〈s̃ ξξ, j 〉ϕ =

Re[(|� j |
2/0)/(0/2− iδ j )(Cξξ )

q j
q j ], where q1 = 1=−q2.

Since (Cξξ )
q
q has the block-diagonal structure (see Appendix B)

(Cξξ )
q
q =

(
(C pp)

q
q 0

0 (CZ Z)
q
q

)
, (32)

with (Cζ ζ )
q
q =−C (q)

ζ o C (q)∗

oζ (ζ = p, Z), it follows that 〈s̃ ξξ, j 〉ϕ

has the same block-diagonal structure. In addition, Aξξ
behaves similarly, and since all (C pp)

q
q matrix elements are

real numbers, R̄ inc
j simplifies to R̄ inc

j ' 0N−1
J s j f j (s 1, s 2),

with s j ≡ (|� j |
2/2)/(02/4+ δ2

j ) and f j (s 1, s 2)=

uT
p (C pp)

q j
q j (A pp +

∑2
i=1 s i (C pp)

qi
qi )
−1 A ppup .

B. Plane Waves with the Same Frequency

In this case, any periodic regime is a strict stationary regime
(R (n)j = 0, ∀n 6= 0), and s ξξ, j [see Eq. (24)] simplifies to

Re[
∑

q ,q ′(s j )
q ′
q (Cξξ )

q
q ′ ], where (s j )

q ′
q is the second-order ten-

sor (� j ,q�
∗

q ′/0)/(0/2− iδ), with δ ≡ δ j , ∀ j . Here, �q is
independent of time and merely identifies to

∑
j � j ,q .

For N = 1, the index j = 1 can be omitted, and we get

s q ′
q = s (1+ 2iδ/0)εqε

∗

q ′ with s = (|�|2/2)/(02/4+ δ2)

and R̄ = 0N−1
J uT

ξ fξξ (Aξξ + fξξ )−1 Aξξuξ , where we set

fξξ ≡ Re[
∑

q ,q ′ s
q ′
q (Cξξ )

q
q ′ ]. For a given atomic structure and

in contrast to Aξξ and uξ , the fξξ matrix depends on s , ε, and δ
(at constant s ): fξξ ≡ fξξ (s , ε, δ). We can thus expect the same
for R̄ that is dependent on fξξ : R̄ ≡ R̄(s , ε, δ). However, this is
not exactly the case: at constant s , R̄ does not depend on δ. We
have [34]

R̄(s , ε, δ)= R̄(s , ε, 0). (33)

C. Plane Waves with the Same Pure Polarization

If all plane waves have the same pure polarization q (ε j = eq ,
∀ j ), then each W (n,m)

ξξ matrix is block-diagonal with blocks

W (n,m)
pp and W (n,m)

Z Z of dimensions dim xp × dim xp and
dim xZ × dim xZ , respectively, because so are the (Cξξ )

q
q

matrices, with corresponding blocks (C pp)
q
q and (CZ Z)

q
q . In

addition, the dim xZ last components of the dξ vector vanish,
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and its dim xp first components are denoted hereafter by dp .
Equation (19) then yields the decoupled system

x(n)p +
∑

m∈M0

W (n,m)
pp x(n+m)

p = dpδn,0,

x(n)Z +
∑

m∈M0

W (n,m)
Z Z x(n+m)

Z = 0
(34)

which can be solved separately for the x(n)p and x(n)Z Fourier

components. The x(n)Z components satisfy a homogeneous
system with trivial solution x(n)Z = 0, ∀n. This implies that
the dim xZ last components of z(n)ξ are zero, and then the

Q(n)
ξξ matrix is block-diagonal with blocks Q(n)

pp and Q(n)
Z Z of

dimensions dim xp × dim xp and dim xZ × dim xZ , respec-
tively. As a consequence, σ (n)ξξ, j are in turn block-diagonal

with the same structure, ∀n, and so are s (n)ξξ, j with correspond-

ing blocks s (n)pp, j and s (n)Z Z, j . In particular, Eqs. (23) and (27)

yield x(0)p =−N−1
J (A pp + spp)

−1 A ppup and R (n)j = 0N−1
J

uT
p s (n)pp, j (A pp +spp)

−1A ppup , respectively, with spp=
∑

j spp, j ,

where spp, j ≡ s (0)pp, j .
In the low-intensity regime and with all dis-

tinct frequencies, we get spp, j ' s j (C pp)
q
q and R̄ j =

0N−1
J s j uT

p (C pp)
q
q (A pp + s (C pp)

q
q )
−1 A ppup , respectively,

with s =
∑

j s j and s j = (|� j |
2/2)/(02/4+ δ2

j ).

