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Abstract. The quantum theory of the cold atom micromaser including the effects of gravity is established
in the general case where the cavity mode and the atomic transition frequencies are detuned. We show that
atoms which classically would not reach the interaction region are able to emit a photon inside the cavity.
The system turns out to be extremely sensitive to the detuning and in particular to its sign. A method
to solve the equations of motion for non resonant atom-field interaction and arbitrary cavity modes is
presented.

PACS. 42.50.-p Quantum optics – 42.50.Pq Cavity quantum electrodynamics; micromasers – 37.10.Vz
Mechanical effects of light on atoms, molecules, and ions

1 Introduction

The coupling of atomic motion to light is a topic of ma-
jor interest in quantum optics. The mechanical effects of
(laser) light on atoms can be exploited to cool, trap and
handle the atoms with a great accuracy [1] (see for exam-
ple [2] for manipulation of individual atoms with optical
tweezers). The achieved control on the atomic motion
gives rise to a host of applications, like the development of
new optical frequency standards based on single ions [3],
the realization of an atom laser [4], the possibility of im-
plementing electronic components with atoms (instead of
electrons) [5–7], or quantum information processing with
cold atoms and trapped ions [8]. In the last example, the
interplay between external (motional) and internal degrees
of freedom plays a prominent role. This is also the case in
the usual micromaser (see Fig. 1) when cold atoms rather
than thermal ones are sent through the cavity. Indeed,
in this regime a new type of induced emission has been
shown to occur because the wave behavior of the atoms
becomes important [9]. The resulting process called mi-
crowave amplification via z-motion-induced emission of
radiation (mazer) [9] has opened up a new chapter of mi-
cromaser physics [10–19]. In all these papers, gravity ef-
fects on the quantized atomic motion are not considered.
However, it has often been argued that the achievement of
the cold atom micromaser would be a formidable exper-
imental task as the atoms in this regime move so slowly
that they start exactly to be extremely sensitive to earth
gravity and are expected to fall down before entering or
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Fig. 1. Scheme of the horizontal micromaser.

leaving the cavity region, breaking the unidirectionality of
the atomic trajectories [20]. A possible way to deal with
gravity for the mazer action while keeping the atomic tra-
jectories one-dimensional is to consider a vertical geome-
try where the atoms are sent vertically in the direction of
the cavity, similarly to cavity QED experiments reported
in [21–28]. Recently, we established the quantum theory of
such a vertical mazer, taking into account gravity effects
on the vertical quantized atomic motion [29]. The theory
was written for two-level atoms in the resonant case where
the cavity mode frequency ω is equal to the atomic tran-
sition frequency ω0. Here, we remove this restriction and
investigate the effects of a detuning on the quantum evo-
lution of the combined atom-cavity system in a vertical
configuration where gravity action is taken into account.

The paper is organized as follows. In Section 2,
the Hamiltonian modeling our system is presented. The
properties of the induced emission probability of a pho-
ton inside the cavity are then presented in Section 3. The
connection with the classical regime is discussed. A brief
summary of our results is finally given in Section 4. In Ap-
pendix A, a technical derivation of a specific formula used
in our paper is derived. The method we have developed
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Fig. 2. Scheme of the vertical mazer.

to solve numerically the equations of motion of the mazer
in the non resonant case for any mode function is given in
Appendix B.

2 Model

2.1 The Hamiltonian

We consider a two-level atom moving in the gravity field
along the vertical z direction on the way to a cavity which
we define to be located in the range 0 < z < L (see
Fig. 2). No transverse motion is considered. The atom
is coupled nonresonantly to a single mode of the quan-
tized field present in the cavity. The atomic center-of-mass
motion is described quantum mechanically and the usual
rotating-wave approximation is made. The Hamiltonian
thus reads

H = �ω0σ
†σ + �ωa†a+

p2

2m
+mGz + �g u(z)(a†σ + aσ†),

(1)
where p is the atomic center-of-mass momentum along
the z-axis, m is the atomic mass, G is the acceleration
due to gravity, ω0 is the atomic transition frequency, ω
is the cavity field mode frequency, σ = |b〉〈a| (|a〉 and |b〉
are, respectively, the upper and lower levels of the two-
level atom), a and a† are, respectively, the annihilation
and creation operators of the cavity radiation field, g is
the atom-field coupling strength, and u(z) the cavity field
mode function. We denote in the following the detuning

ω−ω0 by δ, the cavity field eigenstates by |n〉, the global
state of the atom-field system at any time t by |ψ(t)〉, and
the classical height attained by an atom of energy E in
the gravity field by

hE ≡ E

mG . (2)

2.2 The wave functions

We introduce the orthonormal basis

|Γ+
n (θ)〉 = cos θ |a, n〉 + sin θ |b, n+ 1〉,

|Γ−
n (θ)〉 = − sin θ |a, n〉 + cos θ |b, n+ 1〉, (3)

with θ an arbitrary parameter. The |Γ±
n (θ)〉 states coin-

cide with the noncoupled states |a, n〉 and |b, n+ 1〉 when
θ = 0 and with the dressed states when θ = θn given by

cot 2θn = − δ

Ωn
, (4)

with the Rabi frequency

Ωn = 2g
√
n+ 1. (5)

