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Abstract
We investigate the impact of dissipation, including energy relaxation and decoherence, on weak
measurements. While weak measurements have been successful in signal amplification, dissipation
can compromise their usefulness. More precisely, we show that in systems with a unique steady
state, weak values always converge to an expectation value of the measured observable as
dissipation time tends to infinity, in contrast to systems with multiple steady states, where the weak
values can remain anomalous, i.e. outside the range of eigenvalues of the observable, even in the
limit of an infinite dissipation time. In addition, we propose a method for extracting information
about the dissipative dynamics of a system using weak values at short dissipation times.
Specifically, we explore the amplification of the dissipation rate in a two-level system and the use of
weak values to differentiate between Markovian and non-Markovian dissipative dynamics. We also
find that weak measurements operating around a weak atom-cavity coupling can probe the atom
dissipation through the weak value of non-Hermitian operators within the rotating-wave
approximation of the weak interaction.

1. Introduction

Weak values are widely used in the context of weak measurements for their amplification capacity [1–3] and
the advantageous property of being complex numbers [4, 5]. However, as all quantum systems are open in
practice, dissipative effects can affect the amplification qualities of weak values [6]. In this paper, we explore
the impact of dissipation on weak measurements. We also look at how weak values, because they are complex
and unbounded, can be exploited to extract information on the dissipative dynamics of open quantum
systems, such as the dissipation rate or non-markovianity [7].

The protocol for quantum weak measurements involves four steps and requires a system of interest and a
meter (also called ancilla, or pointer), which is used to obtain information about the system [8]. First, the
initial state of the system is prepared through pre-selection. In the second step, a weak interaction takes place,
which is described by means of a unitary operator that involves both the meter and the system of interest,

Û= e−igtÂS⊗N̂, where ÂS is the system observable to be measured, N̂ is a meter operator, g is the interaction
strength, and t is the interaction time. Both the interaction strength and interaction time are assumed to be
small. This unitary operator is inspired by the von Neumann protocol [9], but any operator acting on a
continuous or discrete state space can act as the meter [10]. The unitary evolution entangles the system and
the meter. In the third step, post-selection is performed to select a particular final state for the system, which
involves a projective measurement and filtering. Finally, the meter wave function is read out. Let us consider
N̂ as the momentum operator. Two shifts appear in the meter wave function: the shift in position

representation is proportional to the real part of the weak value, Aw =
〈ψf|ÂS|ψi〉
〈ψf|ψi〉 , where |ψi 〉 and |ψf〉 are the
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pre- and post-selected states respectively, while the shift in momentum representation is proportional to the
imaginary part of the weak value. Weak values are unbounded complex numbers. When they diverge, they
can be used to amplify tiny signals [11–13]. However, to achieve amplification, the pre- and post-selected
states must be almost orthogonal. As a result, the experiment must be repeated multiple times to obtain
information about the weak value, because the closer the states are to orthogonality, the lower the probability
of post-selection [14]. However, because of the amplification, the resulting meter shift is much larger than it
would have been in the von Neumann protocol without post-selection [10].

In practice, quantum systems cannot be completely isolated. They always interact with the surrounding
environment. The study of these dynamics falls within the scope of open quantum systems theory, which
aims to understand how the interaction with the environment affects the system of interest [6, 15–17]. The
environment can usually be described in terms of bosonic modes and, in the Born–Markov and secular
approximations, the system’s dynamics can be modeled by a Lindblad master equation [6]

˙̂ρ=− i

h̄

[
ĤS, ρ̂

]
+
∑

i

γi

(
Ĉiρ̂Ĉ

†
i −

1

2

{
Ĉ†
i Ĉi, ρ̂

})
≡ L(ρ̂) , (1)

where Ĉi are a set of jump operators and γi are dissipation rates. In the following, to describe the time
evolution over a time t of the density operator ρ̂ governed by (1), we will use the superoperator notation
eLtρ̂. Equation (1) consists of two terms: the first term represents the unitary evolution of ρ̂ according to von
Neumann’s equation, while the second term, also notedD (ρ̂), accounts for the non-unitary dynamics
resulting from dissipation (energy relaxation, decoherence, dephasing…). The dissipatorD involves
dissipation rates γi, one for each dissipation channel present [6]. Our general framework described in
section 2 is compatible with a time-dependent dissipator, with time-dependent dissipation rates and jump
operators.

Wiseman introduced the concept of weak values in dissipative systems in the context of homodyne
measurements [18]. Since then, a few studies investigated weak measurements in open quantum systems.
Two studies focused on the detrimental effects of decoherence on weak values, in particular, on the
possibility that decoherence limits the sensitivity of sensors based on weak value amplification [19, 20].
Other research explored how Markovian environments prevent weak values from exhibiting anomalous
properties and how quickly this process occurs [20–23] (an anomalous weak value has a value different from
any average of the observable). Studies also sought to identify the optimal combination of a reservoir and a
quantum system that minimizes the detrimental effects of dissipation on weak values at any given time.
Non-Markovian environments appear to degrade the anomalous properties of weak values more slowly [24].

Our work expands upon previous studies by exploring the general limit of weak values at large
dissipation times. Furthermore, we study the case of systems with multiple steady states, such as the case of a
degenerate steady state, in the context of weak measurements, and show that these systems can preserve the
anomalous behavior of weak values even in the limit of infinite dissipation times.

In addition, we leverage the amplification properties of weak values at short dissipation times and small
dissipation rates to extract valuable information about the dissipation process. This approach sheds light on
the need to incorporate dissipation rates in the modeling of experiments, notably when constrained to short
durations. It enables an effective measurement of an amplified decay rate after a brief dissipation period.

We specifically focus on weak measurements where dissipation occurs after the weak interaction and
before post-selection. The sequence involves pre-selecting the system, applying a general unitary operator

Û= e−igtÂS⊗N̂, then allowing for dissipative dynamics during a time τ , and finally performing post-selection.
This scheme is present in any experimental setup with a time delay between the system-meter interaction and
post-selection. We assume that the duration of the weak interaction is sufficiently short, so that any
dissipation during this period is negligible.

We finally consider how our protocol would perform in a specific setup involving a two-level atom as the
system and a single-mode cavity field as the meter. The weak measurement relies on a small interaction
between the atom and the cavity field during the atom’s short transit through the cavity. Subsequently, the
atom undergoes dissipation through its interaction with the quantized radiation field of free space or another
(leaky) cavity through which it passes. Post-selection is then performed and the real and imaginary parts of
the weak value are measured by reading out the Q̂ or P̂ quadrature of the cavity field. The dissipation rate can
be inferred by measuring the meter state with the benefits of weak value amplification. Additionally, if the
dissipation process is non-Markovian, under certain circumstances, we show that it can be distinguished
from a Markovian one based on the amplified weak value.
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Section 2 develops the general theoretical framework. Section 3 discusses the asymptotic behavior of
weak values at long dissipation times. Section 4 studies in depth the weak measurement of a two-level atom
using a cavity field in the Rabi model, as an illustration. Section 5 shows how to probe dissipation dynamics
through weak value amplification, and discusses how weak values can reveal non-Markovianity. After
section 2, all parts of this work can be read independently.

2. General weak measurements with dissipation

In this section, we consider the general theory of weak measurements, following the procedure of [10], but
adding a dissipative evolution. The dissipation occurs during the time delay between the weak system–meter
interaction and the post-selection. The protocol consists of five steps: system pre-selection, weak interaction,
dissipative dynamics, post-selection on the system, and meter readout, as illustrated in figure 1. The
framework is very general, as it simply assumes that the dissipative dynamics are described by a generic
Lindbladian, which may depend on time.

2.1. Pre-selection and weak interaction
Consider that the initial state of the system is described by the density operator σ̂i and that of the meter by
µ̂0. The tensor product of the states of the system and the meter provides the state of the full composite
system, resulting in

ρ̂0 = σ̂i⊗ µ̂0. (2)

The full system evolution depends on three components: the system Hamiltonian ĤS, the meter (or ancilla)
Hamiltonian ĤA, and the interaction Hamiltonian

Ĥint = h̄gÂS⊗ N̂, (3)

where ÂS is the observable of interest acting in the system Hilbert space, N̂ is an operator acting in the meter
Hilbert space, and g is the interaction strength. In the interaction picture with respect to
Ĥ0 = ĤS⊗ 1̂+ 1̂⊗ ĤA, the density operator of the composite system evolves as

dρ̂I (t)

dt
=− i

h̄

[
V̂(t) , ρ̂I (t)

]
, (4)

where the interaction Hamiltonian and the global density operator are given in the interaction picture by

V̂(t) = e
iĤ0 t
h̄ Ĥint e

−iĤ0 t
h̄ , ρ̂I (t) = e

iĤ0 t
h̄ ρ̂0 e

−iĤ0 t
h̄ . (5)

The solution of equation (4) reads

ρ̂I (t) =
−→
T exp

[
− i

h̄

ˆ t

0
V̂(t ′)dt ′

]
ρ̂I (0)exp

[
i

h̄

ˆ t

0
V̂(t ′)dt ′

]
←−
T , (6)

where T is the time ordering operator. Given the small interaction strength g and the fact that V̂(t)∝ g, we
can expand the exponential in equation (6) in a Taylor series to first order in the interaction strength. As a
result, we can express the density operator at time t as follows

ρ̂I (t)≈
[
1̂− i

h̄

ˆ t

0
V̂(t ′)dt ′

]
ρ̂0

[
1̂+

i

h̄

ˆ t

0
V̂(t ′)dt ′

]
≈ ρ̂0 +

i

h̄
ρ̂0

ˆ t

0
V̂(t ′)dt ′− i

h̄

ˆ t

0
V̂(t ′)dt ′ρ̂0

= ρ̂0 +
i

h̄

[
ρ̂0,

ˆ t

0
V̂(t ′)dt ′

]
. (7)

Assuming that the weak interaction duration t is sufficiently short, the interaction Hamiltonian V̂(t ′) does
not vary much in this time interval. In these circumstances, we can make a series expansion of V̂(t ′) around
t/2 to first order:

V̂(t ′)≈ V̂(t/2)+ ˙̂V(t/2)(t ′− t/2) (8)

with ˙̂V(t/2) = dV̂
dt ′

∣∣
t ′=t/2

. Then, the density operator is given, at first order in time, by

ρ̂I (t)≈ ρ̂0 +
i

h̄

[
ρ̂0,

ˆ t

0
dt ′
(
V̂(t/2)+ ˙̂V(t/2)(t ′− t/2)

)]
= ρ̂0 +

i

h̄
t
[
ρ̂0, V̂(t/2)

]
, (9)
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Figure 1. Overview of the steps involved in the dissipative weak measurement protocol. The process begins with pre-selection of
the system, followed by the implementation of a weak measurement described through the unitary operator Û. After the weak
interaction, the system undergoes dissipation for a duration τ before a post-selection. Finally, the meter is readout to extract
information on the weak value.

since the integral of the second term is exactly 0. The first contribution neglected in (9) due to the

approximation (8) is of the order
(

i
2h̄

)2 1
3! t

3
[
Ĥ0,
[
Ĥ0, V̂(t/2)

]]
.