D. Plane Waves with the Same Frequency and Pure
Polarization

If all plane waves have the same frequency and the same pure
polarization q ,�(t) is independent of time with an amplitude
�=

∑
j � j , and R̄ j simplifies to

R̄ j =
0

2
s j

a1J ,J g ,q

b1J ,J g ,q + s
, (35)

with s j = Re[(� j�
∗/0)/(0/2− iδ)], s =

∑
j s j , and where

δ ≡ δ j ,∀ j . For1J = 1, or1J = 0 with q = 0 and half-integer
J g , a1J ,J g ,q = 1 and

b1J ,J g ,q =
det[Aq

pp,+] + (−1)2J g det[Aq
pp,−]

det[Aq
pp,+] − (−1)2J g det[Aq

pp,−]
, (36)

with Aq
pp,± ≡ A pp ± (C pp)

q
q . For 1J = 0 with q 6= 0 or

integer J g , a1J ,J g ,q = b1J ,J g ,q = 0. In particular, we have
b1,J g ,±1 = 1. For1J = 1, Eq. (35) yields

R̄ j =


0
2

s j
1+s for q =±1,

0
2

s j
b1,Jg ,0+s for q = 0.

(37)

For q =±1, in the periodic regime, the atom is pumped into
the |J g ,mg =±J g 〉 state from which it interacts only with the
|J e ,me =±J e 〉 state through the radiation action. The atom
then exactly behaves as a two-level system. For q = 0, all popu-
lations are nonzero apart from me =±J e and the result is more
subtle. For1J = 0, Eq. (35) yields R̄ j = 0 for q =±1 and

R̄ j =


0 if Jg is integer,

0
2

s j
b0,Jg ,0+s if Jg is half-integer,

(38)

(a) (b)

Fig. 2. Values of (a) b1,J g ,0 and (b) b0,J g ,0 as a function of J g .

for q = 0. For q =±1, the atom is pumped into the
|J g ,mg =±J g 〉 state on which σ± radiation has no effect. For
q = 0 and integer J g , since the Clebsch–Gordan coefficient C(0)0
is zero whatever J g , the atom is pumped into the |J g ,mg = 0〉
state from which π radiation has no effect. For q = 0 and
half-integer J g , all populations are nonzero. We recall that our
formalism does not apply for all plane waves with same polari-
zation in the 1J =−1 case [since det(A(0)ξξ + B (0,0)ξξ )= 0].
Equations (37) and (38) perfectly reproduce the results of
Ref. [10] that investigate those specific configurations. We show
in Fig. 2 the parameters b1,J g ,0 and b0,J g ,0 as a function of J g .

E. Two-Frequency Case

For N plane waves with only two distinct frequencies ω and
ω′, the system can be tackled in a continued fraction approach
as in the two-level atom case [9], though with a matrix for-
malism. Within the commensurability assumption, we get
nκ = n′κ ′, with n and n′, two positive coprime integers, and
κ [κ ′], the cumulative weight

∑
j κ j of plane waves of fre-

quencyω [ω′]. This yieldsωc = |ω−ω
′
|/ns , with ns = n + n′,

ω− ω̄=mωc , ω′ − ω̄=m′ωc , with m = sgn(ω−ω′)n,
m′ = sgn(ω′ −ω)n′, and M0 = {±ns }. The Fourier compo-
nents x(n)ξ that obey the infinite system in Eq. (19) subdivide in
two decoupled groups: a first group of components of indices
n = kns (k ∈Z) and the group of all remaining ones (n 6= kns ).
The components of the first group get coupled between each
other through the system

x(n)ξ +W (n,ns )
ξξ x(n+ns )

ξ +W (n,−ns )
ξξ x(n−ns )

ξ = dξδn,0. (39)

The components of the second group satisfy a homogeneous
system and merely vanish. Therefore, the only a priori nonzero
Q(n)
ξξ matrices are for the n indices of the first group, and

similarly for the R (n)j and F(n)j Fourier components (as for
two-level atoms [9]). As long as one can define the matri-
ces Q(n,m)