We denote as |±, n〉 the dressed states |Γ±
n (θn)〉. The

Schrödinger equation reads in the z representation and
in the basis (3)

i�
∂

∂t
ψ+

n,θ(z, t) =
[
− �

2

2m
∂2

∂z2
+mGz + (n+ 1)�ω

− cos2 θ �δ + �g u(z)
√
n+1 sin 2θ

]
ψ+

n,θ(z, t)

+
[
�gu(z)

√
n+1 cos 2θ +

sin 2θ
2

�δ

]
ψ−

n,θ(z, t),

(6a)

i�
∂

∂t
ψ−

n,θ(z, t) =
[
− �

2

2m
∂2

∂z2
+mGz + (n+ 1)�ω

− sin2 θ �δ − �gu(z)
√
n+1 sin 2θ

]
ψ−

n,θ(z, t)

+
[
�gu(z)

√
n+1 cos 2θ +

sin 2θ
2

�δ

]
ψ+

n,θ(z, t),

(6b)

with
ψ±

n,θ(z, t) = 〈z, Γ±
n (θ)|ψ(t)〉. (7)

We get for each n two coupled partial differential equa-
tions. In the resonant case (δ = 0), these equations may
be decoupled over the entire z-axis when working in the
dressed state basis and the atom-field interaction reduces
to an elementary scattering problem in the presence of
the gravitational field over a potential barrier and a po-
tential well defined by the cavity [29]. In the presence of
a detuning, this is no longer the case: there is no basis
where equations (6) would separate over the entire z-axis
and the interpretation of the atomic interaction with the
cavity as a scattering problem over two potentials is less
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obvious as it is also the case when gravity is not taken
into account [16].

In the noncoupled state basis (θ = 0), equations (6)
read

i�
∂

∂t
ψa

n(z, t) =
[
− �

2

2m
∂2

∂z2
+mGz

]
ψa

n(z, t)

+ �gu(z)
√
n+1 ψb

n+1(z, t),
(8a)

i�
∂

∂t
ψb

n+1(z, t) =
[
− �

2

2m
∂2

∂z2
+mGz + �δ

]
ψb

n+1(z, t)

+ �gu(z)
√
n+1 ψa

n(z, t),
(8b)

with

ψa
n(z, t) = ei(ω0+nω)t 〈z, a, n|ψ(t)〉, (9a)

ψb
n+1(z, t) = ei(ω0+nω)t 〈z, b, n+ 1|ψ(t)〉. (9b)

In equations (9), we have introduced the exponential fac-
tor ei(ω0+nω)t in order to define the energy scale origin
at the |a, n〉 level. If we assume initially a monoenergetic
excited atom coming upwards upon the cavity that con-
tains n photons, the atom-field system is described outside
the cavity by the wave function components (which cor-
respond to the eigenstate |φE〉 of energy E)

ψa
n(z, t) = e−iEt/� ϕa

E,n(z), (10a)

ψb
n+1(z, t) = e−iEt/� ϕb

E,n+1(z), (10b)

with ϕa
E,n(z) and ϕb

E,n+1(z) obeying

(
− �

2

2m
d2

dz2
+mGz − E

)
ϕa

E,n(z) =

− �gu(z)
√
n+1 ϕb

E,n+1(z), (11a)(
− �

2

2m
d2

dz2
+mGz − E + �δ

)
ϕb

E,n+1(z) =

− �gu(z)
√
n+1 ϕa

E,n(z). (11b)

Introducing, for any length x, the dimensionless variable

x̃ ≡ x/� (12)

with

� =
(

2m2G
�2

)−1/3

, (13)

equations (11) read
(

d2

dz̃2
− z̃ + h̃E

)
ϕa

E,n(z̃) = h̃int u(z̃)ϕb
E,n+1(z̃), (14a)

(
d2

dz̃2
− z̃ + h̃E − δ̃

)
ϕb

E,n+1(z̃) = h̃int u(z̃)ϕa
E,n(z̃),

(14b)

where
h̃int = g̃

√
n+ 1, (15)

and
g̃ =

�g

mG� , δ̃ =
�δ

mG� . (16)

The characteristic length � (Eq. (13)) gives the spatial
scale of the oscillations of the wave function of a particle in
the gravitational field near its turning point. For rubidium
atoms, � � 0.3μm and, roughly, the dimensionless variable
δ̃ is numerically equal to the detuning δ/2π expressed in
kHz. Similarly h̃E and L̃ yield the classical height hE and
the cavity length L, respectively, in thirds of μm [29].