2.2. Dissipative dynamics and post-selection
After the unitary evolution of the composite system, the system S follows dissipative dynamics during a time
interval τ , while it is assumed that the meter does not undergo any dissipative process. The total density
operator ρ̂I (t+ τ) is given, after the dissipative evolution, by

ρ̂I (t+ τ) =
(
eDτ ⊗ 1̂

)
ρ̂I (t)≈

(
eDτ ⊗ 1̂

)(
ρ̂0 +

i

h̄
t
[
ρ̂0, V̂(t/2)

])
, (10)

where the dissipatorD has replaced the full Linbladian L because we are working in the interaction picture4.
Indeed, in the interaction picture, the evolution defined in (1) becomes ˙̂ρI =D (ρI). Note that the dissipator
remains identical to the one defined in the Schrödinger representation, as a result of the commutation rules
obeyed by the jump operators L̂i with the system Hamiltonian ĤS [25]. After the dissipation time τ , the
system is post-selected to the final state σ̂f. Post-selection is carried out by performing a projective
measurement and filtering the information relevant to the state σ̂f. At this point, the meter state is, in the
interaction picture,

µ̂f I (t+ τ) =
TrS
[(
σ̂f I (t+ τ)⊗ 1̂

)(
eDτ ⊗ 1̂

)
ρ̂I (t)

]

Tr
[(
σ̂f I (t+ τ)⊗ 1̂

)(
eDτ ⊗ 1̂

)
ρ̂I (t)

] , (11)

where TrS is the partial trace over the system degrees of freedom, and the post-selection operator in the
interaction picture depends on the post-selection time t+ τ as

σ̂f I (t+ τ) = e
i
h̄ ĤS(t+τ)σ̂fe

− i
h̄ ĤS(t+τ). (12)

In the remainder of this section, we will drop the explicit time dependence of σ̂f I (t+ τ) and note it σ̂f I for
simplicity.

The expression in the denominator of equation (11) corresponds to the probability of obtaining the
post-selected state σ̂f, given the state of the composite system ρ̂I (t+ τ). The denominator is equal to the

trace of the numerator, ensuring that the trace of the meter state is equal to 1. Using Ĥint = h̄gÂS⊗ N̂, the
denominator of equation (11) becomes, to first order in gt,

Tr
[(
σ̂f I⊗ 1̂

)(
eDτ ⊗ 1̂

)
ρ̂I (t)

]

≈ Tr
[
σ̂f I e

Dτ (σ̂i)
]
+ 2gt Im

(
Tr
[
σ̂f I e

Dτ
(
ÂSI(t/2) σ̂i

)]
Tr
[
µ̂0N̂I(t/2)

])

= Tr
[
σ̂f I e

Dτ (σ̂i)
](
1+ 2gtIm [AS,w (τ)]〈N̂I(t/2)〉0

)
, (13)

4 For simplicity, we omit here the Lamb shift Hamiltonian ĤLS, without loss of generality (see discussion 2.4). For clarity, we also note the
time evolution superoperator eDτ : for a time-dependent dissipator, the exponential operator eDτ (·) should be replaced everywhere by

the time-ordered integral operator
−→
T exp

´ t+τ
t D (τ ′)dτ ′ (·).

4
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where we have defined the weak value with dissipation, denoted AS,w (τ), as

AS,w (τ) =
Tr
[
σ̂f I eDτ

(
ÂSI(t/2) σ̂i

)]

Tr
[
σ̂f I eDτ (σ̂i)

] , (14)

and 〈N̂I(t/2)〉0 = Tr
[
µ̂0N̂I(t/2)

]
corresponds to the expectation value of the operator N̂I(t/2) in the initial

meter state µ̂0. Our definition (14) is very general and coincides with Wiseman’s definition in the special case
of homodyne measurements in cavity quantum electrodynamics (QED) [26]. We stress that the weak
value (14) has been calculated in the interaction picture and that the system and meter observables ÂS and N̂
appear thus as ASI(t/2) and NI(t/2), respectively. Their time dependence at t/2 results from the
approximation (8). The operator σ̂f I corresponds to the post-selected state σ̂f at time t+ τ in the interaction
picture, as expressed in equation (12). If we revert to the Schrödinger picture, we see that t/2 corresponds to
the effective time of the pre-selection and the post-selection for an instantaneous weak interaction that is
symmetric with respect to pre- and post-selection.

Similarly, for the numerator of equation (11), we obtain

TrS
[(
σ̂f I⊗ 1̂

)(
eDτ ⊗ 1̂

)
ρ̂I (t)

]

≈ Tr
[
σ̂f I e

Dτ (σ̂i)
]
µ̂0 + igt

{
Tr
[
σ̂f I e

Dτ
(
σ̂iÂSI

)]
µ̂0N̂I−Tr

[
σ̂f I e

Dτ
(
ÂSIσ̂i

)]
N̂Iµ̂0

}

= Tr
[
σ̂f I e

Dτ (σ̂i)
][
µ̂0 + igt

(
AS,w (τ)µ̂0N̂I−AS,w (τ) N̂Iµ̂0

)]
, (15)

where the interaction picture operators ÂSI and N̂I should be evaluated at time t/2, and where we used the
property [eDτ (Ô)]† = eDτ (Ô†), valid for any operator Ô.

By combining the denominator (13) and the numerator (15), the final meter density matrix is, at first
order in gt,

µ̂f I (t+ τ) =
µ̂0 + igt

(
AS,w (τ)µ̂0N̂I(t/2)−AS,w (τ) N̂I(t/2) µ̂0

)

1+ 2gt Im [AS,w (τ)]〈N̂I(t/2)〉0
. (16)

Up to a normalization constant, the final meter state can be expressed as the initial meter state µ̂0 plus a term
that depends on the pre-selected state, the observable, and the post-selected state. While this new term may
seem small in principle, as it depends on a small parameter gt, there are cases where the weak value AS,w (τ)
becomes large, specifically when its denominator is close to zero due to the near-orthogonality of the pre-
and post-selected states, resulting in a significant contribution to the meter state.

2.3. Meter measurement
To actually perform the weak measurement, one should measure the expectation value of a meter observable,
L̂. The measurement result will depend on the weak value that appears in the meter final state, as described
by equation (16). In the interaction picture, L̂ is given by

L̂I (t+ τ) = e
i
h̄ ĤA(t+τ)L̂ e−

i
h̄ ĤA(t+τ), (17)

while its expectation value takes the form

〈L̂〉f = Tr
(
L̂I (t+ τ) µ̂f I

)
=
〈L̂I(t+ τ)〉0 + 2gt Im

[
AS,w (τ)〈L̂I(t+ τ) N̂I(t/2)〉0

]

1+ 2gt Im [AS,w (τ)]〈N̂I(t/2)〉0
, (18)

where a procedure similar to [10] was followed to obtain the numerator expression. All expectation values
are computed with respect to the initial meter state µ̂0.

From now on, let us assume that the expectation value of the meter operator N̂I (t/2) in the meter initial
state is zero, that is, 〈N̂I(t/2)〉0 = 0. If this is not the case, we could possibly redefine and translate the meter
operator N̂ to satisfy 〈N̂I(t/2)〉0 = 0. When the meter free evolution is fully negligible during the short
interaction time t, this assumption states that the expectation value of the meter observable is zero in the
meter initial state, a natural calibration requirement imparted to the meter initial state. In the Schrödinger
picture, the assumption requires the expectation value of the meter observable N̂ to be zero in the state
µ̂0(t/2) resulting from the free evolution for a duration t/2 of the meter initial state µ̂0. In these conditions,
the meter expectation value at the end of the measurement is simply the numerator of (18), namely

〈L̂〉f = Tr
(
L̂I (t+ τ) µ̂f I

)
= 〈L̂I(t+ τ)〉0 + 2gt Im

[
AS,w (τ)〈L̂I(t+ τ) N̂I(t/2)〉0

]
. (19)

5
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In addition, if we select an initial meter density operator that commutes with the meter Hamiltonian, i.e.[
µ̂0,ĤA

]
= 0, the final meter average simplifies to

〈L̂〉f = 〈L̂〉0 + 2gt Im
[
AS,w (τ)〈L̂I(t/2+ τ) N̂〉0

]
, (20)

where only the operator L̂I remains in the interaction picture, evaluated at the effective time t/2+ τ . The
latter reflects the natural evolution under ĤA of the meter state perturbation due to the weak interaction. For
short dissipation times τ , this time dependence could be neglected whenever
i
h̄ (t/2+ τ)

〈[
ĤA, L̂

]
N̂
〉
0
* 〈L̂N̂〉0.

The shift in the expectation value of a general meter observable, L̂, as given by equation (19), depends on
both the real and imaginary parts of the weak value. It is enlightening to reformulate it in the following way:

〈L̂〉f = 〈L̂I〉0− i gtReAS,w (τ)
〈[
L̂I, N̂I

]〉
0
+ gt ImAS,w (τ)

〈{
L̂I, N̂I

}〉
0
, (21)

where the interaction operators should be evaluated at the appropriate times L̂I(t+ τ) and N̂I(t/2). This
expression makes the real and imaginary parts of the weak value appear explicitly. We can choose L̂ such that
〈L̂I(t+ τ)〉0 = 0, to ensure that the expectation value of L̂ is now directly proportional to the terms which
depend on the weak value. To separate the shifts due to the real and imaginary components, we can choose
specific meter observables. For instance, when the meter observable at time t+ τ is equal to the pointer at
time t/2, i.e. L̂I(t+ τ) = N̂I(t/2), the expectation value of the meter observable is proportional to the
imaginary part of the weak value. Indeed, in this case, the expectation value (21) reads

〈N̂〉f = 2gt〈N̂2
I (t/2)〉0 ImAS,w (τ) , (22)

where 〈N̂2
I (t/2)〉0 = Tr

[
µ̂0N̂2

I (t/2)
]
=∆2N̂I(t/2) += 0, considering that 〈N̂I(t/2)〉0 = 0. On the other hand,

when the meter observable, L̂= M̂, at time t+ τ is the canonical conjugate of the pointer at time t/2, such
that

[
M̂I(t+ τ) , N̂I(t/2)

]
= ih̄1̂, its expectation value has a term proportional to the real part of the weak

value. More specifically, we have

〈M̂〉f =
[
h̄gt ReAS,w (τ)+ gt

〈{
M̂I(t+ τ) , N̂I(t/2)

}〉
0
ImAS,w (τ)

]
, (23)

assuming that 〈M̂I(t+ τ)〉0 = 0. It is sometimes possible to choose the observables and the initial state in
such a way that we also have

〈{
M̂I(t+ τ) , N̂I(t/2)

}〉
0
= 0. This then leads to the expectation value of M̂

being directly proportional to the real part of the weak value. Using N̂ and M̂ as meter observables enables
separating the real and imaginary components of the weak value, which is often desirable in many
experimental setups. In addition, they enable describing the argument of the weak value [27, 28], here as a
function of the dissipation time τ , in the meter phase space [29]. In section 4, we will show how
equation (19) connects directly the meter measurement to the modulus and argument of the weak value. We
remind the reader that equations (19)–(23) were obtained under the assumptions that the expectation value
〈N̂I (t/2)〉0 = 0. If this is not the case, the denominator present in (18) should be kept. In particular, the
general expression for (21) is

〈L̂〉f =
〈L̂I〉0− i gtReAS,w (τ)

〈[
L̂I, N̂I

]〉
0
+ gt ImAS,w (τ)

〈{
L̂I, N̂I

}〉
0

1+ 2gtIm [AS,w (τ)]〈N̂I〉0
, (24)

with the appropriate time dependence L̂I(t+ τ) and N̂I(t/2).