ξξ that map x(n)ξ onto x(n+m)
ξ , ∀m, n: Q(n,m)

ξξ x(n)ξ =

x(n+m)
ξ , Eq. (39) yields, ∀n = kns 6= 0, Q(n−ns ,ns )

ξξ =

−W (n,−ns )
ξξ /(1ξ +W (n,ns )

ξξ Q(n,ns )
ξξ ), where A/B ≡ B−1 A. This

implies Q(ns )
ξξ =−W

(ns ,−ns )
ξξ /[1ξ +K∞k=1(Pξξ,k/1ξ )], with

Pξξ,k =−W (kns ,ns )
ξξ W ((k+1)ns ,−ns )

ξξ and K∞k=1(Pξξ,k/1ξ )≡
Pξξ,1/(1ξ + Pξξ,2/(1ξ + Pξξ,3/ .. .)), provided all matrix
inverses hold. For n = kns with k > 1, Eq. (39) also
yields the recurrence relation Q((k+1)ns )

ξξ =−(Q(kns )
ξξ +

W (−kns ,ns )∗
ξξ Q((k−1)ns )

ξξ )/W (kns ,ns )
ξξ that allows for the



3250 Vol. 38, No. 11 / November 2021 / Journal of the Optical Society of America B Research Article

calculation of the remaining Q(kns )
ξξ along with all nonzero

Fourier components R (kns )
j and F(kns )

j .

4. CONCLUSION

In conclusion, we have extended the formalism of Ref. [9] to
the multilevel atom case, where Zeeman sublevels and arbitrary
light polarization are taken into account. In that context, we
have provided a general standardized and exact analytical for-
malism for directly computing in the asymptotic regime and
within the usual rotating wave approximation the mechanical
action experienced by a single multilevel atom lightened simul-
taneously by an arbitrary set of plane waves. By use of a Fourier
expansion treatment, we provided an exact analytical expression
of all Fourier components F(n)j describing the light forces in
the periodic regime if unique. In particular, we generalized the
expression of the steady mean net force from Eq. (1) to Eq. (30),
involving matrix quantities whose dimensions depend on the
atomic structure. In addition, we highlighted some simplifi-
cations that hold in specific regimes. The computation of the
Fourier components related to the light forces relies on the
solution of an algebraic system of equations and does not require
numerical integration of the OBEs with time.

APPENDIX A: REFERENCE FRAME ROTATION

The states |J g ,mg 〉 and |J e ,me 〉 are common eigen-

states of Ĵ
2

and Ĵ z, with Ĵ the total angular momentum
and Ĵ z its z component in the considered reference frame
S. If S is rotated according to Euler angles α, β, γ to
a new configuration S, the component Ĵ z transforms
to Ĵ z = R̂(α, β, γ ) Ĵ z R̂(α, β, γ )†, with the rota-

tion operator R̂(α, β, γ )= e−iα Ĵz/~e−iβ Ĵ y /~e−iγ Ĵz/~

[35]. Ĵ
2

remains unchanged, and the common eigen-

states of Ĵ
2

and Ĵ z read |Jk,mk〉 = R̂(α, β, γ )|Jk,mk〉

(k = e , g ). The elements of the basis transformation matrix
〈Jk,mk |Jk,m′k〉 are given by the so-called Wigner func-

tions D(Jk )

mk ,m
′
k
(α, β, γ )= e−i(mkα+m′kγ )d (Jk )

mk ,m
′
k
(β), with

d (J )m,m′(β)= Am,m′(J )Bm,m′(β)P
(m′−m,m′+m)
J−m′ (cos β), where

Am,m′(J )=
√
[(J +m′)!(J −m′)!]/[(J +m)!(J −m)!],

Bm,m′(β)= [sin(β/2)]m
′
−m
[cos(β/2)]m

′
+m , and where the

P (a ,b)
n (z) are the Jacobi polynomials [35]. If ρ(t) and ρ(t)

denote the density matrices of the atomic state ρ̂(t) in the
{|Jk,mk〉} and {|Jk,mk〉} bases, respectively, we get