Outside the cavity, the mode function u(z) vanishes
and equations (14) read

(
d2

dz̃2
− z̃ + h̃E

)
ϕa

E,n(z̃) = 0, (17a)
(

d2

dz̃2
− z̃ + h̃E − δ̃

)
ϕb

E,n+1(z̃) = 0. (17b)

The solutions to equations (17) are given by linear com-
binations of Airy Ai and Bi functions [30] and may be
written in the form

ϕa
E,n(z) =

{
aa

E,n Ai(z̃ − h̃E) z > L

U(z̃ − h̃E) + da
E,n D(z̃ − h̃E) z < 0

(18)

ϕb
E,n+1(z) =

{
ab

E,n+1 Ai(z̃ − h̃E + δ̃) z > L

db
E,n+1 D(z̃ − h̃E + δ̃) z < 0

(19)

with

U (z̃) = Ai (z̃) + iBi (z̃) (20a)
D (z̃) = Ai (z̃) − iBi (z̃) (20b)

Equations (18) and (19) underline that the wave functions
below the cavity consist of an upward and a downward
wave (U and D, respectively). Indeed, the probability cur-
rent densities associated to these two waves are respec-
tively given by

j = ± �

πm�
. (21)

For large negative z̃ − h̃E values, these two waves behave
similarly to plane waves with a z dependent wave vec-
tor [29].

Consequently, the following interpretation must be
given to solutions (10). The excited atom coming upwards
upon the cavity will be found propagating downwards in
the upper state or in the lower state with amplitude da

E,n

and db
E,n+1, respectively. However, in contrast to the res-

onant case, the atom propagating downwards in the lower
state |b〉 possesses a total external energy E−�δ different
from its initial value E. The atomic transition |a〉 → |b〉
induced by the cavity is responsible for a change of the
total external atomic energy. According to the sign of the
detuning, the cavity will either provide energy to the atom
(for δ < 0) or remove energy from the atom (for δ > 0).
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This results merely from energy conservation. When, af-
ter leaving the cavity region, the atom is passed from the
excited state |a〉 to the lower state |b〉, the photon number
has increased by one unit in the cavity and the internal
energy of the atom-field system has varied by the quantity
�ω − �ω0 = �δ. This variation needs to be exactly coun-
terbalanced by the external energy of the system, i.e., the
total external atomic energy.

Inside the cavity, the problem is much more complex
since we have two coupled partial differential equations.
In the special case of the mesa mode function (u(z) = 1
inside the cavity, 0 elsewhere), the problem is, however,
greatly simplified. In the dressed state basis (θ = θn), the
Schrödinger equations (6) take the following form inside
the cavity:

i�
∂

∂t
ψ±

n (z, t) =
[
− �

2

2m
∂2

∂z2
+mGz + V ±

n

]
ψ±

n (z, t) (22)

with
ψ±

n (z, t) = ei(ω0+nω)t〈z,±, n|ψ(t)〉 (23)

and

V +
n = sin2 θn �δ + �g

√
n+ 1 sin 2θn, (24a)

V −
n = �δ − V +

n . (24b)

Using equation (4), we have the well-known relations [31]

sin θn =
√

Ω′
n+δ√

2Ω′
n

, tan θn =
√

Ω′
n+δ

Ω′
n−δ ,

cos θn =
√

Ω′
n−δ√

2Ω′
n

, cot θn =
√

Ω′
n−δ

Ω′
n+δ ,

(25)

with the generalized Rabi frequency

Ω′
n =

√
Ω2

n + δ2. (26)

We thus have

V +
n = �g

√
n+ 1 tan θn, (27a)

V −
n = −�g

√
n+ 1 cot θn. (27b)

The exponential factor ei(ω0+nω)t has been introduced as
well in equation (23) in order to define the same energy
scale inside and outside the cavity. The positive inter-
nal energy V +

n increases with positive detunings and vice
versa with negative ones. For large positive (resp. nega-
tive) detunings, V +

n tends to the |b, n + 1〉 (resp. |a, n〉)
state energy.

The most general solution of equation (22) is given by

ψ±
n (z, t) = e−iEt/� ϕ±

E,n(z) (28)

with

ϕ±
E,n(z) = A±

n Ai(z̃−h̃E+h̃±n )+B±
n Bi(z̃−h̃E+h̃±n ), (29)

where A±
n et B±

n are complex coefficients and h±n =
V ±

n /mG, i.e.

h+
n = hint tan θn, (30a)

h−n = −hint cot θn. (30b)

From equation (3), we may express the wave function com-
ponents of the atom-field state inside the cavity over the
non-coupled state basis. We have

ψa
n(z, t) = cos θnψ

+
n (z, t) − sin θnψ

−
n (z, t), (31a)

ψb
n+1(z, t) = sin θnψ

+
n (z, t) + cos θnψ

−
n (z, t). (31b)

This allows us to find the wave function components of
the eigenstate |φE〉 over the entire z-axis. The relations
(10) hold with

ϕa
E,n(z) =

⎧⎪⎪⎨
⎪⎪⎩

aa
E,n Ai(z̃ − h̃E) z > L,

ϕa
E,n(z)

∣∣
c

0 � z � L,

U(z̃ − h̃E) + da
E,n D(z̃ − h̃E) z < 0,

(32)

ϕb
E,n+1(z) =

⎧⎪⎪⎨
⎪⎪⎩

ab
E,n+1 Ai(z̃ − h̃E + δ̃) z > L,

ϕb
E,n+1(z)