2.4. Discussion
The main results of this section, namely equations (14), (19) and (21), as well as (24), describe the
consequences on weak measurements of dissipation occurring after the weak interaction, before
post-selection. These expressions ensue from the weak interaction approximation (8) and (9), that was used
in (13) and (15) to evaluate the meter reduced density matrix (11) to first order in gt, so that the meter shifts
are linear in the system observable ÂS.

By using expressions in the interaction picture, we also include the full treatment of the free Hamiltonian
evolution of both the system and the meter, which is required for describing long dissipation times τ .
Advantageously, by setting the post-selection operator as a constant (with respect to the effective pre- and
post-selection time) in the interaction picture, namely σ̂f I (t+ τ) = σ̂f I (t/2), we can suppress in practice the
effects of the system free evolution during time τ on the weak value, so that we can focus specifically on the
repercussions of dissipation, as analyzed later on in this paper.

6



Quantum Sci. Technol. 9 (2024) 035029 L Ballesteros Ferraz et al

The coupling of the system to the bath accounting for the emergence of the dissipatorD also generates a
unitary evolution described by a Lamb-shift Hamiltonian ĤLS. To take this perturbation explicitly into
account, the dissipator in the weak value expression (14) can be replaced by a Lindbladian
L(·) =− i

h̄ [ĤLS, · ] +D(·). Alternatively, we can incorporate the Lamb shift Hamiltonian into the interaction

picture, so that only the dissipator remains in (14). This is possible because ĤLS and ĤS commute. However,
as the jump operators in the dissipator do not generally commute with ĤLS, they would then depend on time
(in that case, the dissipative evolution in (14) should be expressed using a time-ordered operator: see
footnote in section 2.2). Finally, one could proceed from a purely phenomenological point of view and
renormalize the system Hamiltonian by assuming an energy level structure that incorporates the Lamb shifts
[30]. Then, one could use an ad hoc dissipator to describe the dynamics of the populations and coherences.

The dissipative dynamics occurring after the weak interaction is the most physically relevant and
interesting. Dissipation occurring between the state preparation and the weak interaction simply alters the
initial state defining the weak value. Weak values can then be anomalous by selecting an appropriate
post-selected state, although amplification may not be possible anymore if the state is too mixed at the
moment of the weak interaction. On the contrary, as discussed in the next section, dissipation occurring after
the weak interactions often prevents any asymptotic anomalousness. Dissipation during the weak interaction
is more tricky to handle but it can be done assuming that the short interaction time is also short with respect
to the dissipative dynamics. In essence, the first-order corrections to the weak value (14) are equivalent to
considering an effective instantaneous weak interaction at time t/2. For the numerator, before t/2, the
dissipator affects the initial state and, after t/2, it affects the product of the probed observable and the initial
state. In the denominator, the initial state is affected for the whole duration t. In essence, it all comes down to
two cases: dissipation before or after post-selection. However, because the dissipative dynamics may be
different during the weak interaction, taking it into account explicitly becomes overly cumbersome for our
purposes here, as it requires a second dissipator. More information can be found in appendix A.

3. Weak value evolution with post-selection time

In this section, we investigate the properties of the weak value of an arbitrary operator in the context of long
dissipation times. Previous studies have suggested that dissipation can destroy the anomalous properties of
the weak value [19–24], which means that weak values converge to values within the range of the eigenvalues
of the observable in the presence of dissipation. Our findings reveal that, in systems with a unique steady
state of the dissipative dynamics, the weak value approaches the expectation value of the operator as the
dissipation time tends to infinity. Furthermore, we demonstrate that the anomalous properties of the weak
value can persist at infinite dissipation time in systems with multiple steady states. Dissipation does not
always necessarily result in the loss of the amplification effect that the weak value can provide. For our
purposes, by steady we mean a state of the system that does not evolve under the effect of the non-unitary
dynamics generated by the dissipator; the system may still evolve under the effect of unitary, Hamiltonian
dynamics.

3.1. Unique steady state
Let us assume that the system under study possesses only one steady state, denoted by σ̂∞. It may be pure or
mixed, as long as it is unique. In this case, the dissipative evolution invariably destroys anomalous properties
of weak values at very long times, regardless of the system’s Markovianity.

Given that the Lindbladian dynamics associated with dissipation drives any operator to the steady state in
the limit of infinite time (in other words, limτ→∞ eDτ (Ô) = Tr[Ô] σ̂∞ since the dissipator evolution is
trace-preserving and, by hypothesis, drives the system to the state σ̂∞), the limit of the weak value (14) can
be expressed as

lim
τ→∞

AS,w (τ) =
Tr
[
σ̂f ITr

(
ÂSIσ̂i

)
σ̂∞
]

Tr
[
σ̂f Iσ̂∞

] = Tr
(
ÂSIσ̂i

)
= 〈ÂSI〉i, (25)

which corresponds to the expectation value of the operator ÂSI(t/2) in the initial state.
In conclusion, under dissipation, any weak value of a general observable approaches its expectation value

on the initial state in the limit of infinite time. In particular, this result is true regardless of the dimensionality
of the quantum state and the chosen post-selected state, under the assumption of a unique steady state.
Effectively, the dissipation annihilates any interference effect arising from post-selection, and the meter
measures the expectation value of the observable, as in a weak measurement without post-selection.

7



Quantum Sci. Technol. 9 (2024) 035029 L Ballesteros Ferraz et al

3.2. Multiple steady states
We demonstrate that when the Lindbladian dynamics exhibits multiple steady states, weak values can remain
anomalous and amplification can occur at infinite dissipation times.

For simplicity, let us consider a pure initial state. We decompose the unnormalized state ÂSI|ψi 〉=
〈ÂSI〉i |ψi 〉+∆i ÂSI |ψ⊥

i 〉 along the normalized initial state |ψi 〉 and a normalized state |ψ⊥
i 〉 orthogonal to

|ψi 〉. The average is 〈ÂSI〉i = 〈ψi |ÂSI|ψi 〉 and the quantum uncertainty is∆i ÂSI =
√
〈Â2

SI〉i−〈ÂSI〉2i .
Therefore, considering the linearity of the dissipator evolution, we can write the weak value as

AS,w (τ) =
〈
ÂSI

〉

i
+∆i ÂSI

Tr
[
σ̂f I eDτ

(
|ψ⊥

i 〉〈ψi |
)]

Tr
[
σ̂f I eDτ (|ψi 〉〈ψi |)

] , (26)

where the second term is responsible for any anomalousness of the weak value. We note that the trace of the
off-diagonal operator |ψ⊥

i 〉〈ψi | is zero. When the steady state is unique, the operator eDτ
(
|ψ⊥

i 〉〈ψi |
)
can

only decay to 0 in the steady state and this second term does not contribute to the weak value. As explained
previously, weak values then decay to the expectation value. However, when multiple steady states exist,
depending on the nature of the various dissipation channels, the non-Hermitian operator |ψ⊥

i 〉〈ψi | can
decay under the action of the dissipator into a mixture of the zero operator, traceless diagonal and
off-diagonal operators. The part that decays to zero does not contribute to the weak value in the limit of
infinite dissipation time. However, the Hermitian contribution can generate an anomalous real part of the
weak value, while the anti-Hermitian contribution generates the imaginary part of the weak value.

It is instructive to rewrite the coherence |ψ⊥
i 〉〈ψi | in terms of its Hermitian and anti-Hermitian part:

|ψ⊥
i 〉〈ψi |= 1

2 (σ̂
x
i − i σ̂y

i ), where σ̂
x
i = π̂D− π̂A and σ̂y

i = π̂R− π̂L are Pauli-like operators that act in the
two-dimensional subspace generated by |ψi 〉 and |ψ⊥

i 〉, and π̂k with k= D,A,R,L are the projectors on the
states |ψD/A〉= 1√

2
(|ψi 〉± |ψ⊥

i 〉) and |ψR/L〉= 1√
2
(|ψi 〉± i |ψ⊥

i 〉). Then the weak value (26) becomes

AS,w (τ) =
〈
ÂSI

〉

i
+

1

2
∆i ÂSI

Tr
[
σ̂f I eDτ (σ̂x

i )
]

Tr
[
σ̂f I eDτ (π̂i)

] + 1

2
i∆i ÂSI

Tr
[
σ̂f I eDτ

(
σ̂y
i

)]

Tr
[
σ̂f I eDτ (π̂i)

] . (27)

To have an imaginary part in the weak value, it is necessary and sufficient that eDτ
(
σ̂y
i

)
+= 0 and, thus, that

eDτ (π̂R) += eDτ (π̂L). The existence of the imaginary part is determined by the dissipative dynamics followed
by the quantum states π̂R, π̂L. They must evolve to different steady states (optimally, orthogonal), while one
of them should also overlap substantially the post-selected state, to preserve the imaginary part. A similar
conclusion can be reached for the anomalous contribution to the real part, based on the evolution of the
states π̂D and π̂A. Additionally, to preserve or generate amplification asymptotically, the evolution of the
initial state must bring it to a state (optimally, pure) nearly orthogonal to the post-selected state. Thus, for a
given dissipator, anomalousness can persist if and only if there are at least two distinct steady states
(including mixed states) unaffected by dissipation. Given a specific observable Â, the possibility of
anomalousness survival requires additionally that Â couples the two subspaces decaying to the two distinct
steady states. This argument can straightforwardly be generalized to mixed initial states, beyond the pure
initial state case examined here.

The existence of multiple steady states can occur in several situations. Obviously the existence of
complete Hilbert subspaces impervious to dissipation, such as decoherence-free subspaces [31] of dimension
at least two would be sufficient. However, as shown, the requirements are less stringent. Practical examples
could correspond to a qubit system undergoing a purely dephasing process (no population decay), an atom
with a degenerate ground state immune to dephasing processes, or a three-level system where the upper level
can decay to two lower stable levels.