ρ(t)=D(α, β, γ )†ρ(t)D(α, β, γ ), (A1)

with D(α, β, γ )=⊕k=e ,g D(Jk )(α, β, γ ), where
D(Jk )(α, β, γ ) is the unitary matrix of elements
D(Jk )

mk ,m
′
k
(α, β, γ ). It follows that the associated OBE column

vector x(t) transforms according to

x(t)= T(α, β, γ )x(t), (A2)

with the transformation matrix

T(α, β, γ )=
(

Too (α, β, γ ) 0
0 Tξξ (α, β, γ )

)
, (A3)

where

Tξξ (α, β, γ )=
(

Tpp(β) Tp Z(α, β)

TZp(β, γ ) TZ Z(α, β, γ )

)
, (A4)

with blocks Too (α, β, γ ), Tpp(β), Tp Z(α, β), TZp(β, γ ), and
TZ Z(α, β, γ ) as explicitly detailed below. The OBEs from
Eq. (11) in the S reference frame then read

d
dt

x(t)= A(t)x(t)+ b, (A5)

with

A(t)= T(α, β, γ )A(t)T(α, β, γ )−1 (A6)

and

b= T(α, β, γ )b. (A7)

Thanks to the orthogonality relations of the Clebsch–
Gordan coefficients, to the orthogonality of the
d (1)(β) matrices of elements d (1)m,m′(β), to the trans-
formation law of the spherical components of any
three-dimensional space vector v, (v1, v0, v−1)

T
=

D(1)(α, β, γ )T(v1, v0, v−1)
T , and to the identities

C(q)mg d (Je )
me ,mg+q (β)=

∑
q ′ C

(q ′)
me−q ′d

(J g )

me−q ′,mg
(β)d (1)q ′,q (β) and

C(q)me−q d
(J g )
me−q ,mg (β)=

∑
q ′ C

(q ′)
mg d (Je )

me ,mg+q ′(β)d
(1)
q ,q ′(β) (see,

e.g., Ref. [36]), which imply, ∀mk1 ,mk2 =−Jk, . . . , Jk

(k = e , g ),
∑

q C
(q)
mg1

d (Je )
me1 ,mg1+q (β)C

(q)
mg2

d (Je )
me2 ,mg2+q (β)=∑

q C
(q)
me1−q d

(J g )
me1−q ,mg1

(β)C(q)me2−q d
(J g )
me2−q ,mg2

(β), the explicit
calculation of Eqs. (A6) and (A7) yields, as expected,

A(t)=−0A0 + Im(�(t) · eC ) (A8)

and b= b, where eC =
∑

q C (q)eq , with eq the S lower-index
spherical basis, such that�(t) · eC =

∑
q �q (t)C

(q).
Similarly, the transformation law xo (t)= Too (α, β, γ )xo (t)

[see Eq. (A2)] directly yields the standard contravari-
ant transformation law (χ (1)

o
, χ (0)

o
, χ (−1)

o
)T =

D(1)(α, β, γ )†(χ (1)o , χ (0)o , χ (−1)
o )T that proves the vectorial

character ofχ o (t) [see Eq. (25)].

1. Too(α, β, γ ) BLOCK

In accordance with Eq. (8), the Too (α, β, γ ) block is
structured into vertically and horizontally ordered sub-
blocks T(1m,1m′)

oo (α, β, γ ), with respective indices 1m
and 1m′ both ranging from −(J e + J g ) to J e + J g . The
subblocks T(1m,1m′)

oo (α, β, γ ) read T̃(1m,1m′)
oo (β)⊗

U (1m,1m′)
+ (α, γ ), with matrix elements (T̃(1m,1m′)

oo (β))m,m′ =

d
(J g )

m′,m(β)d
(Je )
m′+1m′,m+1m(β) (m =m(1m)

− , . . . ,m(1m)
+ and

m′ =m(1m′)
− , . . . ,m(1m′)

+ ) and where

U (1m,1m′)
± (α, γ )=

(
c (1m,1m′)
± (α, γ ) s (1m,1m′)

± (α, γ )

∓s (1m,1m′)
± (α, γ ) ±c (1m,1m′)

± (α, γ )

)
,

(A9)
with c (1m,1m′)

± (α, γ )= cos(1m′α ±1m γ ) and

s (1m,1m′)
± (α, γ )= sin(1m′α ±1m γ ).
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2. Tpp(β) BLOCK

The Tpp(β) block is structured into four subblocks (one is zero)
as

Tpp(β)=

(
Tpe pe (β) 0
Tpg pe (β) Tpg pg (β)

)
, (A10)

with subblock elements (Tpe pe (β))me ,m′e = (d
(Je )

m′e ,me
(β))2,

(Tpg pe (β))mg ,m′e =−(d
(J g )

−J g ,mg
(β))2, and (Tpg pg (β))mg ,m′g =

(d
(J g )

m′g ,mg
(β))2 − (d

(J g )

−J g ,mg
(β))2, where mk,m′k =−Jk +

δk,g , . . . , Jk (k = e , g ).