∣∣
c

0 � z � L,

db
E,n+1 D(z̃ − h̃E + δ̃) z < 0,

(33)

and

ϕa
E,n(z)

∣∣
c

=

cos θn

(
A+

n Ai(z̃ − h̃E + h̃+
n ) +B+

n Bi(z̃ − h̃E + h̃+
n )

)

− sin θn

(
A−

n Ai(z̃ − h̃E + h̃−n ) +B−
n Bi(z̃ − h̃E + h̃−n )

)
,

(34a)

ϕb
E,n+1(z)

∣∣
c

=

sin θn

(
A+

n Ai(z̃ − h̃E + h̃+
n ) +B+

n Bi(z̃ − h̃E + h̃+
n )

)

+ cos θn

(
A−

n Ai(z̃ − h̃E + h̃−n ) +B−
n Bi(z̃ − h̃E + h̃−n )

)
.

(34b)

The coefficients aa
E,n, ab

E,n+1, d
a
E,n, db

E,n+1, A
+
n , A−

n , B+
n ,

and B−
n in expressions (32–34) are found by imposing the

continuity conditions on the wave function and its first
derivative at the cavity interfaces.

3 Induced emission probability

In this section, we derive a formula for the induced emis-
sion probability of a photon inside the cavity. To this end,
we will use simple physical arguments rather than a rigor-
ous treatment based on wavepackets like in reference [29]
as these two approaches give the same result. According to
equations (32–33) a monoenergetic excited atom coming
upwards with unit amplitude upon the cavity that con-
tains n photons is found to move back downwards below
the cavity in the |a〉 state with amplitude da

E,n and simi-
larly in the |b〉 state with amplitude db

E,n+1. As the prob-
ability current density of the downward wave does not
depend on the energy (see Eq. (21)), the induced emission
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probability Pem(n) of a photon inside the cavity contain-
ing initially n photons is simply given by

Pem(n) =
∣∣db

E,n+1

∣∣2 , (35)

and one has ∣∣db
E,n+1

∣∣2 +
∣∣da

E,n

∣∣2 = 1. (36)

As shown in Appendix A, this probability can be ex-
pressed as a function of the sole wave function component
ϕa

E,n of the excited atom inside the cavity through the
relation

Pem(n) = π2h̃2
int

∣∣∣∣
∫ +∞

−∞
u(z̃)ϕa

E,n(z̃)Ai
(
z̃ − h̃E + δ̃

)
dz̃

∣∣∣∣
2

,

(37)
valid for any mode function u(z). This relation will help
us giving a physical interpretation to our results.

Another relation involving the induced emission proba-
bility follows from a certain symmetry of Hamiltonian (1).
Denoting the induced emission probability for a total en-
ergy E and a detuning δ by Pem(h̃E , δ̃), it can be easily
proven that for any mode function u(z) we have

Pem(h̃E ,−δ̃) = Pem(h̃E + δ̃, δ̃). (38)

We study hereafter the properties of the induced emission
probability Pem(n) depending on whether the atomic
kinetic energy (or the lack of this energy) at the cavity
interfaces is much higher than the interaction energy
(|hE | � hint and |hE −L| � hint) or much lower. We call
each case the classical and quantum regime, respectively.

3.1 Classical regime: Rabi limit

At resonance (ω = ω0), it has been shown in reference [29]
that the induced emission probability (35) reduces, in the
classical regime (|hE | � hint and |hE −L| � hint), to the
well-known Rabi formula [32]

Pem(n) = sin2

(
Ωnτ

2

)
, (39)

where τ is the classical transit time of an atom of en-
ergy E through the cavity, indicating that way that the
quantization of the atomic motion is unnecessary in this
particular regime. The formula generalizing equation (39)
in the presence of a detuning δ can be easily derived using
the classical results of the interaction of a two-level atom
with a quantized electromagnetic field [32] and is given by

Pem(n)=
(
Ωn

Ω′
n

)2

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4 sin2 Ω′
nτ2
2

×
[
cos Ω′

nτ2
2 cos δT

2 − δ
Ω′

n
sin Ω′

nτ2
2 sin δT

2

]2

L < hE ,

sin2 Ω′
nτ1
2 0 � hE � L,

0 hE < 0,
(40)
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Fig. 3. Induced emission probability Pem with respect to the
cavity length (a) with and (b) without quantization of the
atomic motion (classical regime: h̃E = 1000, h̃int = 1 and
δ̃ = −0.2).

where τ1 and τ2 are the classical interaction times for
0 � hE � L and L < hE , respectively. For h̃E < 0,
the atom does not reach the cavity and no induced emis-
sion process can occur (the classical interaction time τ is
null). For 0 < h̃E < L̃, the atom turns back inside the
cavity and the interaction time τ1 does not depend on the
cavity length L. For h̃E > L̃, the atom passes twice inside
the cavity (upwards and downwards) and the interaction
time τ2 is L dependent. We will denote the time which
passed between the first and the second interaction by T .
In terms of dimensionless variables, these various times
are given by

Ω′
nτ2 =

√
δ̃2 + 4 h̃2

int

(√
h̃E −

√
h̃E − L̃

)
, (41)