In appendix B, we shed light on the anomalous properties of weak values in the presence of a
decoherence-free subspace at infinite dissipation time by delving into the sodium atom system, which
possesses a degenerate ground state.

4. Weakmeasurement in the Rabi model

In this section, we apply the theoretical principles of weak measurements under dissipation to a specific
setup involving a two-level atom system. In this system, a weak measurement of the internal state of thee
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Figure 2. The weak measurement under dissipation scheme involves four stages. Firstly, pre-selection of the system is achieved by
pumping the atom, as shown in (a), leaving it in a chosen superposition of the ground and excited states. Secondly, a weak
interaction occurs in a closed single-mode cavity, as depicted in (b). Thirdly, after the weak interaction, the atom undergoes
dissipation, as shown in (c). Finally, post-selection is performed on the atom.

cavity mode serves as the meter atom is performed using the field of a cavity. The cavity mode serves as the
meter or ancilla, and the atom-cavity dynamics are governed by the Rabi model. The Rabi model, which
studies the interaction of an atom with cavity modes, stands as a widely explored and extensively studied
framework. We posit its significance not only theoretically but also experimentally. Its relevance is
underscored by its well-established status and the multitude of experiments conducted, many of which have
been inspired by the pioneering work of Haroche [32].

Figure 2 illustrates the various steps in this process. Initially, the atom is pre-selected, for example by
pumping it with a laser pulse of appropriate frequency and intensity, leaving it in a superposition of its
ground and excited states, as shown in (a). Following pre-selection, the weak interaction occurs with a cavity
mode whose initial quantum state is known, as shown in (b). Dissipation then occurs as soon as the atom
leaves the cavity, as a result of its interaction with a quantized radiation field (either the free field or the field
of a second lossy cavity into which it moves) acting as an environment with an infinite number of degrees of
freedom, as shown in (c). Finally, post-selection is performed on the atom and the bosonic cavity mode is
read out. By measuring the field quadratures of the cavity mode, Q̂ and P̂, we can extract the real and
imaginary components of the weak value from the shift in the expectation value of the quadratures.

When the atom is in the cavity, its interaction with the field mode is described by the Rabi model,
corresponding to the atom-field Hamiltonian Ĥ= Ĥatom + Ĥfield + Ĥint with

Ĥatom =
1

2
h̄ωaσ̂z, Ĥfield = h̄ωfâ

†â, Ĥint = h̄gintσ̂x⊗
(
â† + â

)
. (28)

where ωa and ωf are respectively the frequencies of the atom and the cavity, gint is the atom-cavity coupling
constant, â† and â are the creation and annihilation operators of the field, and σ̂j the Pauli matrices. The field

quadratures are defined by Q̂=
√

h̄
2ωf

(
â† + â

)
and P̂= i

√
h̄ωf

2

(
â†− â

)
. In this model, the pointer N̂ from

equation (3) is thus given by N̂=
√

2ωf

h̄ Q̂. (N̂ should not to be confused here with the number operator â†â.)

4.1. Usual weak measurement approximation
4.1.1. Model parameters and interaction representation of the relevant observables
To begin, the atomic system is pre-selected in the state σ̂i. The meter initial state is denoted by µ̂0. For an
arbitrary initial state of the meter, the weak measurement results are provided by the general expressions (18)
or (24). In order to use the corresponding simpler results (19) or (21) for the measurement average, we can
require that 〈N̂I (t/2)〉0 = 0; we can also take advantage of (20) when the initial meter state commutes with
Ĥfield. The simplest meter state to consider is the vacuum state, denoted by |0〉〈0|, but the meter shifts
observed with energy eigenstates, coherent states, squeezed states, and thermal-equilibrium states can all be
evaluated straightforwardly, enabling the determination of the weak value. In the following, we will
determine the meter shifts for a general meter state at first. Then, we will discuss a few simple examples.

The observable weakly measured as a result of the interaction Ĥint (28) of the Rabi model is the operator
σ̂x, at least if we assume an instantaneous weak interaction (equivalent to adding a Dirac distribution δ (t) in
the interaction Hamiltonian). For a short—but not instantaneous—interaction time with respect to the free
evolution of the atom (ωat* 1) and cavity field (ωft* 1), we can use the weak measurement

9
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approximation (8) and (9) on which relies our general theory. In that case, we showed that the operator
effectively probed is

σ̂xI (t/2) = e
i
4ωatσ̂z σ̂xe

− i
4ωatσ̂z = cos

(ωat

2

)
σ̂x− sin

(ωat

2

)
σ̂y. (29)

We see that it corresponds to a small clockwise rotation of the σ̂x operator around the z axis. We will use the
notation σ̂xI = )nI · )̂σ to represent this operator, with )nI = (cos ωat

2 ,− sin ωat
2 ,0) a three-dimensional real

vector representing σ̂xI on the Bloch sphere.
We use equation (24) to determine the shifts in terms of the real and imaginary parts of the weak value.

Therefore, we need to compute the meter observables N̂I and L̂I in the interaction picture, as well as the
commutator

[
L̂I, N̂I

]
and anti-commutator

{
L̂I, N̂I

}
for both cases L̂I = Q̂I and L̂I = P̂I, since the two field

quadratures serve as our conjugate meter observables. In the interaction picture, the creation and
annihilation operators are represented as âI (t ′) = e−iωft

′
â and â†I (t

′) = eiωft
′
â†. Thus, we can promptly

determine the observables

N̂I (t/2) =
[
â†eiωf(t/2) + âe−iωf(t/2)

]
, (30)

Q̂I (t+ τ) =

√
h̄

2ωf

[
â†eiωf(t+τ) + âe−iωf(t+τ)

]
, (31)

P̂I (t+ τ) =

√
h̄ωf

2
i
[
â†eiωf(t+τ)− âe−iωf(t+τ)

]
, (32)

the commutators

[
Q̂I (t+ τ) , N̂I (t/2)

]
=−2i

√
h̄

2ωf
sin
[
ωf (t/2+ τ)

]
1̂, (33)

[
P̂I (t+ τ) , N̂I (t/2)

]
=−2i

√
h̄ωf

2
cos
[
ωf (t/2+ τ)

]
1̂, (34)

as well as the anti-commutators

{
Q̂I (t+ τ) , N̂I (t/2)

}
= 2

√
h̄

2ωf
cos
[
ωf (t/2+ τ)

] (
2â†â+ 1̂

)

+ 2

√
h̄

2ωf

[
â†2eiωf(3t/2+τ) + â2e−iωf(3t/2+τ)

]
, (35)

{
P̂I (t+ τ) , N̂I (t/2)

}
=−2

√
h̄ωf

2
sin
[
ωf (t/2+ τ)

] (
2â†â+ 1̂

)

+ 2i

√
h̄ωf

2

[
â†2eiωf(3t/2+τ)− â2e−iωf(3t/2+τ)

]
. (36)

Now, we can simply evaluate the expectation values of these quantities in the meter initial state to determine
the meter shifts (24). Interestingly, we can already observe that the expectation value of the
commutators (33) and (34) do not depend on the meter initial state since they are proportional to the
identity. This means that the initial meter state does not influence the meter shift arising from the real part of
the weak value (at least when we can neglect the effect of the denominator in the shift expression). In
contrast, the expectation value of the anti-commutators depends on the initial meter state. Thus, the choice
of the initial meter state will influence the meter shift associated to the imaginary part of the weak value. It is
worth noticing that the expectation value of the operator 2â†â+ 1̂ present in (35) and (36) is proportional to
the average energy in the initial meter state (including the zero-point energy term). Using an initial meter
state with an average energy larger than the energy of the vacuum state will thus generally increase the meter
shift resulting from the imaginary part of the weak value, relatively to the shift due to the real part (at least,
when we can ignore the contributions of the â2 and â†2 terms).

4.1.2. Values of the measured meter quadratures
For simplicity, let us now assume that the meter initial state is an energy eigenstate µ̂0 = |n〉〈n|. In that case,
all the expectation values of the meter observables N̂I, Q̂I, and P̂I (30) and (32) are 0, while terms in â2 and
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â†2 in (35) and (36) average to zero as well. As a result, we find the following meter shifts at the end of the
weak measurement:

〈Q̂〉f =−2gt

√
h̄

2ωf
[sinωf (t/2+ τ) ReσS,w (τ)− (2n+ 1)cosωf (t/2+ τ) ImσS,w (τ)], (37)

〈P̂〉f =−2gt
√

h̄ωf

2
[cosωf (t/2+ τ) ReσS,w (τ)+ (2n+ 1) sinωf (t/2+ τ) ImσS,w (τ)]. (38)

As just discussed before, the shifts proportional to the real part of the weak value are identical for all the
energy eigenstates, while the shifts proportional to the imaginary part increase linearly with the energy level
n. In these expressions, the weak value σS,w (τ) is the weak value of the observable )nI · )̂σ (29) under
dissipation, defined as in equation (14) by imposing ÂSI = σ̂xI. The expressions (37) and (38) would remain
essentially identical for a meter initial state in thermal equilibrium: in that case, the energy level n should be
replaced by the average energy level in the thermal state neq(T), with 2neq + 1= coth

[
h̄ωf/(2kBT)

]
where kB

is the Boltzmann constant and T the temperature. We see thus that the meter shift due to the imaginary part
of the weak value is temperature dependent, while the shift due to the real part is not. For a squeezed vacuum
state as the meter initial state, it is theoretically possible to amplify or attenuate exponentially the shift due to
the imaginary part of the weak value as a function of the squeezing parameter z (with a factor e±2|z| replacing
(2n+ 1) in (37) and (38) for the particular argument argz= ωft; also, because the terms â2 and â†2

contribute to the anti-commutator average for squeezed states, the factor e±2|z| is not proportional to the
mode average energy sinh |z|). When choosing a coherent state for the meter initial state, the shift expressions
remain straightforward to compute. However, they become much less practical to handle because the
expectation values of the meter observables N̂I, Q̂I, and P̂I are generally non-zero and then contribute to (24)
by adding a term independent on the weak value on the numerator and by preserving the term proportional
to the imaginary part of the weak value in the denominator. From that perspective, coherent states do not
seem ideal for retrieving the weak values from the experimental meter shifts.