3. TZp(β, γ ) BLOCK

The TZp(β, γ ) block is similarly structured into four subblocks
(among which one is zero) as

TZp(β, γ )=

(
TZe pe (β, γ ) 0
TZg pe (β, γ ) TZg pg (β, γ )

)
, (A11)

where the subblocks TZk pl (β, γ ) (k, l = e , g ) are them-
selves further divided [in accordance with Eq. (10)] into
vertically ordered subsubblocks T(1m)

Zk pl
(β, γ ) indexed with

1m = 1, . . . , 2Jk . The subsubblocks T(1m)
Zk pl

(β, γ ) read

T̃(1m)
Zk pl

(β)⊗ (cos(1m γ ),− sin(1m γ ))T , with matrix

elements (T̃(1m)
Ze pe

(β))me ,m′e=d (Je )

m′e ,me
(β)d (Je )

m′e ,me+1m(β),

(T̃(1m)
Zg pe

(β))mg ,m′e =−d
(J g )

−J g ,mg
(β)d

(J g )

−J g ,mg+1m(β),

and (T̃(1m)
Zg pg

(β))mg ,m′g = d
(J g )

m′g ,mg
(β)d

(J g )

m′g ,mg+1m(β)−

d
(J g )

−J g ,mg
(β)d

(J g )

−J g ,mg+1m(β), where mk =−Jk, . . . , Jk −1m
and m′k =−Jk + δk,g , . . . , Jk (k = e , g ).

4. TpZ(α, β) BLOCK

The Tp Z(α, β) block is structured into two diagonal subblocks
as

Tp Z(α, β)=

(
Tpe Ze (α, β) 0

0 Tpg Zg (α, β)

)
, (A12)

where the subblocks Tpk Zk (α, β) (k = e , g ) are themselves
further divided [in accordance with Eq. (10)] into hori-
zontally ordered subsubblocks T(1m)

pk Zk
(α, β) indexed with

1m = 1, . . . , 2Jk . The subsubblocks T(1m)
pk Zk

(α, β) read

T̃(1m)
pk Zk

(β)⊗ (cos(1m α), sin(1m α)), with matrix ele-

ments (T̃(1m)
pk Zk

(β))mk ,m
′
k
= 2d (Jk )

m′k ,mk
(β)d (Jk )

m′k+1m,mk
(β), where

mk =−Jk + δk,g , . . . , Jk and m′k =−Jk, . . . , Jk −1m.

5. TZZ(α, β, γ ) BLOCK

The TZ Z(α, β, γ ) block is similarly structured into two diago-
nal subblocks as

TZ Z(α, β, γ )=

(
TZe Ze (α, β, γ ) 0

0 TZg Zg (α, β, γ )

)
,

(A13)

where the subblocks TZk Zk (α, β, γ ) (k = e , g ) are
themselves divided [in accordance with Eq. (10)] into ver-

tical and horizontal subsubblocks T(1m,1m′)
Zk Zk

(α, β, γ ),
with respective indices 1m = 1, . . . , 2Jk and 1m′ =

1, . . . , 2J ′k . The subsubblocks T(1m,1m′)
Zk Zk

(α, β, γ ) read∑
ε=± T̃(1m,1m′)

Zk Zk ,ε
(β)⊗U (1m,1m′)

ε (α, γ ), with matrix ele-

ments (T̃(1m,1m′)
Zk Zk ,+

(β))mk ,m
′
k
= d (Jk )

m′k ,mk
(β)d (Jk )

m′k+1m′,mk+1m(β)

and (T̃(1m,1m′)
Zk Zk ,−

(β))mk ,m
′
k
= d (Jk )

m′k+1m′,mk
(β)d (Jk )

m′k ,mk+1m(β),

where mk =−Jk, . . . , Jk −1m and m′k =−Jk, . . . , Jk −

1m′ (k = e , g ).