Ω′
nτ1 = 2

√
δ̃2 + 4 h̃2

int

√
h̃E , (42)

δT = 2δ̃
√
h̃E − L̃. (43)

We illustrate in Figures 3a and 3b the induced emis-
sion probability Pem ≡ Pem(n) with respect to the cav-
ity length for h̃E � h̃int, respectively with and without
quantization of the atomic motion (Eqs. (35) and (40)
respectively). We observe that both results are in good
agreement, except in the region where L̃ ≈ h̃E . In this
region, |h̃E − L̃| is not much greater than h̃int and we
are out of the validity domain of the approximated ex-
pression (40). The small additional oscillations observed
in the induced emission probability curve where L̃ ≈ h̃E

are pure quantum effects originating from the quantiza-
tion of the atomic motion. These effects arise when the
cavity length fits nearly the classical turning points of the
atoms in the gravitational field. In this case, the potential
barrier and well V ±

n (z) play a significant role as the ki-
netic energy of the atoms is very small exactly where the
potential energy exhibits strong variations.
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Fig. 4. Induced emission probability with respect to the total
atomic energy for L̃ = 10, h̃int = 10 and n = 0.
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Fig. 5. Induced emission probability with respect to the cavity
length for h̃E = 1, h̃int = 100 and n = 0.

3.2 Quantum regime: mazer limit

In the quantum regime, the induced emission probabil-
ity Pem exhibits a completely different behavior. This is
first illustrated in Figures 4 and 5 that show Pem as a
function of the total atomic energy and the cavity length,
respectively, for nonvanishing detunings. Contrary to the
classical regime, narrow resonances are presently observed,
even in the negative energy domain (E < 0, i.e., hE < 0,
see Eq. (2)) where classically the atom does not reach
the cavity and cannot therefore emit any photon in there.
The existence of negative energy resonances reflects the
fact that the atom can still interact with the cavity field
for hE < 0 because of the tunnel effect. Indeed, we have
shown in [29] that at resonance (δ = 0) the total potential
felt by the atom in interaction with the cavity possesses
quasibound states of negative energy. Whenever such a
state energy matches the atomic E value, the atom can
enter the cavity by tunnel effect and emit a photon in
there. In the presence of a detuning, the emission proba-
bility resonances still exist but with a modified position,
amplitude, and width.

From a physical point of view, the behavior of the sta-
tionary wave functions ϕa

E,n(z̃) and ϕb
E,n+1(z̃) (Eqs. (32)

|ϕb
E,n+1(z̃)|2

|ϕa
E,n(z̃)|2

z̃
100-10

(a) h̃E = −1.90991 [Pem � 0.35]

|ϕb
E,n+1(z̃)|2

|ϕa
E,n(z̃)|2

z̃
100-10

(b) h̃E = − 2.2 [Pem � 0]

Fig. 6. Atomic probability densities |ϕa
E,n(z̃)|2 and

|ϕb
E,n+1(z̃)|2 for L̃ = 10, h̃int = 10, δ̃ = −1, and n = 0. The

grey area shows the cavity region.

and (33)) differs strongly depending on whether the value
of the total atomic energy E gives rise or not to a reso-
nance in the emission probability curve (see Fig. 4). This
is illustrated in Figures 6a and 6b that show the atomic
probability densities |ϕa

E,n(z̃)|2 and |ϕb
E,n+1(z̃)|2 inside

and outside the cavity (grey and white area respectively).
In the first case, the atom is launched upwards to the cav-
ity with a total energy h̃E = − 1.90991 matching a reso-
nance in the emission probability curve (see Fig. 4) and
the stationary wave functions ϕa

E,n(z̃) and ϕb
E,n+1(z̃) take

a significant value inside the cavity. Consequently, a strong
interaction between the atom and the cavity field can oc-
cur and the induced emission probability is significant,
according to equation (37). When considering a realistic
atomic wave packet, this effect is of course restricted to the
components of the wave packet for which h̃E falls within
the width of the resonance. Inversely, if the total atomic
energy does not match a resonance energy (Fig. 6b), the
stationary wave functions are almost zero inside the cav-
ity and no atom-field interaction can take place. In this
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δ̃ = 0.5δ̃ = 0δ̃ = −0.5

0.5

h̃E

P e
m
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0.75

0.5

0.25

0

Fig. 7. Induced emission probability with respect to h̃E for
h̃int = 10, n = 0, and L̃ � h̃E + h̃int.

case, the induced emission probability drops down to zero
according to equation (37).

3.2.1 Peak position

Figure 7 shows the induced emission probability for a pos-
itive, a negative and a null detuning. We observe that for
positive detunings, the emission probability peaks move
towards increasing energies while for negative ones it is
the opposite. According to equation (38), peaks for oppo-
site detunings ±δ̃ are separated in energy by δ̃ (0.5 in the
case of Fig. 7). From Figure 7 and further calculations, it
turns out that the peak energy shift caused by a detuning
±δ is in very good approximation given by ±δ̃/2.