4.1.3. Time dependence of the meter quadratures for an initial meter ground state
Now, we turn our attention to the dependence of the meter shifts on the dissipation duration τ , which
determines the post-selection time. For reasons that will soon become apparent, we define the polar
representation of the weak value [27–29] by σS,w (τ) = |σS,w (τ)|eiϕw(τ), where |σS,w (τ)| is its modulus and
ϕw(τ) is its argument as a function of the dissipation duration τ . We consider that the meter initial state is
the vacuum state for simplicity. After setting n= 0 in (37) and (38), the expectation values of the Q̂ and P̂
field quadratures become

〈Q̂〉f = 2gintt

√
h̄

2ωf
|σS,w (τ)| sin

[
ϕw (τ)−ωf (t/2+ τ)

]
, (39)

〈P̂〉f =−2gintt
√

h̄ωf

2
|σS,w (τ)|cos

[
ϕw (τ)−ωf (t/2+ τ)

]
. (40)

In the limit of negligible free evolution of the meter, i.e. when ωf(t/2+ τ)≈ 0, the expectation value of the Q̂
field quadrature is proportional to the imaginary part of the weak value |σS,w (τ)| sinϕw(τ), as seen from
equation (22). In the same limit, the expectation value of the P̂ quadrature, associated with the canonical
conjugate of the weak measurement pointer, is proportional to the real part of the weak value
|σS,w (τ)|cosϕw(τ), as seen from equation (23). When the meter evolution due to its Hamiltonian Ĥfield can
be neglected, the shifts in position and momentum are proportional to the real and imaginary parts of the
weak value, respectively. When the contributions from the term ωf(t/2+ τ) cannot be neglected in

equations (39) and (40), then the weak value rotates with time τ in the meter phase space defined by the Q̂–P̂
quadratures (assuming that the contribution ωfτ varies much faster than the weak value argument ϕw(τ)).
This apparent rotation of the weak value results purely from the free meter evolution with time and does not
arise from a modification of the weak value itself. Consequently, practical measurements need to be
implemented differently for cases where the weak value evolution is much faster than the free-meter
evolution, and for cases where the free-meter evolution significantly outpaces the weak value evolution.
Nevertheless, in both situations, by knowing the parameters of the weak measurement, t and gint, we can
determine the weak value as a function of the dissipation time τ from the weak measurement results and, in
turn, use it to extract information about the dissipative evolution. Even for more complex initial meter states,
it is possible to invert the expressions linking the two meter expectation values to the complex weak value
(see appendix C).
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In the upcoming sections, we examine how to use the weak value expression to extract information
regarding the dissipative dynamics of the atom. In this section, we provide a more comprehensive treatment
of the weak measurement in the presence of dissipation, illustrating the general theory in depth.

4.2. General expression of the weak value for two-level systems with dissipation
4.2.1. Deriving expressions in the Bloch vector formalism
The Rabi model allows us to investigate analytically how the weak value evolves with the dissipation duration
τ . Indeed, taking a single dissipation channel characterized by the time-independent damping constant γ
and the jump operator σ̂− in the dissipatorD defined in (1), an arbitrary matrix C= cgg|g〉〈g|+ cge|g〉
〈e|+ ceg|e〉〈g|+ cee|e〉〈e| becomes

eDτ (C) =

(
ceee−γτ cege−

1
2γτ

cgee−
1
2γτ cgg + cee (1− e−γτ )

)
. (41)

Therefore, computing the weak value under dissipation (14) becomes straightforward. We choose arbitrary
initial and final states characterized by the three-dimensional, real Bloch sphere vectors)i and)f, respectively:
σ̂i =

1
2 (1̂+)i · )̂σ) and σ̂f = 1

2 (1̂+)f · )̂σ). Unit vectors correspond to arbitrary pure states of the atom, while
vectors of length< 1 describe arbitrary mixed states of the two-level system. In the weak value expression,
the post-selected state should be evaluated in the interaction representation at time t+ τ . In particular,
σ̂f I (t+ τ) =

{
cos
[
ωa
2 (t+ τ)

]
1̂+ i sin

[
ωa
2 (t+ τ)

]
σ̂z
}
σ̂f
{
cos
[
ωa
2 (t+ τ)

]
1̂− i sin

[
ωa
2 (t+ τ)

]
σ̂z
}
. If we

denote)f= ( fx, fy, fz), then σ̂f I is described by the vector

)fI (t+ τ) =




fIx
fIy
fIz



=




fx cos [ωa (t+ τ)] + fy sin [ωa (t+ τ)]
fy cos [ωa (t+ τ)]− fx sin [ωa (t+ τ)]

fz



 , (42)

which corresponds to a clockwise rotation of the initial vector)f over time around the z axis of the Bloch
sphere. We thus see that the actual time of post-selection influences the state that is effectively post-selected
in practice. Since the weakly measured operator is given by (29) and characterized by the vector )nI, we now
have the following expression for the weak value

σ̂S,w (τ) =
)fγI ·)nI +)i ·)nI (1+ fγIz− fIz)+ i)fγI ·

(
)nI×)i

)

1+)fγI ·)i+( fγIz− fIz)
, (43)

where the vector)f γI is defined as

)fγI (t+ τ) =




fIxe−

1
2γτ

fIye−
1
2γτ

fIze−γτ



= e−
1
2γτ




fx cos [ωa (t+ τ)] + fy sin [ωa (t+ τ)]
fy cos [ωa (t+ τ)]− fx sin [ωa (t+ τ)]

fz e−
1
2γτ



 . (44)

4.2.2. Effective time dependence of the weak value due to post-selection
It is quite interesting to note that the consequences of the quantum system evolution under the full
Lindbladian (1) can be taken into account by specifying an attenuated post-selected state)fγI (t+ τ) that picks
up the complete evolution after the weak interaction, including the free evolution and the dissipation. We see
that the effect of dissipation for a long time τ is to drive the attenuated post-selected state to)fγI = 0. In that
case, the density operator associated with the attenuated post-selected state becomes the maximally mixed
state 1̂/2. This explains why anomalousness disappears at long dissipation times, as dissipation effectively
prevents any effect of post-selection. In that case, we also see that the weak value becomes real and converges
towards the simple scalar product)i ·)nI, which corresponds to the expectation value of the operator )nI · )̂σ in
the initial state)i expressed in terms of Bloch vectors (as shown in section 3). We should be careful, though,
and note that the effect of dissipation is not strictly to post-select in)fγI : indeed, the formula giving the weak

value with dissipation is not exactly the same as the weak value without dissipation with)fI replaced by)fγI .
However, we see that the consequences of dissipation can always be anchored to the final state. In particular,
if we set γ= 0 to cancel the effects of dissipation, we recover the expression of a standard weak value of a
Pauli operator [28, 29]:

lim
γ→0

σS,w (τ) =
)fI ·)nI +)i ·)nI + i)fI ·

(
)nI×)i

)

1+)fI ·)i
. (45)
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The structure of the expressions (43) and (45) differ by the presence of two additional terms, proportional to
the difference of the z components of)fγI and)fI, in the case of dissipation.

In practice, the effect of the system free evolution during the time t+ τ is to rotate the post-selected
vector (42). In order to focus for the weak measurement specifically on the consequences of dissipation, we
can choose to set, as done in sections 3 (appendix B) and 5, a constant post-selected vector in the interaction
representation:)fI (t+ τ) =

(
fIx0, fIy0, fIz0

)
and, thus,)fγI (t+ τ) =

(
fIx0 e

− γ
2 τ , fIy0 e−

γ
2 τ , fIz0 e−γτ

)
. In that case,

the post-selection must depend on time τ in the Schrödinger representation, meaning that the
experimentalist must rotate its post-selection choice as a function of the dissipation duration τ :

)f=




fx
fy
fz



=




fIx0 cos [ωa (t+ τ)]− fIy0 sin [ωa (t+ τ)]
fIy0 cos [ωa (t+ τ)] + fIx0 sin [ωa (t+ τ)]

fIz0



 . (46)

This time dependence in the Schrödinger representation requires the experimenter to choose a different
post-selection depending on the time of post-selection.

Although we derived the expression of the weak value (43) in the context of the Rabi model, the
expression is quite generally valid in the context of two-level systems. For an arbitrary observable of a
two-level system undergoing dissipation as in (41), we can write ÂS = a 1̂+ b )m · )̂σ. Then, for arbitrary
initial and final states, the weak value expression is

AS,w (τ) = a+ b
)fγI · )mI +)i · )mI (1+ fγIz− fIz)+ i)fγI ·

(
)mI×)i

)

1+)fγI ·)i+( fγIz− fIz)
. (47)

with)fI the Bloch vector representing the post-selected state at time t+ τ in the interaction picture and)fγI , the

attenuated post-selected vector, constructed from)fI as in the left-hand side of (44), while )mI is the Bloch
vector associated to ÂSI(t/2) in the interaction picture. Within the weak value, the attenuated post-selection
vector)fγI contains the information on the dissipation of the system after the weak interaction, which can be
analyzed through the related weak measurement shifts.

4.3. Rotating-wave approximation
4.3.1. Model settings
The standard weak measurement approximation enables expressing the final meter state as a function of the
weak value of the weakly measured Hermitian operator in the pre- and post-selected quantum system. In the
general Rabi model, this requires ωat* 1 and ωft* 1, meaning that the free evolution can be evaluated to
first order during the short interaction time t. However, this assumption may not always be warranted. For
example, the transit time of an atom passing through a cavity may be several orders of magnitude longer
than the oscillation period of the cavity field. In that case, considering a weakly coupled atom–cavity system
near resonance, the atomic Hamiltonian will also generate many oscillations during the interaction as
|∆|* ωa +ωf = 2ω with∆= ωa−ωf. In order to make progress, we thus have to come back to the
atom-field joint state after the weak interaction given by (7), knowing that the approximation (8) is now
invalid. Then, we have to evaluate the integral of the interaction Hamiltonian in the interaction picture:

ˆ t

0
V̂(t ′)dt ′ = h̄gint

ˆ t

0
σ̂xI (t

′)⊗
[
â†I (t

′)+ âI (t
′)
]
dt ′ (48)

= h̄gint

ˆ t

0

[
σ̂+e

iωat
′
+ σ̂−e

−iωat
′
]
⊗
[
â†eiωft

′
+ âe−iωft

′
]
dt ′ (49)

≈ h̄gint

ˆ t

0

[
ei(ωa−ωf)t ′ σ̂+⊗ â+ e−i(ωa−ωf)t ′ σ̂−⊗ â†

]
dt ′ (50)

= h̄gint
sin∆t

∆

[
ei∆t/2σ̂+⊗ â+ e−i∆t/2σ̂−⊗ â†

]
(51)

≈ h̄gintt
[
ei∆t/2σ̂+⊗ â+ e−i∆t/2σ̂−⊗ â†

]
, (52)

where we used the fact that the atom and field Hamiltonians commute (48); we developed σ̂x = σ̂+ + σ̂−
(49); we neglected the fast oscillating terms σ̂−â†e2iω and σ̂+âe−2iω with respect to the slow ones (50), as
they will contribute a term in 1/(2ω) in (51); and where we expanded sin(∆t) to first order in (52),
assuming that the interaction time is short with respect to the detuning∆t* 1. In practice, the
rotating-wave approximation RWA that we carried out leads to the conservation of the excitation number, by
neglecting the non-resonant terms originating from Ĥint in equation (28). Note that the RWA also requires
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the condition ωf- gint, which is met in most, if not all, atomic cavity QED experiments. The error associated
to the RWA is of the order of

√
ngint/ωf, where n is the average number of photons in the cavity [33] (but we

further restrict here the approximation to short times with respect to the detuning in order to remain in the
spirit of a weak measurement approach).