APPENDIX B: EXPLICIT VALUE OF THE (Cξξ )
q
q′

MATRICES

The matrices (Cξξ )
q
q ′ =−C (q)

ξo C (q ′)∗
oξ are structured into four

blocks as

(Cξξ )
q
q ′ =

(
(C pp)

q
q ′ (C p Z)

q
q ′

(CZp)
q
q ′ (CZ Z)

q
q ′

)
, (B1)

with (Cr s )
q
q ′ =−C (q)

r o C (q ′)∗
o s (r , s = p, Z). These blocks are

themselves further divided into four subblocks as

(Cr s )
q
q ′ =

(
(Cre s e )

q
q ′ (Cre s g )

q
q ′

(Crg s e )
q
q ′ (Crg s g )

q
q ′

)
, (B2)

where again (Crk s l )
q
q ′ =−C (q)

rk o C (q ′)∗
o s l (k, l = e , g ). These

subblocks are detailed below.

1. (Cpkpl )
q
q′ SUBBLOCKS

For k, l = e , g , we have (C pk pl )
q
q ′ = (C̃ pk pl )

q
qδq ,q ′ , with

(C̃ pk pl )
q
q =−C̃ (q)

pk o C̃ (q)
o pl . The (C̃ pk pl )

q
q matrix elements are

indexed with the two numbers m =−Jk + δk,g , . . . , Jk and
m′ =−J l + δl ,g , . . . , J l . They are a priori only nonzero
if m − nkq ∈ {m(q)

− , . . . ,m(q)
+ }, in which case they read

explicitly [(C̃ pk pl )
q
q ]m,m′ = ñk(C(q)m−nkq )

2(δm,−J g+nkq +

ñlδm′,m+(nl−nk )q )/2. All (C pp)
q
q ′ matrix elements are real

numbers.

2. (CpkZl )
q
q′ SUBBLOCKS

For k, l = e , g , we have(
C pk Zl

)q
q ′ =

((
C̃ (1)

pk Zl

)q

q ′

(
C̃ (2)

pk Zl

)q

q ′
0
)

. (B3)

The 0 block is of dimension dim xpk ×
∑2J l

i=3 dim x(i)Zl
and,

for j = 1, 2,

(C̃ ( j )
pk Zl

)
q
q ′ =

{
0

dim xpk×dim x( j )
Zl

if |1q | 6= j ,

(Č ( j )
pk Zl

)
q
q ′ ⊗ (1, sgn(1q)i) otherwise,

(B4)
with 1q ≡ q ′ − q and (Č ( j )

pk Zl
)

q
q ′ =−C̃ (q)

pk o C̃ (q ,|1q |)
o Zl ,−sgn(1q)

for 1q 6= 0 (see Section 2). Hence, (C pk Zl )
q
q = 0, ∀q .
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The (Č ( j )
pk Zl

)
q
q ′ matrix elements are indexed with the two num-

bers m =−Jk + δk,g , . . . , Jk and m′ =−J l , . . . , J l − |1q |.
They are a priori only nonzero if m − nkq ∈ {m(q)

− , . . . ,m(q)
+ },

in which case they read explicitly [(Č ( j )
pk Zl

)
q
q ′ ]m,m′ =

(ñk ñlC(q)m−nkqC
(q ′)
m−nkq+(nl−1)1qδm′,m+(ñl q ′−ñkq− j )/2)/2.

3. (CZkpl )
q
q′ SUBBLOCKS

For k, l = e , g , we have

(CZk pl )
q
q ′ =

 (C̃
(1)
Zk pl

)
q
q ′

(C̃ (2)
Zk pl

)
q
q ′

0

 . (B5)

The 0 block is of dimension
∑2Jk

i=3 dim x(i)Zk
× dim xpl and,

for j = 1, 2,

(C̃ ( j )
Zk pl

)
q
q ′ =

{
0

dim x( j )
Zk
×dim xpl

if |1q | 6= j ,

(Č ( j )
Zk pl

)
q
q ′ ⊗ (1, sgn(1q)i)T otherwise,

(B6)
with (Č ( j )

Zk pl
)

q
q ′ =−C̃ (|1q |,q ′)

Zk o ,sgn(1q)C̃
(q ′)
o pl for 1q 6= 0, where

C̃ (|1q |,q ′)
Zk o ,ε =−C̃ (q ′,|1q |)T

o Zk ,ε
for ε =±1 (see Section 2). Hence,

(CZk pl )
q
q = 0, ∀q . The (Č ( j )