3.2.2 Peak amplitude and width

Figure 8 shows how the peak amplitude evolves with re-
spect to the detuning for various fixed values of the to-
tal atomic energy. In contrast to the classical regime (see
Eq. (40)), the curves present a strong asymmetry with re-
spect to the sign of the detuning. This results from the
atomic energy variation �δ when the atom emits a pho-
ton inside the cavity (see Sect. 2.2). The smaller the total
atomic energy is, the more pronounced this asymmetry
is. The induced emission probability tends very rapidly to
zero for positive detunings, in contrast to what happens
for negative detunings. This behavior is already present
in equation (37) where the Airy Ai function decreases
much faster for large positive arguments than for large
negative arguments as can be seen from the asymptotic
expansions [30]

Ai(−z) =
z−1/4

√
π

sin
(
ξ +

π

4

)
+ O(

z−7/4
)

(44)

Ai(z) =
1

2
√
π
z−1/4e−ξ + O(

z−7/4e−ξ
)

(45)

h̃E = −1

h̃E = 1

h̃E = 3

δ̃

A

151050−5−10−15

1

0.75

0.5

0.25

0

Fig. 8. Amplitude A of the resonances in the induced emission
probability with respect to δ̃ for h̃int = 100 and n = 0. Circles
and crosses are the values computed from (46) for h̃E = 3 and
h̃E = 1 respectively.

δ̃ = −2

δ̃ = 2

2

h̃E

A

630−3−6

1

0.75

0.5

0.25

0

Fig. 9. Amplitude A of the resonances in the induced emission
probability with respect to h̃E for h̃int = 100 and n = 0.

valid for |z| � 1 and where ξ = 2
3z

3/2.

This asymmetry was also present in the absence of
gravity [16] (horizontal geometry, see Fig. 1). In refer-
ence [16], it had been shown that the induced emission
probability is strictly null for �δ > E. This results merely
from energy conservation. If the initial atomic kinetic en-
ergy E is lower than �δ, the transition |a, n〉 → |b, n+ 1〉
cannot take place (as it would remove �δ from the kinetic
energy) and no photon can be emitted inside the cavity. In
this case the emission process is completely blocked. In the
presence of gravity, there doesn’t exist such a threshold.
For instance, we can see in Figure 8 that the peak ampli-
tude for h̃E = 3 takes significant values beyond h̃δ = 3.
This is not really surprising since quantum mechanically
a particle of energy E moving freely in the gravity field is
described by the wave function ϕ(z̃) = NAi(z̃ − h̃E) and
has a nonvanishing probability of being found in the non-
classical region z > hE . This probability decreases how-
ever very fast as a function of the height z. This enables
us to understand qualitatively why the peak amplitude
decreases very rapidly but not sharply (no threshold as
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Fig. 10. Induced emission probability with respect to the cav-
ity length for h̃E = −1, h̃int = 10 and n = 0.
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Fig. 11. Induced emission probability with respect to the de-
tuning for h̃E = −2.5, h̃int = 100, n = 0, and L̃ � h̃E + h̃int.
For rubidium atoms, the central peak has a width of only
0.3 Hz.

in the case of the horizontal mazer) as a function of the
detuning for δ̃ > h̃E .

Figure 9 shows the peak amplitude with respect to the
total atomic energy for two opposite values of the detuning
δ̃ = ±2. According to equation (38), the curves have the
same shape and are merely shifted in energy by h̃E = 2.

We have observed that the peak amplitude only
slightly depends on the interaction height h̃int and that
it is well approximated by the following simple analytical
formula

A =
4
π2

∣∣∣U(−h̃E)D′(δ̃− h̃E)−D(δ̃− h̃E)U′(−h̃E)
∣∣∣−2

(46)

In Figure 8, we compare the peak amplitude derived from
equation (35) and computed from equation (46), respec-
tively. For h̃E = 3 and higher values of the energy, a good
agreement is observed. However, this agreement lowers as
the energy decreases.

Concerning the peak width, we have observed that
negative detunings increase the peak width while positive
ones decrease it (see for example Fig. 5).

δ̃

P e
m

3210−1−2−3

1

0.75

0.5

0.25

0

Fig. 12. Induced emission probability with respect to the de-
tuning for a sine mode with h̃int = 100, L̃ = 10 (solid line)
and for a Gaussian mode with h̃int = 10, L̃ = 1 (dashed line)
(h̃E = −2 and n = 0 in both cases).

δ̃ = −1

δ̃ = +1

h̃E

P e
m
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0.2

0

Fig. 13. Induced emission probability with respect to the total
atomic energy for a sine mode and h̃int = 10, L̃ = 10 and n = 0.

3.2.3 Cavity length effects

In the classical regime and in the positive energy domain,
the induced emission probability does not depend on the
cavity length L as soon as this length is greater than hE

(see Eq. (40)). In the quantum regime, this statement
must be revised and holds only when L � hE + h+

n . This
is illustrated in Figure 10 which shows the induced emis-
sion probability Pem with respect to the cavity length for
h̃E = −1 and h̃int = 10. For h̃δ = −1, Pem starts to be
constant only beyond L̃ = h̃E + h̃+

n � 8.512.