We observe that the effective interaction Hamiltonian in the weak measurement and rotating-wave
approximations comprises two terms built from non-Hermitian operators. In the first one, the raising
operator σ̂+ of the system is coupled to the annihilation operator â of the meter, while, in the second term,
the lowering operator σ̂− of the system is coupled to the creation operator â† of the meter. The sum of the
two coupling terms is nevertheless a Hermitian operator.

4.3.2. Values of the meter observables
Starting from the effective interaction Hamiltonian VI (t/2) given by (52), by following the exact same
theoretical developments performed in section 2, beginning from equation (10), we deduce immediately the
equivalent of equation (18)

〈L̂〉f =
〈L̂I〉0 + 2gintt Im

[
ei∆t/2σ+,w (τ)〈L̂Iâ〉0

]
+ 2gintt Im

[
e−i∆t/2σ−,w (τ)〈L̂Iâ†〉0

]

1+ 2ginttIm
[
ei∆t/2σ+,w (τ)〈â〉0

]
+ 2ginttIm

[
e−i∆t/2σ−,w (τ)〈â†〉0

] , (53)

with L̂I(t+ τ) and the weak values

σ±,w (τ) =
Tr
[
σ̂f I(t+ τ) eDτ (σ̂±σ̂i)

]

Tr
[
σ̂f I(t+ τ) eDτ (σ̂i)

] . (54)

We would like to point out that the operators σ̂± appear in the Schrödinger representation, as their time
dependence has been explicitly factored out in (52) and (53). The meter shift exhibits now two contributions,
one from each coupling term. Very interestingly, the weak measurement result depends on the weak values of
the non-Hermitian raising and lowering operators σ̂± of the system.

To determine the weak values, we consider measuring the two meter quadratures Q̂I(t+ τ) and P̂I(t+ τ).
Assuming that the initial meter state is an energy eigenstate |n〉〈n| or a thermal state, we have
〈â〉0 = 〈â†〉0 = 0 in the denominator, as well as 〈L̂I〉0 = 0 in the numerator. We get thus the simple
expressions

〈Q̂〉f = 2gintt

√
2

h̄ωf
Im[ei∆t/2+ωf(t+τ)σ+,w (τ)〈â†â〉0 + e−i∆t/2−iωf(t+τ)σ−,w (τ)〈ââ†〉0], (55)

〈P̂〉f = 2gintt

√
2ωf

h̄
Re[ei∆t/2+ωf(t+τ)σ+,w (τ)〈â†â〉0− e−i∆t/2−iωf(t+τ)σ−,w (τ)〈ââ†〉0], (56)

with 〈â†â〉0 = n and 〈ââ†〉0 = n+ 1, where n labels the energy level in an energy eigenstate, or corresponds to

the average energy level neq =
[
eh̄ωf/(kBT)− 1

]−1
in a thermal-equilibrium state of the meter. We thus see that

there are generally two contributions to the observed shifts, arising from two weak values.
The simplest case, yet fascinating, corresponds to a meter initially in the vacuum state |0〉〈0|, so that only

the weak value of σ̂− contributes to the shift since 〈â†â〉0 = 0. In that case, the weak measurement
expectation values are given by

〈Q̂〉f = 2gintt

√
h̄

2ωf
|σ−,w (τ)| sin

[
ϕw (τ)−∆t/2−ωf (t+ τ)

]
, (57)

〈P̂〉f =−2gintt
√

h̄ωf

2
|σ−,w (τ)|cos

[
ϕw (τ)−∆t/2−ωf (t+ τ)

]
, (58)

where ϕw(τ) is the argument of the weak value of σ̂− (54). These shifts should be compared to the results
obtained before in the Rabi model (39) and (40), which are functions of the weak value of the operator
σ̂xI(t/2). In a weak measurement performed within the validity of the Jaynes–Cumming model with a meter
initially in the vacuum state, the meter shifts depend on the single weak value of the lowering operator of the
system, a non-Hermitian operator. This approach enables using the weak value approximation for
interaction times t such that ωft- 1 and ωat- 1, on the condition that the interaction time remains short
with respect to the frequency detuning∆t* 1. In these circumstances, it is possible to investigate the
dissipation dynamics of the system through the weak value of the non-Hermitian operator σ̂−.
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4.3.3. Weak values of σ̂± in terms of Bloch vectors
The general formula (47) for a two-level weak value affected by dissipation enables expressing the weak value
of the non-Hermitian operators σ̂± straightforwardly. By setting a= b= 1 and using a complex
three-dimensional vector )m± = (1,±i,0)/2 because 2σ̂± = σx ± iσy, we obtain

σ±,w (τ) =
)fγI · )m± +)i · )m± (1+ fγIz− fIz)+ i)fγI ·

(
)m±×)i

)

1+)fγI ·)i+( fγIz− fIz)
, (59)

which becomes

σ−,w (τ) =
ix (1− fIz)+ fγIx (1+ iz)− i

[
iy (1− fIz)+ fγIy (1+ iz)

]

2
[
1+)fγI ·)i+( fγIz− fIz)

] , (60)

σ+,w (τ) =
ix (1− fIz + 2fγIz)+ fγIx (1− iz)+ i

[
iy (1− fIz + 2fγIz)+ fγIy (1− iz)

]

2
[
1+)fγI ·)i+( fγIz− fIz)

] . (61)

These weak values appear relatively simple and symmetric, with only a few Bloch vector components
involved in their numerators. These expressions are helpful to choose appropriate pre- and post-selected
states)i and)f to probe the dissipation dynamics that are revealed through the contributions of the)fγI vectors
to the meter shifts.

5. Exploiting weak values in dissipative systems

Dissipation harms the amplification properties of the weak value. In systems driven to a unique steady state
by the dissipation dynamics, weak values cannot provide amplification when the dissipation time is long. In
general, the longer the dissipation time, the weaker the amplification of the weak value. Nevertheless,
measuring the weak value at short dissipation times can still provide valuable information about the
evolution of the system. For example, the rate of change of the weak value could be used to determine the
dissipation rate, allowing shorter measurement times than those required by traditional methods.

It is often interesting to detect non-Markovianity in the evolution of a quantum system, which may not
always be straightforward. For certain non-Markovian evolutions, we show it is possible to differentiate
Markovian dissipation from non-Markovian dissipation by analyzing the evolution of the weak value. This
result demonstrates the potential of weak measurement theory in identifying non-Markovian dynamics.

5.1. Effective amplification of the dissipation rate
In this section, we show that the dissipation rate can, in principle, be accurately determined from the
evolution of weak values in a short interval of time. To begin with, let us examine the atom evolution in the
dissipative regime in the interaction picture,

˙̂σSI =D (σ̂SI) = γ

[
σ̂−σ̂SIσ̂+−

1

2
(σ̂+σ̂−σ̂SI + σ̂SIσ̂+σ̂−)

]
, (62)

where dissipation is assumed to be Markovian.
For this illustration, we will consider a weak measurement of the σ̂x operator, i.e. ÂSI (t/2) = σ̂x in the

weak value expression (14) and, equivalently, )nI = (1,0,0) in (43). We also take a post-selected state that is
constant in the interaction representation, namely σ̂f I (t+ τ) = σ̂fI0. As a result, we focus our attention
exclusively on measuring the dissipation, without probing the free Hamiltonian evolution. Since the
dissipation time is short, we can expand the weak value of the spin operator σ̂x in a Taylor series up to the
first order in τ ,

σx,w (τ) =
Tr
[
σ̂fI0 eDτ (σ̂xσ̂i)

]

Tr
[
σ̂fI0 eDτ (σ̂i)

] ≈
Tr
[
σ̂fI0 σ̂xσ̂i

]

Tr
[
σ̂fI0 σ̂i

] + τ
d

dτ

(
Tr
[
σ̂fI0 eDτ (σ̂xσ̂i)

]

Tr
[
σ̂fI0 eDτ (σ̂i)

]
)∣∣∣∣∣

τ=0

, (63)

where the derivative can be computed using equation (62). Let ε* 1 be a small number, which we will show
is inversely proportional to the amplification of the weak value. When the initial and the post-selected atomic
states are chosen, to first order in ε, as
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|ψi 〉=−sign(ε) |g〉+
|ε|
2
|e〉,

|ψfI0〉=
1√
2
(ε|g〉+(1− i) |e〉) , (64)

with σ̂fI0 = |ψfI0〉〈ψfI0|, then the probability of post-selection (i.e. the denominator of equation (63)) is
p= ε2/4 for τ = 0 and the weak value at first order in γτ and ε is given by5

σx,w ≈
τγ

ε
+ i

2− τγ
ε

. (65)

We see that for a given time τ , the dissipation rate γ is effectively amplified by the small parameter ε in the
denominator of the real part of the weak value. At τ = 0, the weak value is purely imaginary. However, when
dissipation is introduced (τ += 0), the weak value becomes a complex number that varies linearly with time,
τγ. In principle, the dissipation rate can be extracted by measuring the real part of the weak value at different
short times. This approach takes advantage of the weak value amplification, proportional to 1

ε , which opens
up the possibility of using much shorter dissipation times. This is especially relevant for experiments where it
may be difficult to obtain long dissipation times. In particular, by resorting to amplification, we reduce the
measurement duration, which may be helpful if the meter undergoes some dissipation in practice (contrary
to our model assumptions). We note that it is also possible to extract the dissipation rate by measuring the
weak value for several values of the small parameter ε for a fixed duration τ of the dissipation, if this proves
more convenient.