Zk pl
)

q
q ′ matrix elements are

indexed with the two numbers m =−Jk, . . . , Jk − |1q |
and m′ =−J l + δl ,g , . . . , J l . They are a priori only nonzero

if m − nkq − [1− sgn(1q)]1q/2 ∈ {m(q ′)
− , . . . ,m(q ′)

+ },
in which case they read explicitly [(Č ( j )

Zk pl
)

q
q ′ ]m,m′ =

(ñkC(q
′)

−J g
C(q)
−J g−(nk − 1)1qδm,−J g + (q ′ + ñkq− j )/2 +

ñk ñlC(q
′)

m′ − nl q ′
C(q)m′−nl q ′−(nk−1)1qδm′,m+(ñl q ′−ñkq+ j )/2)/4.

We note that (C pk Zl )
q
q ′ 6= −[(CZl pk )

q
q ′ ]

T .

4. (CZkZl )
q
q′ SUBBLOCKS

For k, l = e , g , we have

(CZk Zl )
q
q ′ =

∑
ε=±1

(C̃Zk Zl ,ε)
q
q ′ ⊗

(
1 −εi
εi 1

)

+ (C̃Zk Zl )
q
q ⊗

(
1 −qi
−qi −1

)
δq ′,−q , (B7)

with (C̃Zk Zl ,ε)
q
q ′ and (C̃Zk Zl )

q
q as described below.

If diagp(X 1, . . . , X n) denotes the rectangular matrix whose
elements are matrix blocks, with X 1, . . . , X n the only nonzero
such elements exactly located on the pth superdiagonal (or
subdiagonal if p < 0) of the rectangular matrix, then we have

(C̃Zk Zl ,ε)
q
q ′ = diag

−ε1q

(
(C̃ (1m−)

Zk Zl ,ε
)

q
q ′ , . . . , (C̃

(1m+)
Zk Zl ,ε

)
q
q ′

)
,

(B8)
where 1m− =max[1, 1+ ε1q ], 1m+ =1m− +
2 min(J e , J g )− 1, and, for 1m =1m−, . . . , 1m+,
(C̃ (1m)

Zk Zl ,ε
)

q
q ′ is a matrix block of dimension (dim x(1m)

Zk
/2)×

(dim x(1m−ε1q)
Zl

/2). These blocks are a priori only nonzero
for 1m + εq ≤ J e + J g , in which case they identify

to −C̃ (1m,q+ε1m)
Zk o ,ε C̃ (q+ε1m,1m−ε1q)

o Zl ,ε
, with matrix ele-

ments [(C̃ (1m)
Zk Zl ,ε

)
q
q ′ ]m,m′ = (ñk ñl/4)C(q)m−(1+ñk )q/2+(1−εñk )1m/2

C(q
′)

m+(1−εñl )1m/2−(ñkq−ñl1q+q ′)/2δm′,µ, where µ=m + (ñl q ′

−ñkq + ε1q)/2, m =−Jk, . . . , Jk −1m, and m′ =
−J l , . . . , J l −1m + ε1q .

We also have

(C̃Zk Zl )
q
q =


0(dim xZk /2)×(dim xZl /2)

if q = 0,(
(ČZk Zl )

q
q 0

0 0dk×dl

)
otherwise,

(B9)

with, for k = e , g , dk ≡
∑2Jk

i=2 dim x(i)Zk
/2= Jk(2Jk − 1), and

(ČZk Zl )
q
q =−C̃ (1,0)

Zk o ,−q C̃ (0,1)
o Zl ,q

. The (ČZk Zl )
q
q matrix elements

are indexed with the two numbers m =−Jk, . . . , Jk − 1 and
m′ =−J l , . . . , J l − 1. They read explicitly [(ČZk Zl )

q
q ]m,m′ =

(ñk ñl/4)C(q)m+(1−q)/2C
(−q)
m′+(1+q)/2δm′,m−(ñk+ñl )q/2.

The (CZk Zl )
q
q ′ subblocks are such that (CZ Z)

q
q ′ = [(CZ Z)

q ′
q ]

†

and (CZg Ze )
q
q ′ = [(CZe Zg )

q
q ′ ]

T ,∀q , q ′. In addition,
∑

q (CZ Z)
q
q

is a real matrix.
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