3.2.4 Detuning sensitiveness

Figure 11 displays the induced emission probability with
respect to the detuning. For realistic experimental pa-
rameters [11] and rubidium atoms, these resonances may
even become extremely narrow. Their width amounts only
0.3 Hz for h̃E = −2.5 and h̃int = 100. This could define
very useful metrology devices (atomic clocks for example)
based on a single cavity and with better performances
than what is usually obtained in the well-known Ramsey
configuration [33].
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3.3 Sine and Gaussian mode functions

The narrow resonances of the induced emission probabil-
ity observed in the quantum regime are not restricted to
the case of the mesa mode investigated so far here. Us-
ing numerical procedures (see Appendix B), we have com-
puted the solutions ϕa

E,n(z̃) and ϕb
E,n+1(z̃) of the station-

ary Schrödinger equation (14) for sine and Gaussian mode
functions (u(z) = sin(πz/L) for 0 < z < L, 0 elsewhere
and u(z) = e−(z−L/2)2/2σ2

with σ = L/
√

2, respectively).
We show in Figure 12 the related induced emission proba-
bility Pem with respect to the detuning. Again, we observe
sharp resonances whose width decreases with increasing
interaction height (hint).

As any mode function will give rise to such resonances
(provided h̃int is large enough), the resonances in the in-
duced emission probability will be a very general feature
of the vertical micromaser in the cold atom regime, in
contrast to what happens with the horizontal micromaser
where the induced emission probability characteristics are
much more mode dependent [11]. This defines a very in-
teresting property as it should help the experimenters to
observe the particular behavior of the induced emission
probability in the quantum regime, whatever the exact
mode function of the cavity. Another nice illustration of
the symmetry relation (38) is displayed in Figure 13, this
time for a sine mode function.

4 Summary

In this paper we have presented the quantum theory of the
vertical mazer for a non resonant atom-field interaction.
We have obtained analytical expressions for the wave func-
tion in the special case of a constant cavity mode function.
The properties of the induced emission probability in the
presence of a detuning have been discussed both in the
classical and the quantum regimes. The classical results
are well recovered for hot atoms for which the quantization
of the atomic motion is unnecessary. We have shown that
atoms which classically would not reach the interaction
region are able to emit a photon inside the cavity. In the
quantum regime, the mazer properties are not symmetric
with respect to the sign of the detuning and the system
exhibits a sharp response as a function of the detuning.
The induced emission probability has also been computed
for sine and Gaussian mode functions (see Appendix B for
the numerical procedure we have developed).

This work has been supported by the Belgian Institut Interuni-
versitaire des Sciences Nucléaires (IISN). J. Martin thanks
the Belgian FRIA for financial support and the University of
Liège where part of this work has been done. J. Martin also
thanks the French ANR (project INFOSYSQQ, contract num-
ber ANR-05-JCJC-0072) for funding.

Appendix A

In this appendix, we derive equation (37) which expresses
the induced emission probability as a function of the sta-
tionary wave function of the excited atom inside the cav-
ity. To this end, let us recall the equations of motion (14)
for the wave function components ϕa

E,n and ϕb
E,n+1 (see

Eq. (10))
(

d2

dz̃2
− z̃ + h̃E

)
ϕa

E,n(z̃) = h̃int u(z̃)ϕb
E,n+1(z̃), (A.1a)

(
d2

dz̃2
− z̃ + h̃E − δ̃

)
ϕb

E,n+1(z̃) = h̃int u(z̃)ϕa
E,n(z̃).

(A.1b)

To solve the problem numerically, the domain is restricted
to [z̃min, z̃max]. Outside this domain, the mode function
u(z̃) is regarded as null.

The outgoing Green function of the stationary
Schrödinger equation of a particle of energy E in the grav-
itational field, satisfying

(
d2

dz̃2
− z̃ + h̃E

)
GE(z̃|z̃′) = δ(z̃ − z̃′), (A.2)

is given by [34]

GE(z̃|z̃′) = −iπD(αE,−)Ai(αE,+) (A.3)

with

αE,± = −h̃E +
(z̃ + z̃′) ± |z̃ − z̃′|

2
. (A.4)

On the one hand, considering the right-hand side term
of equation (A.1b) as a source term and using Green
function (A.3), the wave function component ϕb

E,n+1(z̃)
is given at z̃ = z̃min by

ϕb
E,n+1(z̃min) = −iπh̃int D

(
z̃min − h̃E + δ̃

)

×
∫ +∞

−∞
u(z̃)ϕa

E,n(z̃)Ai
(
z̃ − h̃E + δ̃

)
dz̃ (A.5)

since by definition u(z̃) = 0 for z̃ < z̃min. On the other
hand, ϕb

E,n+1(z̃), which is continuous at z̃ = z̃min, is also
given by equation (19). Identification with equation (A.5)
then yields

db
E,n+1 = −iπh̃int

∫ +∞

−∞
u(z̃)ϕa

E,n(z̃)Ai
(
z̃ − h̃E + δ̃

)
dz̃

(A.6)
whose absolute value squared gives equation (37).