5.2. Revealing non-Markovianity
In this section, we show that weak values can provide a valuable tool to distinguish between certain
Markovian and non-Markovian dynamics. More specifically, we consider here a modified experimental
setting in which a two-level atom undergoes a weak interaction in a cavity and then enters a second leaky
cavity. Inside the second cavity, the atom is coupled to a single cavity mode which is itself coupled to the
bosonic bath in vacuum associated with the field outside the cavity. The dynamics of the atom in this cavity
is described by the Jaynes–Cummings model on resonance, where the Hamiltonian of the atom is
proportional to σ̂z, as explained in section 4. In this model, the non-Markovian dissipator is given by [6]

D (σ̂SI) = γ (τ)

[
σ̂−σ̂SIσ̂+−

1

2
(σ̂+σ̂−σ̂SI + σ̂SIσ̂+σ̂−)

]
, (66)

with the time-dependent dissipation rate

γ (τ) =
2γ0λ sinh

(
d τ2
)

dcosh
(
d τ2
)
+λ sinh

(
d τ2
) , (67)

where d=
√
λ2− 2γ0λ, λ defines the spectral width of the coupling, in other words, the inverse of the bath

correlation time, and γ0 is the typical atomic decay rate in the Markovian limit. The nature of the parameter
d in the Jaynes–Cummings model on resonance varies based on specific conditions [6]. In cases of moderate
or weak coupling (λ2 > 2γ0λ), d takes on a real value, resulting in the absence of oscillations in the system
dynamics. On the other hand, under strong coupling conditions (λ2 < 2γ0λ), d is imaginary and the
characteristic oscillatory behavior emerges. The dynamics generated by this model is non-Markovian [6],
which means that the evolution of the system at each time step depends on its past evolution, not just its
present state. If we select the pre- and post-selected states as in the previous Markovian case (equation (64)),
the weak value of σ̂x at second order in τ and first order in ε is

σx,w (τ)≈
λτ 2γ0
2ε

+ i
4−λτ 2γ0

2ε
, (68)

where the exact analytical solution of the non-Markovian evolution of the weak value as a function of τ was
used and expanded in Taylor series for small values of τ (see appendix E for details). The above expression is
valid if

λτ * 1 and γ0τ * 1. (69)

5 A few technical considerations on the joint series developments are provided in appendix D.
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The non-Markovian expression (68) can be recovered from the Markovian case if we replace γ in
equation (65) by 1

2γ0λτ , which corresponds to the series expansion of γ(τ) to first order in λτ in
equation (67). We can see from equation (68) that the weak value exhibits a quadratic evolution with respect
to τ , with no linear term in τ . This behavior is characteristic of non-Markovian dynamics described by the
above dissipator, provided that γ (τ = 0) = 0. To consider the transition from non-Markovian to Markovian
dynamics in this system, we highlight that the Jaynes–Cummings model becomes Markovian as λ approaches
infinity, with limλ→∞ γ (τ) = γ0. Consequently, the series expansion leading to (68) becomes invalid. Hence,
the weak value (68) corresponds to the strongly non-Markovian case.

By comparing the evolution of the weak value as a function of τ at short dissipation times, it is possible to
distinguish between Markovian and non-Markovian dynamics. Identically to the Markovian case,
amplification occurs when ε* 1. However, in strongly non-Markovian systems, the weak value is
proportional to τ 2 instead of τ . The real part of the weak value (68) is null at τ = 0, making detection of the
quadratic dependence easier. By examining the relationship between equations (65) and (68), we can obtain
valuable information about λ, especially when γ0 = γ. By incorporating a leaky cavity and comparing the
weak value evolution to its free space counterpart (without the cavity), we can extract information about the
leaky cavity parameters.

Witnessing non-Markovianity, and to a further extent, quantifying non-Markovianity, is, in general, a
complicated task. Typically, full quantum state tomography is needed to quantify the level of
non-Markovianity. The local temporal increase of metrics, such as the trace distance, the quantum fisher
information or the von Neumann relative entropy, between two different initial states reveals a
non-Markovian dynamic [34]. To detect this local increase, one needs to find the right two initial states.
Experimental quantification of non- Markovianity spans various platforms, including optical [35–37],
trapped ions [38, 39], NV centers [40], and superconducting qubits [41]. While the trace distance [42] stands
as a prominent quantifier, fidelity between states and the quantum Fisher information are also employed.
Our focus, however, is not to propose an exhaustive witness of non-markovianity. Instead, we demonstrate
how, under specific conditions, non-markovianity can be discerned through weak values. Notably, our
method offers distinct advantages compared to conventional approaches: it obviates the need for full
tomography or precise determination of initial states.

Non-markovianity also provokes coherence revivals in the quantum system due to information backflow
from the bath. These revivals can be probed through the Loschmidt echo [43]. For a two-level system
experiencing a purely dephasing process, the off-diagonal elements of the density operator are proportional
to the Loschmidt echo. It is relatively straightforward to conceive a weak measurement protocol whose weak
value as a function of dissipation time equals the complex Loschmidt echo (by taking in (26) the initial state
as the ground state, the observable as σ̂x, and the post-selected state as the equal superposition 1

2 (|g〉+ |e〉) of
the ground and excited states). In that case, anomalous oscillations in time of the weak value prove
non-markovianity, witnessed through coherence revivals, exploiting the phase sensitivity of the weak value.

In summary, we have shown that the weak value at short times provides valuable information about
dissipation in a system through an amplified decay rate, the effects of which are felt over a shorter evolution
time in practice.

6. Conclusions

In this paper, we outlined a few benefits that weak measurements and, in particular, weak values bring to the
study of open quantum systems. We have shown that dissipation impedes the amplification produced by
weak values at long times, unless the system can evolve to multiple steady states. More specifically, we have
considered a pre-selection, weak interaction, dissipation, and post-selection scheme. For systems with a
single steady state, we have shown that the limit of the weak value at infinite dissipation time is the
expectation value of the operator in the initial state, so that dissipation suppresses the anomalous character
associated with weak values and prevents amplification. However, in systems with multiple steady states,
amplification can still occur at very long timescales, as we have illustrated with a specific system.
Dissipation-induced decay in such systems can even increase the anomalous properties of the weak value
until it stabilizes. This is possible because not all quantum properties are lost through dissipation and the
final state reached after long dissipation times can still be a combination of different steady states that retain
some coherence that can be leveraged through post-selection. In particular, observing anomalous weak
values at long dissipation time requires that the unperturbed initial state and its perturbation provoked by
the weak interaction evolve differently under dissipation.

In addition, weak values can be used to measure various properties of the evolution of open quantum
systems. For example, by choosing appropriate pre- and post-selected states, we can extract information
about the dissipation rate through the weak value at short dissipation times, in the weak value amplification
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regime. This is particularly helpful if experimental constraints require a short measurement duration of each
quantum system. We also explained how it is possible to distinguish between Markovian and non-Markovian
evolutions by measuring with our scheme the growth rate of the weak value. For Markovian evolutions, the
weak value always increases linearly with time. On the other hand, in the strongly non-Markovian regime,
the weak value at small times increases quadratically with time. Consequently, a measure of the growth rate
of the weak value is sufficient to distinguish the two contrasting cases. Besides, we observed that using a
cavity mode as the meter of a weak measurement of an atom’s internal degrees of freedom may yield meter
measurement results that depend on weak values of the non-Hermitian raising and lowering operators of the
atom. These applications demonstrate the usefulness of weak values in open quantum systems. We hope that
this work will set the stage for other applications connecting weak values and open quantum systems.
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Appendix A. Dissipation before and during the weak interaction

In this work, we focused on dissipation after the weak interaction. While there could also be dissipation
during the time delay between pre-selection and the system–meter interaction, this would only alter the
initial system state from σ̂i (−T) to σ̂i (0), where σ̂i (−T) is the density operator produced by the
pre-selection procedure at time−T (either as characterized experimentally or as defined theoretically) and
where T is the time delay between pre-selection and the application of the unitary operator at time 0. In that
case, in the definition (14) of the weak value with dissipation, we should simply use σ̂i (0) for the effectively
pre-selected density operator: σ̂i = σ̂i (0) = eLT (σ̂i (−T)) = eDT (σ̂iI (−T)), with the last equality expressed
in the interaction picture. The effect of dissipation before the weak interaction is thus simply that the
effective initial state σ̂i (0)may differ from the desired initial state. As a result, it is generally possible to
modify the post-selected state in order to partially preserve the amplification capabilities of the weak value (if
this is the objective), provided that the evolution of the system is well-known and that the actual initial state
σ̂i (−T) is not completely mixed.

As an illustration of the impact of dissipation before the weak interaction, let us consider the case of
dissipation occurring only before the weak interaction (no dissipation in between the weak interaction and
post-selection). In that situation, the weak value would be

ÃS,w (T) =
Tr
[
σ̂f I(t+ τ) ÂSI(t/2)eDT (σ̂iI(−T))

]

Tr
[
σ̂f I(t+ τ)eDT (σ̂iI(−T))

] , (A.1)

where T is the dissipation duration. If the system state at time−T is not completely mixed, the pre-selected
state evolution under dissipation can be taken into account by modifying the post-selected state, in order to
preserve some amplification, even at a very large dissipation time T. In other words, we can often choose a
post-selected state that is sufficiently orthogonal to the pre-selected state after dissipation, σ̂i (0). As an
illustration, if the dissipation time is infinite and the system possesses a single non-degenerate steady state
|ζ〉, considering a pure post-selected state |ψf〉, and ignoring the effects of the system free evolution, the weak
value is

lim
T→∞

ÃS,w (T) =
〈ψf|ÂS|ζ〉
〈ψf|ζ〉

. (A.2)

By choosing a post-selected state that is almost orthogonal to |ζ〉, we can find amplification even at infinite
dissipation time. We will show in the next section that this is not the case when dissipation takes place after
the weak interaction.

The consequences on the weak value of having dissipation before or after the weak interaction are
completely different. Having dissipation before the weak interaction simply alters the initial state. However,
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having dissipation after the weak interaction typically destroys the coherences of the system, partially or
completely, as explained in section 3. Consequently, both types of dissipation should be studied separately.
All the results of this paper can be extended to the case in which there is dissipation before the weak
interaction by changing the initial density operator, σ̂i (−T) by an initial density operator after dissipation
σ̂i (0), just before the weak interaction.

In general, the weak value expression (14) does not account for dissipation occurring during the weak
interaction, unless we suppose that it is fully negligible. Assuming that the interaction duration t is also
sufficiently short with respect to the dissipation timescales affecting the system during the weak interaction,
the first-order corrections linear in the system observable are given by

AS,w (τ) =
Tr
[
σ̂f I eDτ

(
ÂSIσ̂i +

1
2 t ÂSIDc (σ̂i)+

1
2 tDc

(
ÂSIσ̂i

))]

Tr
[
σ̂f I eDτ (σ̂i + tDc (σ̂i))

] , (A.3)

where the observable ÂSI should be evaluated at time t/2 and the post-selected state at time t+ τ , as usual.
Dc is the dissipator accounting for the dynamics during the weak system-meter coupling, which is assumed
different from the dissipatorD generating the dynamics afterwards during time τ . The corrections indicate
that, in practice, to first order, the weak interaction can be considered as instantaneous and occurring at time
t/2. These results show that it is possible to fully take into account dissipation from pre-selection, to
post-selection. In a practical application, under conditions of amplification, it may become relevant to
consider the correction in the denominator as the latter becomes close to zero for nearly orthogonal pre- and
post-selected states. On the other hand, the corrections in the numerator are less important as amplification
would not affect the relative error.

Appendix B. Exploring decoherence-free subspaces: the Jg =
1
2 ↔ Je =

3
2 transition

To demonstrate the anomalous properties of weak values in systems with degenerate steady states at very
long dissipation time, we examine a simple case involving a sodium atom. Specifically, we consider a
situation in which the orbitals 1s, 2s, and 2p are all fully occupied, and there is one electron in the degenerate
level 3s. When this electron is excited, it can undergo a transition to the nearby 3p level. In particular, one of
the most intense transitions is the Jg =

1
2 ↔ Je =

3
2 transition that produces the main spectral line in the

sodium doublet. In this system, the ground state is degenerate, while there are four possible excited states,
making it a six-level system, figure B1.