Appendix B

In this appendix, we describe the method we have de-
veloped to solve numerically the system (A.1) of coupled
differential equations with imposed boundary conditions.
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B.1 Boundary conditions

The continuity conditions of the wave function compo-
nents (18) and (19) and their first derivatives at the cavity
interfaces (z̃min and z̃max) read
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕa
E,n(z̃min) = U

(
z̃min − h̃E

)
+ da

E,n D
(
z̃min − h̃E

)
dϕa

E,n

dz̃ (z̃min) = U′(z̃min − h̃E

)
+ da

E,n D′(z̃min − h̃E

)
ϕb

E,n+1(z̃min) = db
E,n+1 D

(
z̃min + δ̃ − h̃E

)
dϕb

E,n+1
dz̃ (z̃min) = db

E,n+1 D′(z̃min + δ̃ − h̃E

)
(B.1)

and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕa
E,n(z̃max) = aa

E,n Ai
(
z̃max − h̃E

)
dϕa

E,n

dz̃ (z̃max) = aa
E,n Ai′

(
z̃max − h̃E

)
ϕb

E,n+1(z̃max) = ab
E,n+1 Ai

(
z̃max + δ̃ − h̃E

)
dϕb

E,n+1
dz̃ (z̃max) = ab

E,n+1 Ai′
(
z̃max + δ̃ − h̃E

)
(B.2)

From equation (B.2), we can construct the following
boundary conditions (BC)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕa
E,n(z̃max) = aa

E,n Ai
(
z̃max − h̃E

)
dϕa

E,n

dz̃ (z̃max) = aa
E,n Ai′

(
z̃max − h̃E

)
dϕb

E,n+1
dz̃ (z̃max) =

Ai′(z̃max+δ̃−h̃E)
Ai(z̃max+δ̃−h̃E) ϕ

b
E,n+1(z̃max)

(B.3)

B.2 Resolution scheme

We first introduce the vector −→ϕ (z̃) =(
ϕa

E,n(z̃), ϕb
E,n+1(z̃)

)T. Now, let −→ϕ 1(z̃) and −→ϕ 2(z̃)
be two vectors satisfying (14) with the boundary
conditions (at z̃ = z̃max)

(1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕa
E,n(z̃max) = Ai

(
z̃max − h̃E

)
dϕa

E,n

dz̃ (z̃max) = Ai′
(
z̃max − h̃E

)
ϕb

E,n+1(z̃max) = 0

dϕb
E,n+1
dz̃ (z̃max) = 0

(B.4)

and

(2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕa
E,n(z̃max) = Ai

(
z̃max − h̃E

)
dϕa

E,n

dz̃ (z̃max) = Ai′
(
z̃max − h̃E

)
ϕb

E,n+1(z̃max) = 1

dϕb
E,n+1
dz̃ (z̃max) =

Ai′(z̃max+δ̃−h̃E)
Ai(z̃max+δ̃−h̃E) .

(B.5)

The most general solution consistent with BC (B.3) is then
given by

−→ϕ right(z̃) = α−→ϕ 1(z̃) + (aa
E,n − α)−→ϕ 2(z̃) (B.6)

where α and aa
E,n are constants.

Next, let −→ϕ 3(z̃), −→ϕ 4(z̃) and −→ϕ 5(z̃) be three vectors
satisfying (14) with the boundary conditions (at z̃ = z̃min)

(3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕa
E,n(z̃min) = U

(
z̃min − h̃E

)
dϕa

E,n

dz̃ (z̃min) = U′(z̃min − h̃E

)
ϕb

E,n+1(z̃min) = 0

dϕb
E,n+1
dz̃ (z̃min) = 0,

(B.7)

(4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕa
E,n(z̃min) = D

(
z̃min − h̃E

)
dϕa

E,n

dz̃ (z̃min) = D′(z̃min − h̃E

)
ϕb

E,n+1(z̃min) = 0

dϕb
E,n+1
dz̃ (z̃min) = 0,

(B.8)

and

(5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕa
E,n(z̃min) = 0

dϕa
E,n

dz̃ (z̃min) = 0

ϕb
E,n+1(z̃min) = D

(
z̃min + δ̃ − h̃E

)
dϕb

E,n+1
dz̃ (z̃min) = D′(z̃min + δ̃ − h̃E

)
.

(B.9)

The most general solution consistent with BC (B.1) is then
given by

−→ϕ left(z̃) = −→ϕ 3(z̃) + da
E,n

−→ϕ 4(z̃) + db
E,n+1

−→ϕ 5(z̃). (B.10)

where da
E,n et db

E,n+1 are constants.
In order to determine the value of the constants α,

aa
E,n, da

E,n and db
E,n+1 appearing in (B.6) and (B.10), we

have to solve the system of equations formed by the conti-
nuity conditions of the wave function and its first deriva-
tive at an intermediate point z̃0 ∈ [z̃min, z̃max]{ −→ϕ left(z̃0) = −→ϕ right(z̃0)

−→ϕ ′
left(z̃0) = −→ϕ ′

right(z̃0).
(B.11)

Once this system has been solved, the value of the ampli-
tude db

E,n+1 is known and the induced emission probability
can be computed by use of equation (35).
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