The Lindbladian governing the de-excitation of the atom can be expressed in the interaction picture as

D (σ̂I) = Γ
∑

q=0,±

(
L̂qσ̂IL̂

†
q −

1

2

{
L̂†qL̂q, σ̂I

})
, (B.1)

where Γ is a characteristic spontaneous emission rate for the transition Jg =
1
2 ↔ Je =

3
2 , and

L̂q|Je,me =mg + q〉= C
Jg,1,Je
mg,q,me |Jg,mg〉, L̂q|Jg,mg〉= 0. (B.2)

The expression of the jump operators L̂q used in equation (B.1) are

L̂0 =
√

2
3 |Jg,−

1
2 〉〈Je,−

1
2 |+

√
2
3 |Jg,

1
2 〉〈Je,

1
2 |,

L̂− = |Jg,− 1
2 〉〈Je,−

3
2 |+

1√
3
|Jg, 12 〉〈Je,−

1
2 |,

L̂+ = 1√
3
|Jg,− 1

2 〉〈Je,
1
2 |+ |Jg, 12 〉〈Je,

3
2 |. (B.3)

To give a concrete example of the anomalous weak value generated by dissipation, let us consider the
following pre- and post-selected states,

|ψi 〉=
1

2
(|Je,−3/2〉+ i|Je,−1/2〉+ |Je,1/2〉+ |Je,3/2〉) ,

|ψf I〉= α|Je,−3/2〉+−0.995|Je,−1/2〉−α(1+ i) |Je,3/2〉
+α|Jg,−1/2〉+(−0.00734+ 0.00114i) |Jg,1/2〉, (B.4)

with α= 0.0498. We choose a post-selected state that depends on the dissipation duration τ in such a way
that the post-selected state is constant in the interaction representation, noted |ψf I〉. This allows us to focus
solely on analyzing the consequences of dissipation without observing effects of the free Hamiltonian
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Figure B1. Atomic transition Jg =
1
2
↔ Je =

3
2
. The Clebsch–Gordan coefficients C

Jg,1,Je
mg,q,me

= 〈Jg,mg;1,q|Je,me〉 are shown for
each allowed transition.

Figure B2. Real and imaginary parts of the weak value of Ĵy as a function of the product of the dissipation time and the dissipation
rate. The pre- and post-selected states are detailed in the text and chosen to illustrate the occurrence of an increasing anomaly due
to dissipation.

evolution of the system during time τ . In practice, this is equivalent to ensuring that the effectively
post-selected state at time t/2 does not depend on the dissipation duration.

The chosen observable to be measured is the angular momentum ÂS ≈ ÂSI (t/2) = Ĵy, or by setting h̄= 1,

Ĵy =





0 i
√
3
2 0 0 0 0

−i
√
3
2 0 i 0 0 0

0 −i 0 i
√
3
2 0 0

0 0 −i
√
3
2 0 0 0

0 0 0 0 0 i
2

0 0 0 0 − i
2 0





, (B.5)

in a basis ordered by decreasing magnetic quantum numberm starting from the four excited states and
ending with the two ground states (see figure B1).

Using the chosen pre- and post-selected states and observable, we find that the weak value without
dissipation is Aw(τ = 0) = 0.0954. This weak value is not anomalous, as its imaginary part is zero and its
modulus, 0.0954, lies in the range of the spectrum of Ĵy, whose smallest and largest eigenvalues are± 3

2 . At
infinite dissipation time, the modulus and the imaginary part of the weak value increase in magnitude to
Aw(τ →∞) =−0.346+ 0.151i. The dissipation generates an anomalous behavior of the weak value, by
increasing the imaginary part from 0 to 0.151. In figure B2, we show the evolution of the real and imaginary
parts of the weak value as a function of the product Γτ of dissipation time and dissipation rate. One can
appreciate that, at very long times, the imaginary part of the weak value is not zero and the real part is larger
in modulus than it was at null dissipation time.

We can also obtain an anomalous weak value that is preserved and completely constant over time, by
choosing the following pre- and post-selected states for the same system:

|ψi 〉=
1

2
(|Je,−3/2〉+ i|Je,−1/2〉+ |Je,1/2〉+ |Je,3/2〉) ,

|ψf I〉= 0.989|Jg,−1/2〉+(−0.146+ 0.0226i) |Jg,1/2〉. (B.6)

Despite the orthogonality of the pre- and post-selected states, as defined in equation (B.6), the presence of
dissipation in the system ensures that the weak value denominator is non-zero for τ > 0. Figure B3 depicts
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Figure B3. Real and imaginary parts of the weak value of Ĵy as a function of the product of the dissipation time and the dissipation
rate. The pre- and post-selected states are detailed in the text and are chosen to create a constant anomalous weak value.

the evolution of the real and imaginary part of the weak value of Ĵy. As one can see, the weak value is constant
and has an imaginary part different from 0.

Anomalous weak values, which are quantities different from any possible expectation value (i.e. larger
than the maximum expectation value, smaller than the minimal expectation value, or complex values), are
linked to contextuality [44, 45], a non-classical property. Dissipation generally destroys all the quantum
superpositions and coherences of a system, and without these quantum properties, there is no amplification
through anomalous weak values. However, in systems with a degenerate ground state, the final state can still
present quantum superposition and coherence, which allows us to maintain the anomalous character of the
weak value even in the limit of infinite dissipation times. In systems where all the populations decay to a
single ground state, dissipation inevitably eliminates the anomalous properties of weak values over time,
preventing amplification in this regime. Nonetheless, weak values can still be leveraged to extract
information about the system evolution over short dissipation times (see section 5).

Appendix C. Extracting the weak value from the meter measurements in the Rabi model

To shorten the formulas, we denote the anti-commutator averages by ACP= 〈{P̂I(t+ τ)), N̂I(t/2)}〉0 and
ACQ= 〈{Q̂I(t+ τ)), N̂I(t/2)}〉0; the commutator averages by CP= 〈[P̂I(t+ τ)), N̂I(t/2)]〉0 and
CQ= 〈[Q̂I(t+ τ)), N̂I(t/2)〉0; the meter operators averages in the initial meter state by N0= 〈N̂I(t/2)〉0,
Q0= 〈Q̂I(t+ τ)〉0, and P0= 〈P̂I(t+ τ)〉0. Then, the expression of the weak value in terms of the
measurement results, namely the averages 〈Q̂〉f and 〈P̂〉f of the two meter quadratures, is

ReAS,w =
i

gt

ACQ
(
〈P̂〉f− P0

)
−ACP

(
〈Q̂〉f−Q0

)
+ 2N0

(
P0 〈Q̂〉f−〈P̂〉f Q0

)

ACQ CP−ACP CQ+ 2N0
(
CQ 〈P̂〉f−CP 〈Q̂〉f

) , (C.1)

ImAS,w =− 1

gt

CQ
(
〈P̂〉f− P0

)
−CP

(
〈Q̂〉f−Q0

)

ACQ CP−ACP CQ+ 2N0
(
CQ 〈P̂〉f−CP 〈Q̂〉f

) , (C.2)

which is valid for an arbitrary initial meter state. These expressions are obtained by inverting (24) using both
quadratures. In order to retrieve the weak value from the quadrature measurements, we see that it is
preferable to choose an initial meter state verifying N0= 0, as well as P0= Q0= 0.

Appendix D. Series expansion of the weak value (Markovian case)

We discuss here a few technical issues related to the series expansion of the weak value (65) in section 5.1. Let
us consider the denominator of the two-level system weak value (43):

1+
(
fIxix + fIyiy

)
e−

1
2γτ + fIz (1+ iz)e

−γτ − fIz. (D.1)
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Since we would like to exploit amplification, we require that the pre- and post-selected states are nearly

orthogonal
∣∣〈ψf I|ψi 〉

∣∣2 = ε ′2 for a small parameter ε ′. In terms of Bloch vectors, we have thus
)fI ·)i=−1+ 2ε ′2. We can then eliminate the x and y components of the Bloch vectors in (D.1):

1− e−
1
2γτ + 2ε ′2e−

1
2γτ + fIz

(
e−γτ − 1

)
+ fIziz

(
e−γτ − e−

1
2γτ
)
. (D.2)

Now, a first-order series expansion in γτ yields

2ε ′2 +
1

2
γτ
(
1− 2ε ′2− 2fIz− fIziz

)
+O

(
γ2τ 2

)
. (D.3)

This shows that we should be careful when making a series expansion of the full weak value with respect to
γτ , as in (63), because we have to ensure that the first-order term in γτ in the weak value denominator is
smaller than the small term ε ′2 linked to the low post-selection probability. This would require γτ * ε ′2 in
general (for example if choosing fIz = 0), which could be an inconvenience as this imposes a bound on the
amplification yield. However, if we ensure that the factor multiplying γτ in (D.3) is proportional to ε ′2, then
the series expansion in γτ is valid as long as γτ * 1, without constraining the amplification. Indeed, if we
take the pre-and post-selected states with small components along x and y that are of the order of ε ′, then, to
second-order in ε ′, we can write fIz ≈ 1−αε ′2 and iz ≈−1+βε ′2 (exchanging the roles of f Iz and iz works
as well), where α and β are unimportant proportionality constants related to the state normalization. This
situation corresponds to pre- and post-selected states that nearly coincide with the basis states |e〉 and |g〉,
respectively. Then, (D.3) becomes

2ε ′2
[
1− 1

4
γτ
(
2−α+β−αβε ′2

)
+O

(
γ2τ 2

)]
. (D.4)

The factorization of ε ′2 does not depend on the series expansion in γτ and occurs also in (D.2). With this
choice of pre- and post-selected states, we obtain an amplification in 1/ε ′, while the series expansion to first
order in γτ is valid.

Appendix E. Computation of the weak value (non-Markovian case)

With the non-Markovian dynamics specified in section 5.2 with the dissipatorD defined in (66)
and the time-dependent dissipation rate given in (67), an arbitrary matrix C= cgg|g〉〈g|+ cge|g〉
〈e|+ ceg|e〉〈g|+ cee|e〉〈e| becomes

eDτ (C) =

(
cee Γ2 ceg Γ
cge Γ cgg + cee

(
1−Γ2

)
)
, (E.1)

where

Γ=

√
λ− γ0− γ0 cosh

[
τ
√
λ(λ− 2γ0)

]

√
λ− 2γ0

exp




−
λτ

2
+ tanh−1




√
λ tanh

(
1
2

√
λτ
√
λ− 2γ0

)

√
λ− 2γ0








 . (E.2)

This evolution should be compared with the Markovian result (41), which exhibits an exponential decay.
Considering the similar structure of the solutions (41) and (E.1), the two-level weak value in the
non-Markovian case is identical to (43) and (47), if we redefine the attenuated post-selected Bloch
vector (44) to

)f γI (t+ τ) =




fIx Γ
fIy Γ
fIz Γ2



 . (E.3)
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